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Preface

A New Edge AI Reality

This book is the result of the rich exchanges of ideas and presentations at the
European Conference on EDGE Al Technologies and Applications (EEAI)
held on 21-23 October 2024 in Cagliari, Sardinia, Italy, offering a panoramic
snapshot and a technical deep dive into the contemporary landscape of
edge Al With twenty selected chapters, it encapsulates the convergence of
fundamental concepts, technical advancements, and real-world deployments
that define the edge Al continuum.

Collectively, the book serves as a reference for the field, capturing
the current state-of-the-art and anticipating future trends in hyperautoma-
tion, generative Al, connectivity, autonomy, and security mesh architectures.
Whether you are seeking in-depth technical knowledge, inspiration for novel
applications, or a strategic overview of the edge Al landscape, you will find
invaluable insights from thought researchers and practitioners at the forefront
of the field of edge Al

A brief overview of each of the twenty chapters is provided below,
highlighting the research and applications of edge Al that underscore the
book’s commitment to both technological and societal impact.

Edge Al Systems Verification and Validation: This chapter explores the chal-
lenges of verifying and validating complex edge Al systems, which integrate
hardware, software, and data. It proposes a structured framework that com-
bines model- and data-driven engineering to ensure these systems are reliable,
robust, and meet regulatory standards.

Pioneering the Hybridization of Federated Learning: This work introduces a
hybrid federated learning framework for human activity recognition, where
some clients agree to share a portion of their data. The research assesses
whether this partial data sharing can improve the overall classification
accuracy of the collective model while maintaining user privacy.

XiX
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Edge Intelligence Architecture for Distributed and Federated Learning: This
chapter proposes a novel architecture for monitoring Electric Vehicles (EVs)
by combining Federated Learning, Knowledge Distillation, and model com-
pression. This approach enables the creation of efficient, privacy-preserving
Al models that can be deployed on resource-constrained edge devices for
applications like predictive maintenance.

Challenges and Performance of SLAM Algorithms on Resource-Constrained
Devices: This study evaluates the performance of various visual-based
SLAM (Simultaneous Localisation and Mapping) algorithms on resource-
constrained hardware, such as the NVIDIA Jetson. It benchmarks several
deep learning-based systems on metrics such as accuracy, energy consump-
tion, and resource usage to assess their real-world viability.

Designing Accelerated Edge Al Systems with Model-Based Methodology:
This chapter presents a Model-Based Cybertronic System Engineering
(MBCSE) methodology for designing optimal edge Al systems with bespoke
hardware accelerators. This approach enables a holistic analysis that bal-
ances performance, power, and cost, ensuring Al algorithms can be deployed
effectively within tight system constraints.

Edge Al Acceleration for Critical Systems: Focusing on the demanding
environment of satellites, this work discusses hardware solutions, such as
FPGAs and CGRAs, for real-time, autonomous Al processing. The research
addresses critical system challenges, including power constraints and radi-
ation tolerance, and details the design of an FPGA-based GPU and an Al
accelerator framework.

Model Selection and Prompting Strategies for LLM-Based Robotic Sys-
tems: This chapter examines the challenges of selecting and implementing
Large Language Models (LLMs) in resource-constrained robotic systems. It
highlights that changing model weights or precision often requires signifi-
cant modifications to prompting strategies, complicating the development of
modular, weight-agnostic systems.

Optimising ViT for Edge Deployment: This research presents a hybrid
token reduction method, combining token merging and pruning, to make
Vision Transformers (ViT) more efficient for semantic segmentation on edge
devices. This approach significantly reduces computational complexity with
only a minimal drop in accuracy, though it highlights challenges in exporting
pruned models.
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Recent Trends in Edge Al: This chapter provides a comprehensive overview
of recent techniques for efficiently designing, training, and deploying
machine learning models on edge devices. It covers scalable architectures,
neural architecture search, and compression methods, such as quantisation
and pruning, to enable energy-efficient Al in resource-limited environments.

Scalable Sensor Fusion for Motion Localization in Large RF Sensing Net-
works: This work addresses the challenge of accurate motion localisation
in large-scale wireless sensing networks by using a probabilistic model. It
demonstrates that variational Bayesian techniques offer a scalable solution
for sensor fusion, enabling localised updates that model non-local effects
efficiently.

Multi-Step Object Re-Identification on Edge Devices: This chapter proposes
a pipeline for vehicle re-identification on edge devices using a multi-step fea-
ture extraction and matching process. The system detects an object, converts
it to a vector embedding, and queries a database to find matches, achieving
high precision in real-world camera network scenarios.

A TinyMLOps Framework for Real-World Applications: This work introduces
a TinyMLOps framework to streamline the optimisation and deployment
of Al models on microcontrollers. The framework uses cloud resources for
intensive tasks while gathering real-time performance metrics from target
devices, ensuring an accurate and scalable solution for deploying Al in
constrained environments.

Transfer and Self-Learning in Probabilistic Models: This chapter explores the
integration of transfer-learning and self-learning techniques within a single
probabilistic model. The research finds that this synergy can be achieved
through prior optimisation, enabling models to adapt across different envi-
ronments where they are deployed.

A Novel Hierarchical Approach for On-Device Energy Efficient Fault Clas-
sification: This work proposes a hierarchical architecture utilising multi-
ple smaller neural networks to perform energy-efficient fault classification
directly on edge devices. By dividing the problem into smaller sub-tasks,
the approach achieves a nine-fold reduction in energy consumption with
comparable accuracy to a non-hierarchical model.

Discovering and Classifying Defects at the Edge: This chapter presents an Al-
based optical inspection solution for detecting defects in digital and wooden
industry products. Using YOLO and ResNet models deployed on edge
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devices, the system achieves high accuracy in identifying defect positions
and classifying defect types, with explainability tools clarifying the model’s
decisions.

Conscious Agents Interaction Framework for Industrial Automation: This
paper examines the integration of human cognitive models into industrial
automation, aiming to create flexible, multi-agent systems where humans and
machines collaborate as equal partners. Case studies in vertical farming and
HVAC control demonstrate how agents can reason and negotiate to achieve
both collective and individual goals.

Neuromorphic loT Architecture for Efficient Water Management: This work
proposes a neuromorphic IoT architecture inspired by biological systems
to address the energy and communication challenges of traditional IoT
networks. A case study on water management demonstrates how this event-
driven, asynchronous approach can be realised with neuromorphic hardware
to create a more efficient and responsive system.

Online Al Benchmarking on Remote Board Farms: This project aims to
create a collaborative platform, dAIEdge - VLab, that enables researchers
to benchmark AI models on a range of remote edge devices. This virtual
laboratory will provide access to shared resources and tools, enabling users
without deep-embedded expertise to conduct live Al experiments.

Optimising Neural Networks for Water Stress Prediction in Europe: This
study compares various neural network architectures and optimisers to predict
water stress, a key sustainability indicator accurately. The findings show
that a three-layer architecture with an Adam optimiser provides the highest
accuracy, offering a valuable tool for informed water resource management.

Decentralising Key Generation in CL-PKC with Traceable Ring Signatures:
This chapter addresses a key vulnerability in Federated Learning by propos-
ing a mechanism to decentralise key generation in Certificateless Public Key
Cryptography. Using traceable ring signatures and blockchain infrastructure,
the model provides accountability and disincentivises malicious behaviour
among trusted authorities.
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Abstract

The integration of edge artificial intelligence (Al) into different complex
systems presents unique challenges, particularly concerning their reliability,
robustness, safety, and transparency. Edge Al systems must function as
intended and meet regulatory and technical standards. Traditional verification
and validation (V&V) methodologies, which are well-suited for conventional
software (SW) and hardware (HW) systems, do not fully address the unique
characteristics of edge Al-based systems that include hardware, software,
elements of edge Al technology stack and data.

The chapter delves into the challenges and methodologies for edge Al
verification and validation to identify the unique elements required to develop
verifiable edge Al systems based on a structured verification and validation
framework integrated with model- and data-driven engineering principles,
assurance cases, and domain-specific requirements. It highlights the termi-
nology and concepts for edge Al as a technology that integrates HW, SW,
and edge Al technology and data while presenting the challenges of the
convergence of these technologies in developing verification and validation
solutions.

Keywords: edge Al, edge Al system, verification, validation, machine learn-

ing, deep learning, Al agents, agentic Al, system engineering, small language
models.
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2 Edge Al Systems Verification and Validation

1.1 Introduction and Background

Edge Al has become a cornerstone of innovation in various industries, driv-
ing advancements in automation, decision-making, and predictive analysis.
Edge Al systems applying machine learning (ML), deep learning (DL), and
data processing at the edge involving deep neural networks (DNN) present
significant challenges for ensuring the reliability, safety, and effectiveness
of intelligent embedded devices across the edge Al computing continuum,
ranging from micro- to deep- and meta-edge. Edge Al can be either deter-
ministic or non-deterministic, based on the typical application and design
choices involved. Many edge Al applications prioritise real-time, determinis-
tic behaviour for critical tasks, such as control algorithms. Other applications
can leverage the non-deterministic nature of Al to deliver more adaptable
and creative solutions as the non-deterministic nature of edge Al means it
can offer different interpretations based on context. In real-time applications,
edge Al systems require precise timing and consistent response times. This
is demanded for tasks where milliseconds of delay can be critical. Deter-
ministic edge Al is appropriate for applications that demand predictability
and consistency, while non-deterministic approaches are advantageous for
applications that require adaptability, creativity, and continuous learning. The
choice between using a deterministic or non-deterministic approach finally
depends on the detailed requirements of the application and the expected
trade-offs among predictability, adaptability, and computational cost.

The advancement of edge Al technologies and the ubiquity of automated
Al-based tools have created complex operational environments. Edge Al
systems are evolving towards engineering advanced adaptive systems and
require new concepts for verification and validation to address the challenging
multidimensional integration of HW, SW, Al models, algorithms, datasets,
and the multimodality of data.

The advantages of leveraging edge Al in many industrial applications
include real-time processing, enhanced privacy and data security, reduced
latency, optimised bandwidth, reliability, and scalability, as illustrated in
Figure 1.1.

Edge AI technology stack combines Al and IoT with edge computing,
allowing data processing and edge Al algorithm execution to occur directly
on devices located at the edge of the network. By bringing Al closer to the
source of data generation, edge Al enables more efficient and responsive
decision-making across a wide range of applications.

Al systems, particularly those based on machine learning (ML), pose
unique challenges that differ from traditional software. Unlike conventional
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Figure 1.1 Edge Al advantages. ]

programs where behaviour is largely determined by explicit code, Al system
behaviour often emerges from complex interactions between algorithms, vast
datasets, and the operational environment [1].

Many advanced AI models, particularly deep neural networks, function
as “black boxes,” making their internal decision-making processes difficult
to understand, predict, or inspect directly, hence difficult to validate [2]. This
opacity, combined with potential determinism/non-determinism and sensitiv-
ity to data variations, complicates efforts to guarantee reliability, safety, and
fairness [3].

A particularly demanding application domain of edge Al is real-time
machine vision, which is critical in domains such as industrial robotics,
autonomous navigation, and quality inspection. In these systems, the correct-
ness and timeliness of visual perception directly influence physical actions,
safety, and mission success. Their dependence on high-throughput, often
noisy and non-reproducible visual data, and the need for ultra-low latency,
makes their verification and validation particularly challenging under edge
constraints.

The data-driven approach is based on systematically and algorithmically
producing the best dataset to feed a given Al-based model, focusing on
improving data quality and data governance to enhance the performance of
a specific problem statement. Data-driven Al aims to improve data quality
and outcomes by treating code as an unchangeable entity and dealing with
labelling, augmenting, managing, and curating data. This is part of the
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data preprocessing, emphasising an iterative Al lifecycle consisting of data
collection, model training, and error analysis.

The model-driven approach is based on producing the best model for a
given dataset and aims to build new models and algorithmic improvements
to enhance performance. The model-driven edge Al focuses on improving
code reflecting the edge Al model or algorithm to achieve adequate results
from fixed datasets. Edge Al developers view the training datasets from which
the code, model, or algorithm is learning as a collection of reference labels.
The edge AI model is made to fit that labelled training data and assumes
the training data is external to the edge Al development process.

In model-driven edge Al the focus is on optimising an edge Al model,
whereas in data-driven edge Al, the focus is on data quality improvement. In
model-driven edge Al, the aim is to find the most suitable edge Al model or
an optimisation technique for a given problem, whereas, in data-driven edge
Al the aim is to find inconsistencies in the collected data for a given problem.
The two approaches require specific verification and validation solutions.

Validation, in the context of edge Al systems, moves beyond the verifica-
tion by checking if a system was built according to its technical specifications
to seek confirmation that the edge Al system is fit for its intended purpose
and effectively meet the actual needs and expectations of its users and
stakeholders within its specific operational environment.

This necessitates the implementation of rigorous verification and vali-
dation processes, underscoring the responsibility and accountability in the
development and implementation of edge Al systems.

The growing complexity and societal impact of Al, edge Al and gen-
erative Al demand a shift from purely technical verification towards a
more holistic validation approach. This approach must encompass not only
functional correctness but also usability, ethical alignment, fairness, robust-
ness in real-world conditions, and overall effectiveness in achieving desired
outcomes [6].

Before the adoption of Al agents and agentic Al with the use of large lan-
guage models (LLMs), the development of autonomous and intelligent agents
was deeply rooted in foundational paradigms of Al, such as multi-agent
systems and expert systems, which emphasise social action and distributed
intelligence [13][28].

Small language models (SLMs) are designed to offer capabilities similar
to LLMs but scaled to edge computing capabilities, such as reduced size,
processing requirements, and memory size. SLMs contain fewer parame-
ters (e.g., hundreds of millions to one billion) while still providing strong
performance for specific tasks.
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Agentic Al is a class of systems that extends the capabilities of tradi-
tional Al agents by enabling multiple intelligent entities to collaborate on
pursuing goals through shared memory [18][20], structured communication
[24][22][26], and dynamic role assignment [21].

Ethical and legal aspects and the requirements on explainability and
interpretability can lead to system development decisions that do not solely
attempt to optimize functional requirements such as accuracy and robustness.
In this case, system design choices rely on trade-offs that should ideally be
made consciously by system developers.

Agentic Al systems pose challenges in explainability and verifiability due
to their distributed, multi-agent architecture. While interpreting the behaviour
of a single language model powered by the agent is already non-trivial,
this complexity is multiplied when multiple agents interact asynchronously
through loosely defined communication protocols. Each agent may possess its
memory, task objective, and reasoning path, resulting in compounded opacity
where tracing the causal chain of a final decision or failure becomes exceed-
ingly difficult. The lack of shared, transparent logs or interpretable reasoning
paths across agents makes it highly difficult, if not impossible, to determine
why a particular sequence of actions occurred or which agent initiated a
misstep. Compounding this opacity is the absence of formal verification tools
tailored for agentic Al In traditional software systems, model checking and
formal proofs offer bounded guarantees, while there exists no widely adopted
methodology to verify that a multi-agent system comprising multiple large
language model agents collaborating on tasks will perform reliably across all
input distributions or operational contexts.

Validation, therefore, serves as a cornerstone for building trustworthy
edge Al, systems that stakeholders can confidently rely upon to operate
safely, effectively, and responsibly [7]. It directly addresses the widening
gap observed between accelerating edge Al capabilities and lagging safety
protocols.

The Al verification standardisation efforts within the edge Al community
underscores a fundamental challenge: establishing justified confidence, or
trust, in edge Al systems whose behaviour often emerges unpredictably.
This inherent uncertainty and the potential for significant negative impact
necessitate rigorous V&V processes.

V&V encompasses activities designed to ensure that an edge Al system
not only meets its specified requirements but also fulfils its intended purpose
safely and reliably in its operational context. While drawing upon established
V&YV principles from software and systems engineering, edge Al verification
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and validation requires tailored approaches and methodologies to address its
specific complexities.

The emphasis on “trustworthiness” in standards and frameworks like
ISO/IEC TR 24028 directly reflects this imperative to build demonstrable
confidence in Al systems [4][5].

This chapter provides a comprehensive overview of the verification and
validation of edge Al systems. It examines definitions grounded in inter-
national standards, outlines the core elements subject to verification and
validation, details the typical process steps involved, analyses the signifi-
cant research challenges, explores contextual variations, discusses current
research trends, and summarises future directions needed to advance the field.

1.2 Foundational Concepts and Edge Al Verification and
Validation Taxonomy

In edge Al systems, the failure of an Al component can lead to overall system
failure, highlighting the need for AI V&V. Components with Al capabilities
are treated as subsystems. V&V is carried out both on the Al subsystem
itself and on its interfaces with other parts of the overall system, just as
with any other subsystem. That is, the high-level definitions of V&V remain
unchanged for systems containing one or more Al components.

Al V&V challenges require approaches and solutions that go beyond
those for conventional or traditional systems (those without Al elements).
In the context of edge Al systems, Al components and subsystems need to
be integrated into the systems engineering framework. This involves iden-
tifying the characteristics of Al subsystems that create challenges in their
V&YV, highlighting these challenges, and providing potential solutions while
determining open areas of research in the V&V of edge Al subsystems.

Conventional SW/HW systems are engineered via three main phases,
namely, requirements, design and V&V. These phases are applied to each
subsystem and to the system under design.

Before the expansion of Al, ML, DL, and generative Al research on V&V
of neural networks addressed the adaptation of existing standards (e.g., IEEE
Std 1012-Software Verification and Validation) and processed the augmen-
tation of these standards to enable V&V and new techniques and lessons
learned to solve the V&V issues for systems integrating Al components.

In all the adaptation and augmentation attempts, one of the challenges
is data validation, as the data upon which Al depends should go through a
form of V&V process. Data quality attributes that are important for edge Al
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systems include accuracy, currency and timeliness, correctness, consistency,
usability, security and privacy, accessibility, accountability, scalability, lack of
bias, and coverage and representativeness of the state space. Data validation
steps can include file validation, transformation validation, import validation,
domain validation, aggregation rule and business validation.

Al-based systems follow a distinct lifecycle compared to traditional sys-
tems. For edge Al systems learning lifecycle, V&V activities occur through-
out the lifecycle, as illustrated in Figure 1.2. The requirements allocated to
the edge Al subsystem encompass both hardware and software (HW/SW), as
well as the Al models and data that flow up to the system from the edge Al
subsystem.

Verification refers to the set of the activities that ensure that the edge
Al system implements the specific function, and the system is built right
according to requirements.

Edge Al system verification is the process of checking that the edge Al
system achieves its goal without any bugs. It is the process to ensure whether
the developed edge Al system is right or not. It verifies whether the developed
product fulfils the requirements. Verification is static testing. Verification
means answering the question: are we building the edge Al system, right?

Edge Al verification and validation require approaches and solutions
at data, model and system level beyond those for cloud Al and conven-
tional systems. Edge Al lifecycle workflows require to combine the SW/HW
engineering methods with the data and system level analysis.

Data quality attributes like accuracy, timeliness, correctness, consistency,
usability, security, privacy, accessibility, accountability, scalability, lack of
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Figure 1.2 Edge Al verification and validation process. ]
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bias, etc. are critical for edge Al. These data quality attributes are part of
a larger edge Al non-functional requirements set.

Verification of edge Al systems involves systematically ensuring that Al
models and their implementations fulfil specified requirements and intended
purposes, as defined by recognised standards such as ISO/IEC 22989 (Infor-
mation Technology - Artificial Intelligence - Concepts and Terminology).
According to ISO, verification refers to the confirmation through objec-
tive evidence that specified requirements have been fulfilled. When applied
to edge Al systems, verification processes ascertain that Al models and
related software systems conform rigorously to technical and functional
specifications, without necessarily validating the appropriateness of these
specifications.

Principal elements involved in edge Al systems verification include:

A formal requirements specification represents a crucial element, where
clearly defined, unambiguous requirements serve as the foundational
basis for verification. These specifications typically include functional
requirements, performance criteria, safety constraints, security mea-
sures, and ethical guidelines.

* Model verification that entails evaluating AI models, including machine
learning (ML) and deep neural networks (DNNs), ensuring their inter-
nal logic and behaviours align precisely with predefined specifications.
Techniques employed in model verification include formal methods,
theorem proving, model checking, and simulation-based testing.

» Software and hardware integration verification, which is vital, ensur-
ing edge Al systems correctly interact with hardware components and
software environments. It includes examining interface correctness,
interoperability, real-time performance, and robustness under varying
conditions and inputs.
Rigorous test case generation and execution constitute essential verifi-
cation steps. Al system verification employs automated test generation
methods, including boundary value analysis, equivalence partitioning,
and mutation testing, complemented by scenario-based testing to thor-
oughly assess compliance and performance under diverse and extreme
operational conditions.

* Documentation and traceability processes involve detailed records
demonstrating systematic compliance with verification steps, adherence
to standards, and requirement fulfilment. Comprehensive documenta-
tion supports transparency and accountability and facilitates continuous
improvement and iterative refinement processes.
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In this context, the principal verification process involves several method-
ical steps:

* Requirement Analysis: Clearly define and document edge Al systems’
functional, performance, and safety requirements.

* Verification Planning: Establishing a structured plan that details verifi-
cation strategies, methods, criteria, and resources.

* Model and Code Inspection: Applying manual or automated inspections
and formal verification techniques to analyse Al model structures and
implementation code for correctness.

» Test Development: Generating extensive and varied test cases cover-
ing all possible usage scenarios, operational environments, and stress
conditions.

* Verification Execution: Systematically conducting tests and verification
activities, rigorously analysing outcomes against specified acceptance
criteria.

* Reporting and Review: Documenting detailed verification outcomes,
identifying discrepancies, and facilitating stakeholder review to ensure
comprehensive verification coverage.

e Jterative Refinement: Addressing identified issues through iterative
model adjustments, re-verification cycles, and continual improvement
to achieve specified verification goals.

Validation refers to the set of the activities that ensure that the edge Al
system that has been built is traceable to the requirements and the right edge
Al system is built to meet user needs.

Validation is the process of checking whether the edge Al system is up to
the mark or, in other words, if the product has high-level requirements. It is
the process of checking the validation of the edge Al system, e.g., it checks
if what we are developing is the right edge Al system. It is validation of the
actual and expected edge Al systems. Validation is a form of dynamic testing.
Validation means answering the question: are we building the right edge Al
system?

Validation of edge Al systems is a critical and systematic process
intended to ensure that the developed Al system meets stakeholders’ and
end-users’ specific needs and expectations, as explicitly outlined in ISO/IEC
22989 (Information Technology — Artificial Intelligence — Concepts and
Terminology). According to ISO standards, validation involves confirming
through objective evidence that the requirements for a specific intended use
or application have been fulfilled. In Al, validation goes beyond verifying
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compliance with technical specifications—it assesses whether the system
performs suitably in real-world conditions and scenarios.

The principal elements involved in the validation of edge Al systems
encompass several dimensions:

* The identification of intended use and user requirements is foundational.
Clear articulation and comprehensive understanding of user needs, oper-
ational contexts, and usage environments are paramount. This involves
gathering input from stakeholders and end-users to form a robust basis
for subsequent validation activities.

* Operational scenario definition is critical. Edge Al systems must be val-
idated within scenarios that accurately represent real-world operational
contexts. Scenarios are typically derived from realistic usage conditions,
including normal operational states, boundary conditions, and potential
abnormal or edge cases.

» Performance evaluation under realistic conditions is essential. Valida-
tion combines simulated environments and real-world testing to ensure
edge Al systems perform reliably and effectively. Performance metrics,
such as accuracy, precision, recall, robustness, resilience, and usability,
form the basis for evaluating system performance and alignment with
stakeholder expectations.

* Human-machine interaction and usability assessment are integral to
validation. Edge Al systems are validated to ensure effective and
intuitive interactions with human operators or users. Usability testing,
user experience assessments, and feedback loops with real users facil-
itate comprehensive evaluations of the Al system’s ease of use and
accessibility.

* Safety, security, and ethical considerations are central elements of the
validation process. These assessments verify that edge Al systems func-
tion correctly and comply with safety standards, security protocols,
data privacy laws, and ethical guidelines, aligning with international
frameworks and societal expectations.

The edge Al validation process typically involves structured, methodical
steps:

* Requirement and Expectation Definition: Establishing clear validation
criteria and user expectations, documenting them rigorously.

* Validation Planning: Creating detailed validation plans that specify
methodologies, scenarios, test environments, and acceptance criteria.
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* Scenario Development: Defining realistic operational scenarios and
selecting representative use-cases and edge-cases for comprehensive
validation.

* Simulation and Real-world Testing: Controlled simulations are con-
ducted, followed by real-world trials to evaluate Al system performance
against established criteria.

* Performance and Usability Assessment: Analysing performance out-
comes, usability data, and user feedback to ascertain compliance with
expectations and user requirements.

* Safety, Security, and Ethical Evaluation: Systematically reviewing com-
pliance with safety and security standards, data protection requirements,
and ethical norms.

* Reporting and Continuous Improvement: Compiling comprehensive
validation reports, documenting findings and recommendations, and
establishing iterative cycles for continuous system refinement.

Verification and validation of Al and edge AI models and data are
required in safety-critical applications to ensure the trustworthiness of edge
Al-enabled systems (e.g., reliability, availability, maintainability, safety, secu-
rity, resilience, connectability, explainability, interpretability, transparency,
etc.) as illustrated in Figure 1.3 and Figure 1.4.

Dependable edge Al systems involve using systems and software engi-
neering principles to systematically guarantee dependability during the edge
Al system’s construction, V&V, and operation and consider legal and
normative requirements directly from the start.

Connectability

= Ability of the edge Al system to conmect securely, anytime,
anywhere, to any available network.

Reliability
®  Ability of the edge Al system to
deliver and accomplish services as
specified within given constraints.

Safety
#  Ability of the edge Al system to
operate without harmful states and
catastrophic failures,

Security

= Ability of the edge Al system to
protect itsell and the auwtonomons
system information from
wnauthorised actions, deliberate
und wecidental intrusion/attacks.

Availability

= Ability of the edge Al system fto
deliver services  and information
when requested.

Resilience
= Ability of the edge Al system to
transform, renew, resist, respond
and recover timely from damaging
effects and states.

Maintainability
= Ability of the edge Al system to
avoid modifications and repairs.

Figure 1.3 Edge Al dependability — Trustworthiness. ]
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Transparency
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understand and interpret the cause
of a decksion.

Accountability
#  Ability of an edge Al system to be
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others with whom the edge Al

system interacts.

Figure 1.4 Edge Al dependability - Trustworthiness extended properties. ]

The progress made in developing standards and regulatory frameworks
for Al and edge Al aims to ensure the responsible use of Al in various
applications.

The relevant standards for Al that can be applied to edge Al systems are
ISO/IEC 42001 and ISO/IEC TR 24028:2020 that are described below.

The ISO/IEC 42001 standard, a management system for Al, focuses
on building trust and dependability in Al systems. It provides a frame-
work to establish, implement, maintain, and continually improve their Al
management systems, ensuring the responsible development and use of
Al The standard emphasises trustworthiness, fairness, transparency, and
accountability in Al systems [43][44].

The ISO/IEC TR 24028:2020 standard addresses topics related to trust-
worthiness in Al systems, including approaches to establish trust in Al
systems through transparency, explainability, controllability, etc.; engineer-
ing pitfalls and typical associated threats and risks to Al systems, along
with possible mitigation techniques and methods; and approaches to assess
and achieve availability, resiliency, reliability, accuracy, safety, security and
privacy of Al systems [5].

Traditional V&V workflows, such as the V-model, are insufficient
for ensuring the accuracy and reliability of Al and edge models. As a
result, transformations of these workflows occurred to better serve edge Al
applications.

1.2.1 Agentic Al and Al Agents

The evolution of generative Al and the emergence of Al agents and agentic
Al requires addressing them under the presentation of foundational concepts
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and edge Al verification and validation taxonomy by defining the concepts
and their specific characteristics.

Al Agents can be defined as autonomous software entities engineered
for goal-directed task execution within bounded digital environments. These
agents are characterised by their ability to perceive structured or unstruc-
tured inputs, to reason over contextual information, and to initiate actions
toward achieving specific objectives. The main characteristics of Al and
edge Al agents are autonomy, task specificity, reactivity and adaptability,
which enable the agents to operate as modular, lightweight interfaces between
pre-trained Al models and domain-specific pipelines and workflows.

Al agents are the concrete instantiations of the agentic Al paradigm. An
Al agent is a specific software or hardware entity that embodies the principles
of agentic Al It is a tangible system equipped with sensors to perceive its
environment and effectors to act upon it. While agentic Al is the “what,” the
Al agent is the “how”, the actual implementation that performs tasks, makes
decisions, and interacts with external environments.

Agentic Al systems describe a paradigm shift from isolated Al agents to
collaborative, multi-agent ecosystems capable of decomposing and execut-
ing complex goals [21]. These systems typically consist of orchestrated or
communicating agents that interact via tools, APIs, and shared environments
[23][14].

A key distinction between agentic Al and Al agents lies in their level
of abstraction, as the agentic Al is a conceptual framework, whereas an
Al agent is a functional system. An analogy can be drawn between the
theory of computation and a physical computer. One provides the theoretical
foundation and a model of what is possible, while the other is the practical
machine that executes computations based on that theory.

Agentic Al reflects a broad paradigm in Al and edge Al centred on
creating systems that can perceive their environment, reason about their
observations, and act autonomously to achieve specific goals. It is the
underlying philosophy and set of principles that guide the development
of intelligent, goal-oriented systems. This concept emphasises proactivity,
reactivity, and social ability, defining the potential for Al to operate as an
independent actor rather than a passive tool. Agentic Al systems introduce
internal orchestration mechanisms and multi-agent collaboration frameworks.
Agentic Al extends the foundational architecture to support complex, dis-
tributed, and adaptive behaviours by integrating components such as spe-
cialised agents, persistent memory, orchestration and advanced reasoning and
planning. Agentic Al introduces novel memory integration, communication
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paradigms, and decentralised control, paving the way for the next generation
of adaptive workflow automation in autonomous systems, swarm robotics,
and autonomous vehicles with scalable, adaptive intelligence.

In robotics and automation, agentic Al enables collaborative behaviour in
multi-robot systems. Each robot operates as a task-specialised agent, such as
a picker, transporter, or mapper, while an orchestrator supervises and adapts
workflows. These architectures rely on shared spatial memory, real-time sen-
sor fusion, and inter-agent synchronisation for coordinated physical actions.
Use cases include warehouse automation, drone-based orchard inspection,
and robotic harvesting [25].

Verification and validation of edge Al systems, based on Al agents
and agentic Al components, must focus on ensuring the correctness, reli-
ability, and robustness of autonomous decision-making in highly dynamic
and constrained environments, which requires validating that the Al agents
consistently perform their intended functions correctly under varying exter-
nal environment conditions, including unexpected scenarios and adversarial
inputs.

Due to the limited computational resources typical of edge devices, V&V
must also confirm that the system meets stringent real-time performance
requirements, ensuring timely responses to critical events despite hardware
and network limitations.

Another aspect is assessing the resilience and safety of adaptive learning
processes within these systems, particularly as they evolve in open envi-
ronments. V&V efforts should capture how individual agents and collective
multi-agent behaviours emerge and interact, verifying alignment with overall
system objectives and preventing unsafe or unintended actions.

Additionally, transparency and trustworthiness are key elements that
enable human oversight, offering clear traceability and checkability of
decisions made by autonomous components at the edge.

1.3 Defining Verification and Validation per Standard

Several ISO standards offer consistent definitions for verification and val-
idation, primarily within the context of quality management and sys-
tems/software engineering that can be applicable to Al and edge Al as
presented below.

ISO 9000:2015 (Quality management systems - Fundamentals and
vocabulary) provides the definition for verification as the “confirmation,
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through the provision of objective evidence, that specified requirements have
been fulfilled" [29]. The focus is on confirming that the system or component
conforms to its design specifications and requirements [31]. It answers the
question: “Did we build the product right?”” [32]. Verification is often viewed
as an internal process comparing the outputs of a development phase against
the inputs [31]. Validation is defined as the “‘confirmation, through the provi-
sion of objective evidence, that the requirements for a specific intended use or
application have been fulfilled” [29]. The focus shifts to ensuring the system
meets the needs of the user and fulfils its intended purpose in the actual
context of use. It answers the question: “Did we build the right product?”
[32]. Validation often involves testing under real or simulated use conditions
and considers stakeholder needs [31].

ISO 9001:2015 (Quality management systems - Requirements), states
that validation activities ensure the resulting products/services meet require-
ments for the specified application or intended use. Validation often involves
acceptance testing with end-users and assessing fitness for purpose, making
it frequently an external process, whereas verification is more often inter-
nal. Both verification and validation are essential components of quality
management and are necessary for ensuring a dependable system [30].

ISO/IEC/IEEE 15288:2015 (Systems and software engineering - System
life cycle processes) standard integrates V&V into the system lifecycle and
considers that the verification process has as purpose “to provide objective
evidence that a system or system element fulfils its specified requirements
and characteristics” [34]. It involves activities comparing the system or
element against requirements, design descriptions, and other required char-
acteristics, confirming it was “built right” [35], while the validation process
has as purpose “to provide objective evidence that the system, when in
use, fulfils its business or mission objectives and stakeholder requirements,
achieving its intended use in its intended operational environment” [33].
This process confirms that stakeholder requirements are correctly defined,
and that the system meets its intended purpose in the context where it will
operate [33].

ISO/IEC 22989:2022 (Information technology - Artificial intelligence
- Artificial intelligence concepts and terminology) Al-specific standard
defines verification as “confirmation, through the provision of objective
evidence, that specified requirements have been fulfilled,” noting it assures
conformance to specification [9]. While not explicitly defining validation in
the same way, it defines trustworthiness as the “ability to meet stakeholder
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expectations in a verifiable way” [38]. This definition links the core goal of
validation (meeting stakeholder expectations/needs) directly to the concept
of trustworthiness in Al. The standard also incorporates a “verification and
validation” phase within its depiction of the Al system lifecycle [39].

ISO/IEC TR 24028:2020 (Information technology - Artificial intelligence
- Overview of trustworthiness in Artificial Intelligence) technical report
further reinforces the link between validation and trustworthiness and defines
trustworthiness as the “ability to meet stakeholder expectations in a verifi-
able way” [40]. This aligns the concept of trustworthiness directly with the
objective of validation — confirming that stakeholder needs and intended use
requirements are met [42]. The report discusses assessing and achieving key
characteristics like reliability, safety, security, and privacy, all crucial aspects
evaluated during validation [41].

ISO/IEC 42001:2023 (AI Management System) standard specifies require-
ments for establishing, implementing, maintaining, and continually improv-
ing an Al Management System (AIMS) within an organization [43]. An
AIMS provides a structured framework for responsible Al governance, risk
management, and operational control throughout the Al lifecycle [44]. Ver-
ification activities are integral to an AIMS, supporting risk assessment,
impact assessment, performance evaluation, and ensuring compliance with
policies and objectives [44]. Notably, ISO/IEC 22989 (providing the core Al
terminology) is a normative reference for ISO/IEC 42001, highlighting the
foundational role of clear definitions [45].

IEEE 1012-2016 (IEEE Standard for System, Software, and Hardware
Verification and Validation) standard applies to systems, software, and
hardware being developed, maintained, or reused (legacy, commercial off-
the-shelf [COTS], non-developmental items) [91]. The term “software” also
includes firmware and microcode. Additionally, each of the terms “system,”
“software,” and “hardware” encompasses documentation. V&V processes
include the analysis, evaluation, review, inspection, assessment, and testing
of products. V&V processes are used to determine whether the development
products of a given activity conform to the requirements of that activity
and whether the product satisfies its intended use and user needs. V&V
lifecycle process requirements are specified for different integrity levels. The
scope of V&V processes encompasses systems, software, hardware, and their
interfaces.
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1.4 Key Elements for Edge Al Verification and Validation

The elements for verifying and validating edge Al may encompass opera-
tional aspects, system integration, Al models and human-machine interaction.
Verification and validation are important to ensure reliability, performance
and accuracy of complex systems.

{% Verification = Validation

Checking whether the edge Al system was built
correctly according to specifications, It's about
making sure the system is error-free in terms of
implementation.

Ensuring that the right edge Al system has been
built that is, the system fulfills ity intended
purpose and meets the needs of its users.

Figure 1.5 Verification and validation.

Edge Al system verification and validation refers to the processes and
methodologies used to ensure that an edge Al system is dependable, performs
as expected, and meets certain standards before it is deployed.

These processes are crucial as the edge Al algorithms can work with high-
stakes decision-making, various sizes datasets, learn and evolve over time.
The processes are needed for ensuring that the edge Al systems do what they
are supposed to do, without unintended consequences, biases, or errors.

Al and edge Al systems typically focus on the actual algorithms and
models to ensure that they perform as intended under various conditions. In
addition, edge Al systems focus on validating the systems performance on
resource-constrained devices, network conditions and privacy in real-world
scenarios.

It is critical to distinguish verification from validation. While verification
checks conformance to specifications (“Did we build the system right?”),
validation confirms that the system meets the needs of the customer and other
stakeholders and fulfils its intended purpose in its operational environment
(“Did we build the right system?”) [30].

The introduction of Al in product and systems development has sig-
nificantly increased the complexity of electronic components and systems
(ECS), by integrating various technologies such as hardware, software, ML,
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DL, NNs, generative Al, and advanced data analytics. This complexity
necessitates robust verification and validation frameworks and benchmark-
ing to ensure these systems operate correctly and efficiently as illustrated
in Figure 1.6. Complex edge Al models require verification and validation
to ensure their predictions, decisions, and content generation outputs are
reliable and accurate, which is critical for maintaining the trustworthiness
of Al systems. Failures in edge Al-based ECS can have significant economic
and business-critical consequences, including system failures, financial loss,
and damage to infrastructure, making the dependability of edge Al systems
paramount.

In machine vision, specific verification concerns arise from the need to
ensure reliable object detection, tracking, segmentation, or pose estimation
across a wide range of dynamic conditions. For example, verification must
confirm that visual inference results remain stable under varying lighting,
occlusion, and motion blur, common challenges in edge deployments like
factory floors or drones.

Ensuring robustness and reproducibility in edge-based machine vision
systems is inherently difficult due to the high variability and noise in visual
data. Unlike structured tabular inputs, images and videos exhibit a vast range
of intra-class variation—objects or actions belonging to the same class can
appear drastically different depending on factors such as:

* Lighting conditions (e.g., shadows, reflections).

* Occlusions or partial views.

* Background clutter.

» Camera distortions, blur, or motion artifacts.

* Variability in object shape, colour, texture, or viewpoint.

A comprehensive V&V framework, presented in Figure 1.6, along with
benchmarking of edge Al-based methods, frameworks, tools, and ECS,
is essential to ensure performance and dependable system properties like
security, reliability, robustness, and fairness.

Verification ensures that edge Al-based methods, frameworks, tools, and
electronic components and systems are built correctly and meet specifi-
cations, while validation confirms they perform as intended in real-world
scenarios.

In edge Al systems there is a need of creating a structured approach
to defining and applying such a framework to edge Al-based tools and
methods, ensuring ECS meet functional and non-functional requirements,
quality, KPIs, and performance standards.
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1.4.1 Core Elements for Al Verification

Figure 1.6 Verification and validation framework. 1

Verification activities in Al systems must address multiple facets, span-
ning data, models, system-level behaviour, and the processes governing

development and deployment. Ensuring the integrity and appropriateness of

each element is crucial for overall system trustworthiness.

1.4.1.1 Data Verification
Given that many Al and edge Al systems, particularly those based on ML,
learn from data, verifying the data itself is paramount [3]. Key aspects

include:

Data Quality: Assessing if the data meets predefined standards for accu-
racy, completeness, consistency, timeliness, and representativeness for the
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target domain [3]. This involves checking for errors, missing values, correct
formatting, and ensuring the data is current and relevant [46]. Poor data
quality directly impacts model performance and reliability. Machine vision
applications often require extensive data augmentation and synthetic dataset
generation for robustness. In this case, the validity of the augmented dataset
needs to be verified for plausibility and compliance with conditions of the
actual use of the system.

Data Bias: Identifying systemic skews or prejudices within the data that
could lead to unfair or discriminatory outcomes [3]. Verification involves con-
firming that bias detection methods have been applied and that any mitigation
steps align with fairness requirements or definitions. This includes checking
for underrepresentation or imbalances across demographic groups [3].

Data Provenance and Lineage: Ensuring the origin and history of the data
are understood and documented, including all transformations and processing
steps [47]. Verification confirms traceability back to authorized sources and
validates the integrity of the data pipeline.

Data Security and Privacy: Confirming that data collection, storage, and
processing adhere to relevant privacy regulations like General Data Protection
Regulation (GDPR), a law in the European Union aimed at safeguarding the
data and privacy of EU residents or California Consumer Privacy Act (CCPA)
a US state law that applies to for-profit businesses operating in California that
collect personal information from California residents, and organizational
security policies [3]. This includes verifying the implementation of tech-
niques like anonymization, encryption, access controls, and proper consent
management [48].

Data Labelling: For supervised learning, verifying the accuracy, consistency,
and quality of labels applied to the training and testing data is crucial, as errors
here directly impact model learning [3].

1.4.1.2 Model Verification
The Al and edge Al model itself, the core component that performs learning
and prediction, requires rigorous verification:

Accuracy and Performance: Quantifying how well the model achieves its
intended task according to predefined metrics (e.g., precision, recall, F1-score
for classification; BLEU score for translation) evaluated on unseen test or
validation datasets [41]. Verification confirms that the achieved performance
meets the specified requirements or benchmarks.
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Robustness: Evaluating the model’s ability to maintain its performance
level when faced with noisy data, adversarial perturbations, changes in data
distribution (drift), or other unexpected conditions [49]. Verification checks
if the model’s resilience meets specified criteria under defined stress con-
ditions.In machine vision models, robustness testing should also include
tests for perceptual artifacts, such as camera motion blur or lens distortion,
and adversarial perturbations that affect visual features. This is especially
important for safety-critical applications like automated visual inspection or
autonomous guidance.

Reliability: Assessing the consistency and predictability of the model’s out-
puts under normal operating conditions over time [50]. Verification aims to
confirm that the model behaves dependably within its specified operational
domain.

Efficiency: Measuring the model’s consumption of computational resources,
such as processing time, memory usage, and energy [48]. Verification
ensures the model operates within the constraints imposed by the deployment
hardware or system requirements.

1.4.1.3 System-Level Verification
Verification must also extend to the Al and edge Al system, considering its
interaction with its environment and users:

Safety: Confirming that the system operates without causing unacceptable
levels of risk or harm to humans, property, or the environment [49]. This
involves verifying adherence to specific safety requirements, standards (like
ISO 26262 for automotive), and risk assessments. In vision-driven systems,
safety verification must ensure that the interpretation of the visual scene
cannot trigger unsafe behaviour due to false positives or misclassifications
e.g., mis detecting a pedestrian or failing to recognise a hazard in the camera
feed.

Security and Resilience: Checking the implementation and effectiveness
of measures designed to protect the system against threats like unautho-
rized access, data breaches, model tampering, and adversarial attacks [3]. It
also includes verifying the system’s ability to withstand and recover from
disruptions [51].

Fairness: Evaluating system outcomes across different demographic or user
groups to ensure equity and the absence of harmful bias or discrimination,
according to defined fairness metrics or criteria [3].
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Privacy: Verifying that the system’s operation, including data handling
and output generation, complies with privacy principles and regulations
throughout its use [52].

1.4.1.4 Process and Governance Verification
Beyond the technical components, the processes surrounding the Al system
also require verification of:

Transparency: Assessing whether sufficient and appropriate information
about the Al system (its purpose, data sources, model type, limitations, per-
formance) is documented and made available to relevant stakeholders (devel-
opers, deployers, users, regulators) [53]. Verification checks if documentation
and communication channels meet specified transparency requirements.

Explainability and Interpretability: Evaluating whether the system can
provide understandable reasons or justifications for its outputs or decisions,
tailored to the applications and users. Verification checks if the explanation
mechanisms provided meet requirements for clarity, fidelity, and utility.

Accountability: Confirming that clear roles, responsibilities, governance
structures, and mechanisms for oversight, audit, and redress are defined,
documented, and effectively implemented [6]. Verification involves auditing
these governance processes and structures against standards like ISO/IEC
42001.

These verification elements are deeply interconnected [3]. For instance,
verifying fairness requires access to appropriate data and potentially explain-
ability techniques to understand model behaviour. Verifying safety may
depend on demonstrating model robustness and having transparent documen-
tation of system limitations. An opaque model hinders the verification of its
internal logic, making it difficult to assess its safety or fairness properties
directly. This interdependence necessitates a holistic verification strategy
rather than treating each element in isolation.

Furthermore, the emphasis placed on different verification elements natu-
rally shifts depending on the type of Al system. For data-driven ML models,
verification heavily scrutinizes data quality, bias, model performance, and
robustness [3].

In contrast, for symbolic Al systems built on explicit rules and logic,
verification may concentrate more on the consistency, correctness, and
completeness of the knowledge base and the soundness of the reasoning
engine [64].
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Hybrid neuro-symbolic systems demand verification of both the neural
and symbolic parts, as well as their complex interactions, representing a
distinct verification challenge [64].

1.4.2 Core Elements Subject to Al Validation

Given validation’s focus on fitness for purpose and meeting stakeholder
needs, the elements assessed extend beyond traditional software checks. Val-
idating Al systems requires evaluating a broader spectrum of characteristics
that reflect their performance, usability, effectiveness, and impact within
their socio-technical context [6]. The exact scope may vary based on the
application domain, but the core elements subject to validation include:

1.4.2.1 Ensuring Fitness for Intended Purpose and Operational
Context

This is a central element of validation. It involves confirming that the Al
system effectively achieves its stated goals within the specific environment
and conditions of its intended use [54]. This requires a clear definition of the
intended purpose and the Operational Design Domain (ODD), the specific
conditions under which the system is designed to function. However, defining
and validating against these can be particularly challenging for adaptive Al
systems or those designed for open-world environments where conditions
are dynamic and unpredictable [3]. Validation must assess performance not
just under nominal conditions but also under stress, edge cases, and potential
environmental shifts or adversarial inputs [85]. Frameworks like the NIST Al
Risk Management Framework (RMF) emphasize establishing context (Map
function) as a foundational activity to inform subsequent measurement and
management, including validation [55].

1.4.2.2 Meeting User Needs and Stakeholder Expectations

Validation explicitly confirms that the system satisfies the requirements
and expectations of its end-users and other relevant stakeholders [30]. This
extends beyond purely functional requirements to encompass aspects like
usability, user satisfaction, ease of integration into existing workflows, and
alignment with business objectives [56]. Because Al systems can impact a
wide range of individuals and groups, validation should involve engagement
with diverse stakeholders, including end-users, domain experts, potentially
affected communities, and regulators, to capture a comprehensive set of
needs and expectations [90]. Addressing the challenge that these needs



24 Edge Al Systems Verification and Validation

might be implicit, diverse, or even conflicting is a key part of the validation
process [57].

1.4.2.3 Assessing Real-World Effectiveness and Outcomes
Validation must measure how the Al and edge Al system performs in practice,
assessing its actual effectiveness in achieving desired outcomes within real-
istic scenarios [59]. This moves beyond performance metrics derived solely
from laboratory settings or curated test datasets. It involves evaluating the
system’s impact on relevant Key Performance Indicators (KPIs), operational
efficiency, safety records, cost savings, or other context-specific measures
of success [58]. Initiatives like NIST’s Assessing Risks and Impacts of Al
(ARIA) program are specifically focused on developing methodologies to
measure these real-world impacts under controlled conditions [61]. This
assessment typically requires methods such as Operational Testing (OT),
field testing, pilot deployments, and continuous performance monitoring after
deployment [6]. In edge machine vision systems, this includes validating
that visual perception models continue to perform accurately when deployed
with quantized weights, compressed inputs, or on hardware that introduces
latency jitter. This real-world validation should account for degradation due
to environmental variables and resource limitations.

1.4.2.4 Evaluating Usability and Human-Al Interaction

For edge Al and Al systems that interact with or support humans, validation
must assess the quality and effectiveness of this interaction [60]. This includes
evaluating usability (ease of use, learnability, efficiency), the clarity and
utility of the interface, the cognitive load imposed on the user, and overall
user satisfaction [63]. Particularly for human-Al collaboration or teaming
scenarios, validation needs to assess the effectiveness of the partnership, the
safety of the interaction, the appropriateness of trust levels (avoiding over-
trust or under-trust), and the degree of shared understanding between human
and AI [61]. This requires human-centered evaluation methods, such as
usability studies, task analyses involving representative users, and systematic
collection of user feedback [62].

1.4.2.5 Validating Ethical Alignment and Societal Impact

A critical dimension of edge Al validation involves assessing the system’s
alignment with ethical principles and societal values [6]. This includes
validating characteristics like fairness, accountability, and transparency in
practice [55]. Methodologies such as Ethical Impact Assessments (EIAs) are
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emerging to help proactively identify, assess, and mitigate potential negative
ethical and societal consequences before and during deployment [61]. A key
focus is validating fairness and non-discrimination, moving beyond simple
dataset metrics to assess the actual impact on different demographic groups in
real-world deployment contexts [90]. This also involves considering broader
societal implications related to employment, environmental sustainability,
and the functioning of democratic processes [7].

1.4.2.6 Data Quality and Suitability

High-quality data ensures that models are trained effectively and can make
accurate predictions in real-world scenarios [36]. As Al and edge Al systems
become more complex and are deployed in diverse environments, the chal-
lenges associated with data quality and suitability have become increasingly
significant. Considering the specific requirements for various Al and edge
Al systems, challenges for data quality and suitability in Al and edge Al
validation include:

Relevance and Representativeness: the data used for training and validation
is relevant and representative of the real-world environment in which the Al
and edge Al systems operate. Data must reflect the diversity of conditions,
contexts, and populations that the system will encounter. If the training data
is biased or unrepresentative, the model’s performance may deteriorate when
applied to actual situations.

Volume and Availability: Considered very important, especially in scenarios
where data may be generated at high velocity. Obtaining enough high-quality
data for training and validation can be difficult. In many cases, developers
may struggle to gather sufficient diverse data from edge devices, leading to
models that are not well-trained for all possible situations they may encounter
in deployment.

Label Quality: important for supervised learning, as it directly impacts
model accuracy. Inaccurate or inconsistent labelling can mislead the training
process and result in poor performance in operational environments. Ensuring
the reliability of labels, especially when data is labelled manually or derived
from semi-automated processes, can be a significant extra work.

Bias and Fairness: the biases in learning and training of data, can lead to
outcomes that are unfair when models are deployed. Al and edge Al systems
trained on biased data may perpetuate existing stereotypes or discriminate
against certain classes and groups. Addressing data bias and ensuring fairness
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in model predictions is key to building trustworthy Al and edge systems that
serve all stakeholders equitably.

Data Drift: refers to the shifts in data distributions over time, which can
degrade model performance. As the underlying data evolves, models may
become less accurate or irrelevant. Ongoing monitoring and adaptation of
models are necessary to mitigate the effects of data drift, making it a
continuous challenge for Al and edge Al validation.

Data Preprocessing: is a critical step in data management, particularly for
edge Al systems with limited resources. Cleaning and transforming data into
suitable formats can be challenging, when using with diverse data sources and
formats. This preprocessing must be efficient to ensure real-time performance
while maintaining data accuracy and integrity.

Synthetic Data: helps augment training datasets and has several limitations.
The effectiveness of synthetic data depends on its ability to mimic real-
world scenarios accurately. If synthetic data does not accurately represent
the complexities of real-world environments, it may lead to models that
underperform when applied to actual data.

Edge-Specific Challenges: these are related to data collection from dis-
tributed edge devices, considering elements like latency, bandwidth con-
straints, and intermittent connectivity, which can complicate the data vali-
dation process. Ensuring data quality in these scenarios requires innovative
approaches to data management and model training.

1.5 The Edge Al Verification and Validation Lifecycle

According to the OECD recommendation on artificial intelligence [10], an
Al system is a machine-based framework that, driven by either explicit or
implicit goals, deduces from the input it receives how to produce outputs
such as predictions, content, recommendations, or decisions that may impact
physical or virtual environments. The levels of autonomy and adaptability of
different Al systems can vary after they are deployed. The lifecycle of an Al
system generally encompasses multiple stages, which include planning and
design; data collection and processing; model development and/or adaptation
of existing models for specific tasks; testing, evaluation, verification, and
validation; deployment for use; operation and monitoring; and retirement or
decommissioning. These stages often occur iteratively and are not strictly
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linear. The choice to retire an Al system can be made at any time during the
operation and monitoring stage.

Al and edge Al systems are distinct from other system types, which can
influence the processes of the lifecycle model, such as [9]:

* Most SW systems are designed to operate in exactly defined man-
ners dictated by their requirements and specifications. In contrast, Al
and edge Al systems that utilize ML rely on data-driven training and
optimization techniques to address a wide range of inputs.

* Traditional SW applications tend to be predictable, whereas this is less
frequently true for Al and edge Al systems.

* Additionally, traditional SW applications are generally verifiable, while
evaluating the performance of Al and edge Al systems often necessitates
statistical methods, making their verification more complex.

* Al and edge Al systems usually require numerous iterations of enhance-
ment to reach satisfactory performance levels.

The edge Al development lifecycle outlines the stages involved in creat-
ing and operationalizing edge Al systems. It starts with problem definition,
functional, non-functional requirements and data collection, followed by data
preparation and feature engineering. Model selection and architecture design
precede the training phase, where algorithms learn from the prepared dataset.
Validation and testing ensure model performance and generalization. Iterative
refinement optimizes the model based on results. Deployment integrates the
Al system into production environments. Monitoring and maintenance track
performance, address drift, and update the model as needed.

Embedding Al and generative Al into the system design requires shifting
from the current V-model, which addresses the HW and SW development
cycle, to a W-model superimposed on the V-model to account for data and
Al-specific artifacts. This includes the AI model development and data into
the Al system’s lifecycle development, as illustrated in Figure 1.7 [92].

When superimposed on the traditional V-model used in HW and SW
development, the W-model Al development lifecycle creates a comprehensive
framework that addresses the distinct yet interrelated processes of Al data
development and HW/SW engineering. This approach ensures that Al models
and supporting systems are developed in a cohesive, iterative, and validated
manner. This approach aligns existing tools and methods with Al technolo-
gies. The extension into the W-model structures represents the development
workflow of Al systems comprising HW, SW, Al stack, and data components.
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The inner W part of the model represents the Al-enabled processes
and workflows integrated into the conventional model. The Al system W-
model emphasises systematic validation and verification at each stage of
the Al development process, helping ensure the robustness, reliability, and
performance of Al systems. The W-model addresses the specific design and
development requirements of edge Al systems, distinguishing them from
traditional HW/SW and computing paradigms. The novelty in the model
lies in the fact that the data required for development and AI, ML/DL,
and generative Al model training is integrated into the development cycle,
superimposed on the traditional V-model, and follows the algorithm selection
and training in each lifecycle stage.

The edge Al system W-model emphasises that Al and generative Al are
integral to the lifecycle development processes of any Al-based product or
service.

As presented in the Al system W-model at the start of the development
lifecycle, developers can utilise Al and generative Al to understand domain
requirements and design architecture. The design captures both functional
and non-functional requirements for embedded computing systems, such as
those in automotive control or industrial units, considering hardware con-
straints and real-time performance needs. Challenges concerning edge Al
requirements and Al requirements engineering are extensive and due in part
to the practice by some to treat the Al element as a “black box”. Formal
specification has been attempted and has proven to be difficult for tasks
that are hard to formalise, requiring decisions on the use of quantitative
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or Boolean specifications, as well as the incorporation of data and formal
requirements. The challenge is to design effective methods for specifying
both desired and undesired properties of systems that utilise Al- or ML-based
components.

When considering the broader principles of agentic Al and Al agents,
their development must be integrated into the edge Al system W-model as a
specific part of the lifecycle development processes of any Al-based product
or service. As a result, the agentic Al and Al agents V&V extends beyond the
individual agent, focusing on validating the system’s autonomy and the ability
to achieve long-term goals without unexpected consequences by assessing the
alignment of the Al agent’s goals with the overall objectives of the edge Al
system and ensuring that its learning and adaptation mechanisms do not lead
to unsafe or undesirable states over time.

1.6 Failure Case Behaviour in Edge-based Machine Vision
Systems

In the context of edge-based machine vision systems, the study of failure case
behaviour is a critical component of any robust verification and validation
framework. These systems are increasingly deployed in real-world, safety-
critical environments, ranging from autonomous vehicles and industrial
robotics to surveillance and medical diagnostics, where failures can result in
substantial consequences. While conventional validation focuses on average-
case performance metrics such as accuracy or mean average precision, these
metrics often obscure rare but consequential failure modes. An edge Al
system that performs well under ideal conditions may fail unexpectedly in
the presence of visual distortions, environmental variability, or edge hardware
constraints.

Failures in machine vision models frequently arise in conditions that
deviate from the data distribution seen during training. Examples include
poor lighting, motion blur, occlusions, scale variation, or visual clutter. In
edge deployments, such conditions are not only likely but expected, and the
consequences of misclassification or missed detection can be severe. Further-
more, edge systems often operate with limited fallback options, and they must
respond in real time, leaving little margin for error recovery. Understanding
and characterizing these failure scenarios is therefore essential for both safety
assurance and iterative model improvement.

One important strategy for investigating failure modes involves delib-
erate stress testing through visual perturbations. By applying controlled
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transformations—such as adding noise, blurring, shifting brightness, or intro-
ducing occlusions—it becomes possible to evaluate how resilient a vision
model is to real-world distortions. These tests often reveal brittle model
behaviours that are not apparent during standard validation.

In addition, targeted scenario-based testing using simulation tools or
recorded video sequences enables systematic exploration of edge cases. This
is especially valuable for applications involving dynamic environments, such
as autonomous navigation, where rare events (e.g., unexpected pedestrian
appearance or sensor occlusion) may not be captured adequately in avail-
able datasets. Scenario replay or simulation also supports reproducibility of
observed failures, which is often a challenge in field deployments.

Another aspect of failure case analysis is the examination of uncertainty
and confidence levels in model predictions. Machine vision systems may
produce incorrect predictions with unjustified confidence, especially when
faced with unfamiliar or out-of-distribution inputs. Monitoring softmax confi-
dence, prediction entropy, or Bayesian uncertainty estimates can help identify
instances where the model is likely to fail. These signals may be used in
runtime monitoring or to trigger fail-safe mechanisms.

Post-hoc explainability methods, such as saliency maps or activation
heatmaps, also play an important role in understanding failure behaviour. By
visualising the regions of an input image that contributed most to a model’s
prediction, one can diagnose whether a failure was due to the model focusing
on irrelevant or misleading features. This insight often reveals underlying
dataset biases or spurious correlations that were inadvertently learned. By
combining scenario condition variables and the predictions as features in
probabilistic frameworks (e.g., Bayesian networks) is also a method for
modelling the uncertainty in predictions.

Hardware-specific issues also need to be considered in failure anal-
ysis. For instance, the quantization of weights and activations required
for execution on edge hardware (e.g., FPGAs or ASICs) can introduce
numerical inaccuracies that degrade model performance in subtle ways.
Testing the consistency between floating-point reference models and their
hardware-deployed counterparts is essential to identify precision-induced
errors. Similarly, real-time system profiling can reveal frame drops, synchro-
nization mismatches, or input-output latency violations that lead to perceptual
failures.

Finally, insights gained from the analysis of failure cases should feed back
into the design and development process. Difficult or misclassified examples
can be incorporated into retraining pipelines, synthetic data can be generated
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to increase robustness, and system architectures can be adapted to detect
and respond to high-uncertainty inputs. Ideally, safety envelopes are defined
at design time to formally capture the operational conditions under which
the system is guaranteed to function correctly. This creates a closed-loop
process that not only identifies but also mitigates and prevents known failure
patterns.

The systematic study of failure case behaviour is indispensable for
building trustworthy machine vision systems on edge platforms. It enables
developers to move beyond average-case performance toward comprehensive
assurance of correctness, robustness, and safety under realistic and adverse
conditions.

1.7 Research Challenges in Edge Al Verification and
Validation

Edge Al represents a cutting-edge computing approach that seeks to relocate
the training and inference of ML models to the network’s edge [12]. However,
implementing intelligence at the edge presents several significant challenges,
such as the necessity to limit model architecture designs, ensuring the secure
distribution and execution of the trained models, and managing the consider-
able network load needed to disseminate the models and the data gathered for
training.

Edge Al systems that incorporate continuous learning involve the gradual
updating of the models within the systems during production and test runs
operations [9]. The data input into a system during these operations, is
not only evaluated to generate an output but is also concurrently utilized
to modify the model, aiming to enhance it based on the production data.
Depending on the design of the continuous learning system, certain human
interventions may be necessary, such as data labelling, validating the appli-
cation of specific incremental updates, or monitoring the performance of
the edge Al system. Continuous learning can address the limitations of the
initial training data and assist in managing data drift and concept drift, but it
also presents significant challenges in ensuring the edge Al system operates
correctly while learning. It is essential to verify the system in production and
to capture the production data to be able to include them as part of the training
dataset in future system updates.

Catastrophic interference (and catastrophic unlearning) occurs when the
training for new tasks disrupts the model’s comprehension of previous tasks
[11]. As new information supersedes earlier learning, the model forfeits its
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capability to manage its initial tasks. Given the risk of catastrophic inter-
ference, continuous learning necessitates the capability to learn over time
by integrating new observations from current data while preserving prior
knowledge [9]. Numerous ML algorithms excel at learning tasks only when
the data is provided in a single batch. As a model is trained on a specific task,
its parameters are modified to effectively tackle that task. However, when
new training data is introduced, the adjustments made for these new inputs
can erase the knowledge the model had previously gained. In the context of
neural networks, this occurrence is regarded as one of their key limitations.

The combination of edge Al, IoT and Cyber-Physical Systems (CPS)
marks a significant transformation in data processing by bringing it closer
to the origin. This strategy minimizes latency, improves real-time decision-
making, and lessens the load on centralized cloud resources. In CPS, control
logic is utilized to process input from sensors, through actions of actuators
and thus affecting processes occurring in the physical world [9]. This is
particularly evident in robotics, where sensor data is directly employed to
manage the robot’s operations and execute tasks in the physical world.
Typically, robots are equipped with sensors at the edge to evaluate their
current conditions, processors to facilitate control through analysis and action
planning, and actuators to implement those actions.

In contrast to industrial robots, which are consistently repeating the same
trajectories and actions without deviations, service robots or collaborative
robots must adapt to evolving situations and dynamic environments [9]. Pro-
gramming this adaptability presents significant challenges due to the inherent
variability. Components of edge Al systems can play a role in the control
software and planning processes through the “Sense-Plan-Act” framework,
allowing robots to modify their actions in response to obstacles or changes
in the location of target objects. The integration of robotics and edge Al
system components facilitates automated physical interactions with objects,
environments, and individuals.

In machine vision-based robotics, the visual processing pipeline itself
must be verified and validated not only for accuracy but also for real-time
responsiveness. Edge V&V must ensure that latency from image acquisition
to action initiation does not exceed application-specific safety thresholds.
Techniques like real-time trace logging and FPGA-based image path profiling
can support this validation.

The challenges and appropriate methodologies for Al verification are not
uniform; they vary significantly depending on the type of Al model employed
and the application domain’s risk profile.
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Model-Specific Challenges and Verification Focus
Deep Learning (DL) / Sub-Symbolic AI:

* Challenges: The primary verification challenges stem from their inher-
ent opacity (making internal logic inscrutable) [64], strong data depen-
dency (performance tied to training data quality and representativeness)
[76], difficulty in formal specification of complex learned behaviours
[64], susceptibility to adversarial examples, and challenges in general-
ization beyond training data distributions [76]. Scalability of verification
methods is a major bottleneck due to the vast number of parameters and
high-dimensional inputs [52]. Non-determinism can also arise during
training or inference [70].

e Verification Focus: Emphasis is placed on empirical performance eval-
uation using diverse test datasets, extensive robustness testing against
perturbations and adversarial attacks, fairness audits to detect biases
learned from data, applying explainable AI (XAI) techniques (like
LIME, SHAP, saliency maps) and interpretable Al (IAI) to gain insights
into model decisions [74][75] and, where feasible, formal verification of
specific, localised properties such as robustness bounds around specific
inputs [69].

Symbolic AI / Rule-Based Systems:

* Challenges: These systems often suffer from brittleness, meaning they
struggle to handle situations not explicitly covered by their predefined
rules or knowledge base [73]. Creating and maintaining large, consis-
tent, and complete knowledge bases can be labour-intensive and requires
significant domain expertise [72]. They typically lack the ability to learn
directly from raw, unstructured data. A computer vision model trained to
detect stop signs may misclassify a slightly occluded or weathered sign
because it hasn’t seen enough variation in training. Traditional software
can also exhibit brittleness, i.e. they both struggle but in different forms.
Verification Focus: Verification centres on the logical integrity of the
system. This includes checking the consistency of the rule set and
knowledge base (absence of contradictions), analysing completeness (do
the rules cover the intended domain?), formally verifying logical prop-
erties like soundness and validity of reasoning steps [64] and ensuring
the traceability of outputs back to specific rules, which provides inherent
explainability [72].
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Neuro-symbolic Al:

* Challenges: This hybrid approach aims to combine the strengths of DL
and symbolic Al but verifying the interaction and ensuring consistency
between the neural (learning) and symbolic (reasoning) components is
a key challenge [64]. Developing unified V&V frameworks that can
handle both paradigms simultaneously is an active area of research [64].

* Verification Focus: Requires a multi-pronged approach: verifying the
neural components using DL-specific techniques, verifying the symbolic
components using logic-based methods, and crucially, verifying the
interface and the correctness of the combined system’s behaviour. A
major research direction involves leveraging the symbolic part to con-
strain, explain, or formally verify aspects of the neural part’s behaviour
[64].

Domain-Specific Challenges and Verification Focus

Safety-Critical Systems (e.g., Automotive, Aerospace, Medical, Indus-
trial Control):

* Requirements: These domains demand high levels of reliability, safety,
robustness, and predictability [49]. System failures can have catas-
trophic consequences, including loss of life, severe injury, or significant
environmental damage [49].

* Challenges: The need for provable guarantees clashes with the opacity
and non-determinism of many Al components [65]. Meeting stringent
regulatory standards (e.g., ISO 26262, IEC 62304, DO-178C) requires
extensive evidence and documentation, which is difficult for AI/ML
[68]. Managing the complexity of interaction with the physical world
and ensuring safety across a vast range of operational scenarios is
extremely challenging [71]. Exhaustive testing is typically infeasible
due to the combinatorial explosion of possibilities [47]. Achieving
deterministic replay for debugging and analysis is crucial but difficult
[78].

* Verification Focus: Emphasis on rigorous methodologies, including
formal methods where applicable, extensive simulation-based testing
covering edge cases and failure modes, hardware-in-the-loop and real-
world testing, fault tolerance analysis, adherence to domain-specific
safety standards, meticulous documentation, and end-to-end require-
ments traceability [65]. Building a robust safety case with sufficient
evidence is paramount [78].
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Business or mission critical:

* Requirements: Business or mission-critical edge Al systems refer to
applications that utilise Al to enable real-time decision-making and
enhance operational efficiency. These domains demand high levels of
scalability, reliability, safety, robustness, and interoperability. Due to
their critical nature, they require special attention to ensure performance.

* Challenges: Deployment challenges arise from network reliability, as
edge devices may operate in environments with unstable connections,
affecting data synchronisation and model updates. The diversity of hard-
ware platforms can cause compatibility issues and necessitate tailored
solutions. Software challenges include the need for model optimisation,
as Al models must be adjusted for edge deployment to balance accuracy
and resource utilisation. Environmental conditions also pose risks, as
edge devices must withstand various factors that can influence hard-
ware performance and reliability. Regulatory and compliance challenges
require navigating global data protection regulations to ensure that Al
systems adhere to legal standards.

e Verification Focus: Verifying the effectiveness of edge Al systems
involves establishing rigorous processes to ensure Al models meet per-
formance standards under diverse conditions. Performance evaluation
includes conducting real-time benchmarks to assess the responsive-
ness, accuracy, and resource utilisation of AI models deployed on edge
devices. Interoperability ensures that edge Al solutions operate and com-
municate effectively within existing ecosystems and various hardware.
Compliance verification requires regular audits to ensure that edge Al
systems adhere to data privacy laws and industry regulations. Robustness
verification involves stress-testing models against adversarial attacks
and unexpected inputs to confirm their resilience in real-world scenarios.
Lifecycle management strategies are necessary for overseeing the entire
lifecycle of edge Al systems, from development and deployment to
decommissioning.

Consumer Applications (e.g., E-commerce, social media, entertainment):

* Requirements: Often prioritize performance (e.g., accuracy of recom-
mendations, speed of response), user experience, scalability, and cost-
effectiveness. While direct physical safety risks are typically lower,
significant concerns exist around fairness, bias, privacy, security (e.g.,
data breaches), misinformation, and ethical use [66].
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* Challenges: Managing bias and fairness effectively across large, diverse
user populations [66]. Protecting user privacy in data-hungry applica-
tions. Detecting and mitigating the generation or spread of harmful
content or misinformation [67]. Preventing user manipulation (e.g.,
prompt injection in chatbots) [67]. Understanding and mitigating poten-
tial large-scale societal impacts [79][80].

* Verification Focus: Often relies more heavily on empirical testing, such
as testing for performance, user studies for usability and acceptance,
large-scale fairness and bias audits, privacy impact assessments and
compliance checks, evaluation of content safety filters, and robust-
ness testing against common failure modes or attacks. While formal
verification might be used for specific critical components (e.g., pay-
ment processing), the overall verification rigor may be less intense
than in safety-critical domains, unless specific high-risk functions are
involved.

The fundamental difference in verification approaches between these
contexts stems from the level of acceptable risk and the potential severity
of failure consequences. Safety-critical domains operate with extremely low
risk tolerance, demanding the highest levels of assurance and necessitating
the use of more rigorous, often formal, verification techniques, alongside
adherence to strict regulatory frameworks [65]. Consumer applications, while
facing significant ethical and societal risks, typically have a higher tolerance
for certain types of failures (e.g., a poor recommendation vs. a medical misdi-
agnosis), allowing for a greater reliance on empirical testing and monitoring.
Addressing these domain-specific challenges in business and mission-critical
edge Al systems is key for ensuring their reliability and effectiveness.

The inherent difficulties in verifying both pure DL (opacity) and pure
symbolic Al (brittleness) have spurred interest in hybrid neuro-symbolic
approaches [64]. By integrating the pattern-recognition strengths of neural
networks with the explicit reasoning and transparency of symbolic methods,
these approaches offer a potential pathway to building edge Al systems that
are more amenable to verification and trust, particularly for complex tasks
[77]. The verification of hybrid systems introduces its own set of research
questions regarding the interaction and consistency between the different
components [64].

For validation a one-size-fits-all approach to edge Al is ineffective due
to the diversity of edge Al technologies and their application domains. The
specific validation focus, methods, metrics, and acceptance criteria must
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be tailored to the type of Al system and the context in which it operates,
particularly considering the nature of user interaction and potential real-world
consequences.

Validation Nuances Across Al Types

Generative Al (e.g., LLMs, SLMs, VLMs, image generators): Validation
priorities include assessing factual accuracy (mitigating “hallucinations”),
ensuring content safety (detecting toxicity, bias, harmful content), preventing
malicious use (e.g., generating disinformation or deepfakes), and evaluating
output quality attributes like coherence, relevance, and creativity, which
often lack objective metrics [66]. The inherent non-determinism is a key
challenge, requiring validation strategies that assess output distributions or
use human evaluation and red-teaming [81]. Defining and validating the
“intended purpose” for highly flexible generative models is complex [87].

Agentic AI and AI agents: The Al agent act as a deterministic compo-
nent with limited scope, while agentic Al reflects distributed intelligence,
characterised by goal decomposition, inter-agent communication, and con-
textual adaptation, demonstrating key characteristics of the modern agentic
Al frameworks. Agentic Al systems define an emergent class of intelligent
architectures in which multiple specialised agents collaborate to achieve
complex, high-level objectives utilising collaborative reasoning and multi-
step planning [17]. V&V of edge Al systems employing Al agents focuses on
the reliability and safety of the agent’s actions in its operational environment
to ensure the agent’s decision-making logic is robust and predictable under
a broad range of inputs, especially unexpected or anomalous sensor data.
This involves rigorous testing of the agent’s software, hardware, edge Al
algorithms and data components to confirm they meet design specifications
and performance benchmarks. Another aspect of V&V for edge Al systems
that must be considered is the formal verification of the agent’s reasoning
processes, which involves creating mathematical models of the agent and its
environment to demonstrate that specific critical properties, such as safety,
robustness, and resilience, are met. For complex, learning-based agents, this
can be supplemented with extensive simulation-based testing to explore the
vast state space and identify potential failure modes before deployment in the
domain applications.

Autonomous Systems (e.g., autonomous vehicles, industrial robots):
Validation overwhelmingly focuses on safety, reliability, and robustness
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within complex and dynamic physical environments [7]. Key challenges
include achieving sufficient test coverage across a vast space of potential
scenarios (combinatorial explosion), bridging the gap between simulation
and real-world performance, validating perception systems, and ensuring
safe decision-making under uncertainty [78]. Validation heavily relies on
extensive simulation, structured scenario-based testing, field testing, for-
mal methods for safety-critical properties, and potentially runtime verifica-
tion/monitoring [78]. Validating human oversight mechanisms is also critical,
especially in military or safety-critical contexts [71].

Decision Support Systems (e.g., medical diagnosis aids, credit scoring
tools): Validation emphasizes accuracy, reliability, fairness, explainability,
and the system’s impact on human decision-making and outcomes [7]. Chal-
lenges include validating against potentially imperfect or subjective ground
truth, ensuring edge Al recommendations are beneficial and not misleading,
rigorously assessing and mitigating bias across different user groups, and
providing sufficient transparency to enable user trust and accountability. Vali-
dation typically requires domain-specific performance metrics, evaluation by
domain experts, user studies assessing impact on decisions, and thorough bias
and fairness audits [85].

Domain-Specific Considerations

The application domain significantly shapes validation priorities and meth-
ods due to differing risk profiles, regulatory requirements, and stakeholder
concerns:

Healthcare: Extremely high stakes due to direct impact on patient safety and
well-being [82]. Validation must adhere to regulatory frameworks (e.g., FDA
regulations for medical devices, HIPAA for privacy, EU Al Act classifying
medical Al as high-risk). Key validation elements include clinical efficacy
(proven through clinical evaluation/trials), safety, reliability, data privacy,
mitigation of bias in diverse patient populations, usability for clinicians,
and explainability to support clinical judgment and trust. Frameworks like
FUTURE-ALI offer specific guidance for trustworthy Al in healthcare [86].

Finance: Focus on regulatory compliance (e.g., financial conduct author-
ities, anti-discrimination laws), fairness and bias mitigation in areas like
credit scoring and loan applications, accuracy in fraud detection, model risk
management, robustness against market volatility, security against financial
attacks, and explainability for audits and customer inquiries [83]. Validation
involves rigorous back testing, stress testing under various market conditions,
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comprehensive bias audits using relevant fairness metrics, security penetra-
tion testing, and checks for regulatory adherence.

Transportation (especially Autonomous Vehicles): Safety is the absolute
priority [82]. Validation must demonstrate safe operation under a vast range
of environmental conditions (weather, lighting, road types) and interactions
(other vehicles, pedestrians, cyclists). This involves validating perception
systems (sensor fusion, object detection/classification), prediction models,
and planning/control algorithms [71]. Validation relies heavily on extensive
simulation covering millions of virtual miles, structured scenario-based test-
ing (including edge cases and failure modes), real-world road testing, and
the development of robust safety cases supported by evidence [78]. Formal
verification methods may be applied to critical safety properties [71].

Social media / Content Platforms: Key concerns involve mitigating the
spread of misinformation and harmful content, addressing algorithmic bias
in content ranking and recommendation, ensuring fairness in content mod-
eration, protecting user privacy, and managing the impact on user well-being
and societal discourse [84]. Validation is challenging due to the massive scale,
the dynamic nature of content and user behaviour, the subjectivity involved
in defining “harmful” or “fair,” and the difficulty in measuring long-term
societal impacts. Validation methods often include large-scale testing, human
content review and rating, analysis of user engagement and feedback data,
and monitoring metrics related to bias, toxicity, and content diversity.

This context-dependency highlights that effective Al validation requires
not only technical expertise, but also deep domain knowledge [86]. Generic
validation checklists are insufficient; protocols must be tailored to the spe-
cific Al type, its intended application, the operational environment, the
relevant risks, and the specific needs and values of the stakeholders in that
domain [88].

1.8 Trends and Methodologies in Edge Al Verification and
Validation

The field of edge Al verification is rapidly evolving, driven by the increasing
capabilities and deployment of Al systems, alongside growing concerns about
their trustworthiness and potential risks. The unique challenges of edge Al
validation are driving significant research and development into new method-
ologies, techniques, and tools. These efforts aim to provide more rigorous,
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scalable, and comprehensive ways to ensure edge Al systems are fit for their
intended purpose.

Formal methods are advancing with a growing interest in applying, math-
ematically rigorous techniques, to the verification and validation of edge
Al systems. Techniques like model checking, theorem proving, abstract
interpretation, and reachability analysis are being adapted to prove specific
properties of edge Al components, especially neural networks, concerning
safety, robustness against perturbations (e.g., adversarial examples), and fair-
ness. Major challenges remain in scaling these methods to handle the high
dimensionality and complexity of edge Al models and in formally specify-
ing properties for systems operating under uncertainty or with incomplete
requirements. Research focuses on developing more scalable algorithms,
better abstraction techniques, and methods for probabilistic verification.

Explainable and interpretable Al for V&V are techniques that are increas-
ingly explored as tools for validation and verification. By providing insights
into why a model makes a certain prediction (e.g., identifying important input
features using SHAP or LIME, visualizing attention mechanisms, generat-
ing counterfactual explanations), Al explainability and interpretability can
help validators assess whether the model’s reasoning aligns with domain
knowledge, requirements, or certain rules or principles (e.g., ethical). The
techniques can aid in debugging unexpected behaviours, identifying reliance
on spurious correlations, and verifying compliance with constraints (e.g., fair-
ness). This helps address the “black box” challenge for validation purposes.
The reliability and interpretation of explanations themselves require valida-
tion, and research is ongoing to understand the effectiveness and limitations
of using Al explainability and interpretability for V&V tasks. In the context
of edge machine vision, lightweight explainability methods can help assess
whether the model’s attention aligns with relevant image features. These
methods assist in verifying that edge vision models respond to semantically
appropriate cues and not to background artifacts or compression noise.

Neuro-Symbolic AI combines the strengths of data-driven neural networks
(sub-symbolic AI) with rule-based logical reasoning (symbolic AI). The
symbolic component can represent explicit domain knowledge, constraints,
or reasoning rules, potentially making the hybrid system more interpretable,
data-efficient, and robust. From a validation perspective, neuro-symbolic
approaches offer promise by potentially enabling formal verification of the
symbolic reasoning part, using symbolic knowledge to constrain or validate
the neural network’s outputs, and providing more transparent explanations
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for system behaviour. Research is actively exploring different integration
architectures and their implications for validation.

Agentic Al and AI agents brings new challenges required the advance-
ments of research focusing on developing new V&V techniques tailored to
the dynamic nature of agentic Al, including advancing methods in runtime
monitoring and formal verification that can cope with learning-based com-
ponents and non-determinism. Creating simulation platforms that can model
complex, real-world physics and multi-agent interactions will be crucial for
testing edge systems exhaustively before deployment. The use of digital twin
and immersive triplet environments could enable the safe exploration of an
agent’s behaviour under a wide range of standard and adverse conditions,
helping to identify potential failure modes early. In this context, based on the
technology trends research should address the system-level and collaborative
aspects of agentic Al at the edge by creating frameworks for validating not
only individual agents but also the collective, emergent behaviour of multi-
agent systems. Developing techniques to ensure that the goals of individual
agents remain aligned with the overall system objectives, even as they adapt
and learn, is paramount. Research into explainable XAI and IAI for edge
devices is required, as it will enable human operators to understand, trust,
and effectively manage the decisions of autonomous agents, ensuring safe
and predictable operation in complex, real-world scenarios.

1.9 Conclusion

The rapid advancement and deployment of edge Al necessitate a parallel
evolution in the designers’ ability to ensure that edge Al systems are safe,
reliable, fair, and aligned with human values. Verification, as defined by
standards such as ISO/IEC 22989, is the assurance through objective evidence
that specified requirements have been fulfilled, forming a cornerstone of
building essential trust. It provides the rigorous checks needed to confirm that
Al systems are built according to their intended design and specifications.
The unique characteristics of Al, particularly its potential opacity, non-
determinism, complex data dependencies, and difficulty in formally spec-
ifying requirements for emergent behaviours, pose significant challenges
to traditional V&V approaches. The black-box nature of many models
hinders direct inspection, scalability limitations restrict the application of
formal methods, and the dynamic nature of edge AI systems and their
environments demands continuous evaluation beyond design-time checks.
Addressing conceptual challenges related to fairness, value alignment, and
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adversarial robustness requires ongoing fundamental research, and significant
progress is being made. International standards provide common terminol-
ogy (ISO/IEC 22989), frameworks for trustworthiness (ISO/IEC TR 24028),
and management systems for responsible Al governance (ISO/IEC 42001).
Methodologically, an increasing number of researchers are adopting formal
methods for specific Al and edge Al verification tasks, developing advanced
testing techniques (e.g., metamorphic and adversarial testing).

Metamorphic testing techniques are used to verify the behaviour of Al
models, when predicting the exact output for a given input is challenging
or impossible. The metamorphic testing techniques focus on identifying
relationships between inputs and outputs, known as metamorphic relations,
that act as logical rules or properties that should hold true when inputs are
modified. Adversarial testing is a technique in which inputs are intentionally
designed to expose weaknesses or flaws in a system, thereby identifying
scenarios where the system produces harmful or biased outputs. This enables
testers to identify vulnerabilities and ensure the system responds safely and
effectively [37].

Generative Al excels at pattern recognition, classification, and predictive
analytics, generates new patterns and multimodal content (e.g., text, sound,
images) and plays a dual role in the verification and validation process, for
example, as part of an edge Al system that has to be verified and validated
and as a technology that supports the V&V processes by generating V&V
requirements, specifications and automatically performing the V&V.

The V&V of emerging edge Al agents face challenges arising from the
inherent autonomy and the dynamic environments in which these agents
operate. The agents can rely on machine learning models that can produce
non-deterministic outputs, making the behaviour difficult to predict and for-
mally verify. Continuous interaction with external environments introduces
an extensive and unpredictable operational space, where unforeseen events
can lead to emergent behaviours that were not anticipated during the design
and testing phases, posing risks to safety and reliability.

Further challenges for the V&V processes are the unique constraints
of the edge environment itself. Edge Al systems must operate within the
limitations of computational power, memory, and energy, which can impact
the performance and consistency of their decision-making processes. Edge
Al agents must make real-time decisions, where latency is a critical factor.
Validating that an edge Al agent responds correctly and within strict time
constraints, especially when facing intermittent connectivity or degraded
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sensor input, is a significant hurdle that requires novel testing methodologies
beyond traditional software V&V.

The process of V&V agentic edge Al systems requires addressing the
interaction between human and Al agent components to ensure that the
agent’s behaviour is understandable and transparent to human users, which
allows for efficient oversight and human intervention when necessary. The
V&V process must confirm that the edge system can communicate its
state and intentions evidently and that its autonomous actions are auditable,
interpretable and explainable.

This supports explainable Al techniques, implementing runtime verifica-
tion for operational assurance, and opening the use of neuro-symbolic archi-
tectures to bridge the gap between learning and reasoning. Neuro-symbolic
Al is a type of Al that integrates neural and symbolic Al architectures to
address the weaknesses of each, providing a robust Al capable of reasoning,
learning, and cognitive modelling.

Continued research is essential to develop more scalable and robust
verification techniques that can handle the complexity of new edge Al sys-
tems. Addressing foundational Al safety problems, enhancing automated and
human-centric V&V approaches, and building comprehensive, trustworthy
Al frameworks that integrate technical verification with ethical consider-
ations and governance are key priorities. Achieving verifiably trustworthy
Al requires a holistic perspective, acknowledging the interplay between
hardware, software, Al models, data, systems, processes, and the technical,
application, and environmental contexts [40].

Achieving the goal of trustworthy Al and edge Al systems that are
demonstrably beneficial and responsibly integrated into society requires ele-
vating validation beyond a mere technical, end-of-phase check. It demands a
holistic, continuous, and lifecycle-integrated approach [54].

This approach must rigorously integrate technical validation (ensuring
robustness, reliability, and security) with user-centric validation (confirming
usability, fitness for purpose, meeting needs), ethical validation (assessing
fairness, accountability, and value alignment), and real-world effectiveness
monitoring [90].

Success requires multidisciplinary collaboration, bringing together
AI/ML experts, software engineers, domain specialists, human factors engi-
neers, ethicists, social scientists, legal experts, end-users, and regulators.
International standard bodies like ISO and organisations like NIST provide
essential frameworks, common terminology, and guidance (e.g., ISO 9000,
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ISO/IEC/IEEE 15288, ISO/IEC 22989, ISO/IEC TR 24028, ISO/IEC 42001,
NIST AI RMF) [89].

The rapidly evolving nature of Al means that significant ongoing research
and innovation in validation techniques are imperative to address the chal-
lenges effectively.

Edge Al system validation is a dynamic and increasingly critical field. As
Al capabilities continue to advance and these systems become more deeply
embedded in our lives, the methods used to ensure they are fit for purpose,
safe, and aligned with human values must also evolve.

The focus is shifting from static, pre-deployment checks towards contin-
uous, adaptive, and context-aware validation processes that span the entire
edge Al lifecycle. Addressing the complex technical, ethical, and societal
challenges associated with edge Al validation requires sustained research,
multidisciplinary collaboration, and international cooperation.

Continued innovation in validation methodologies and tools will be essen-
tial to harness the transformative potential of Al responsibly and build a future
where edge Al systems are trustworthy and integrated into industrial and
business processes.
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Abstract

The Internet of Things (IoT) nowadays greatly benefits from Artificial Intel-
ligence (Al) algorithms implemented in the edge, because of their efficiency
and the reduction of costs that they imply. The advent of Federated Learning
(FL) has made possible the combination of the advantages of edge-Al, among
which the privacy of users, as their data is not shared with the cloud, with the
collective intelligence. However, FL is known to have worse performance
compared to its centralized counterpart, which may not be tolerable in certain
cases. In this paper, we propose a hybrid framework for FL, imagining a
number of clients that are willing to share part of their data. We envisioned
two types of Hybridization: vertical and horizontal. The goal of this paper is
to assess whether a small hybridization can bring advantages to the overall
performance of the whole FL procedure in terms of classification accuracy.

Keywords: Internet of Things (IoT), deep learning (DL), federated learning
(FL), human activity recognition (HAR), performance evaluation.

2.1 Introduction and Background

The growth of the Internet of Things (IoT) has enabled novel monitor-
ing systems capable of gathering data from heterogeneous and pervasive
devices, supporting smart city, healthcare and industrial domains. This data
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is processed using advanced Deep Learning (DL) techniques for system state
forecasting, contributing to the integrated paradigm of the Artificial Intelli-
gence of Things (AloT) [1]. However, it is well known that advanced DL
techniques, particularly those used in computer vision applications, require
large datasets with adequate number of instances for each system state or
class to be predicted. In many cases, building reliable DL. models requires
aggregating data from multiple heterogeneous users or organizations per-
forming decentralized data collection for a common task. This is the case,
for instance, of most of Human Activity Recognition (HAR) applications that
utilize DL models trained from wearable or camera-based IoT data gathered
from multiple volunteers or via crowdsensing techniques [2].

State-of-the-art AloT systems often rely on cloud-based centralized archi-
tectures, which facilitate the aggregation of IoT data from diverse clients.
While these solutions enable easy deployment and scalable computational
and storage resources, they also raise significant privacy concerns due to the
inherent risks associated with data sharing. Federated Learning (FL), first
proposed in 2018 [3], has emerged as a privacy-preserving alternative to
centralized machine learning, enabling cooperative training in a distributed
environment. In a typical FL setup, multiple clients independently train mod-
els on their private datasets and only share the trained weights with a central
server, which aggregates these weights and sends the updated model back
to the clients. This approach ensures that no raw data is exchanged among
clients, although concerns about the trustworthiness of the centralized server
remain [4]. Moreover, variations in data quality and quantity across clients
can create challenges in ensuring fair evaluation of each client’s contribution
and achieving a high-quality global model [5]. To address the issue of non-
i.i.d. (non-independent and identically distributed) data across clients, various
solutions have been proposed, such as clustering clients with similar data
distributions or adopting weight-based model aggregation techniques [6].

In this paper, we aim to bridge the gap between centralized and Federated
Learning (FL) methodologies, in order to address distributed IoT use cases
where privacy requirements vary from client to client. For instance, some
clients may be willing to share raw data, while others may not, due to
differences in client nature (e.g., public vs. private organizations), varying
perceptions of privacy—often shaped by social factors [7]—or monetiza-
tion strategies, where some clients are incentivized to sell their data. We
refer to this scenario as hybrid FL and describe this hybridization approach
for data gathering and model building at the server side, which offers a
novel interpretation compared to other studies [4]. Specifically, this paper
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explores two types of FL hybridization: vertical and horizontal. In the vertical
hybridization, a portion of clients shares raw data with the centralized server,
while others only share deep learning model coefficients generated from
local training. In the horizontal case, all clients share a variable portion
of their raw data (e.g., corresponding to the amount for which they have
been compensated) in addition to the DL model coefficients trained on the
complementary data. We evaluate the performance of both strategies using
two benchmark datasets (related to Human Activity Recognition and image
classification) and analyze the impact of different levels of hybridization
compared to pure centralized and FL-based approaches. Our results demon-
strate that hybridization can be a powerful tool for improving the accuracy of
federated systems, even when applied slightly.
To summarize, the key contributions of our paper are the following:

* Introduction of hybrid FL as a new strategy for privacy-adaptive learning
in IoT scenarios.

* Proposal of two versions of hybrid FL, respectively horizontal and
vertical, based on distinct methods of integrating raw data and deep
learning weights at the server.

» Evaluation of proposed strategies across varying degrees of hybridiza-
tion, using two widely adopted benchmark datasets in the DL commu-
nity.

The rest of the paper is structured as follows. Section 2 introduces the
revised FL architecture supporting the vertical and horizontal hybridization.
Section 3 describes the evaluation methodology, datasets and metrics. Sec-
tion 4 presents some evaluation results. Section 5 concludes the work and
discusses future research steps.

2.2 Hybrid FL Architecture

We consider the scenario depicted in Figure 2.1, composed of two main
actors: N distributed clients and the server. Each client ¢; possesses its own
dataset D; gathered through its local sensors, and a DL network topology,
denoted as m in the following. In a classical FL application, each client
¢; performs local training rounds of model m on D; and then shares the
list of weights W; with the server: the latter is responsible for aggregating
the weights, for instance through the FedAvg [3] algorithm, and sending the
updated values back to the clients.

In the proposed hybrid FL architecture, the server performs additional
storage and computational tasks, basically behaving as a special client device.
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Indeed, it possesses a local dataset D, that is built from clients’ datasets or
portions of them. More formally, we have that D, = |J;_, D} where n <N
and D} C D;. The server trains the m model on D getting a local version
of weights Wy that is later averaged with the weights W; received by clients
at each round. We denoted this process as FL hybridization, distinguishing
between two modes for creating the local dataset D:

* Vertical Hybrid FL. In such case, we have that: n < N and D} = D;.
In other words, only a subset of the client nodes shares its own raw data
with the server. This setup may model two different use-cases: (i) only
n clients have been compensated with monetary rewards to share their
data and/or (ii) n clients do not consider their local datasets privacy-
sensitive. We indicate with r, = & the rate of vertical hybridization.
Clearly, for n = N and r, = 1, the system is equivalent to centralized
learning. Vice versa, for n = 0 and r, = 0, the system is equivalent to
a pure FL approach. We investigate the impact of varying r, configura-
tions in the overall DL performance in Section 4. We show in Figure 2.2
an overview on the conceptual architecture of Vertical Hybrid FL.

* Horizontal Hybrid FL. In such case, we have that: n = N and D] C
D;. In other words, all clients share only a portion of their local datasets
with the server. This setup may model a practical use-case where each
client shares with the server an amount of raw data proportionally to the

monetary reward it received. We indicate with 7, = meano<;<n (%)
the rate of vertical hybridization. Clearly, for D7 = D;, the system

becomes a centralized learning. Vice versa, if D} = () V¢; the system is
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equivalent to a pure FL approach. We investigate the impact of varying
rp, configurations in the overall DL performance in Section 4. We show

in Figure 2.3 an overview on the conceptual architecture of Vertical
Hybrid FL.

We further highlight that the hybridization rates determine the amount of
required privacy preservation. The maximum value (1) corresponds to when
all clients share their local data with the server. Vice versa, the minimum
value (0) forbids any transmission of raw data outside the clients’ devices.

2.3 Evaluation Methodology and Metrics

In this section, we describe the experiments that we performed to investigate
the performances of the two hybrid approaches explained in the previous
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section. First, we will describe the methodology used to test the effectiveness
of HFL across two datasets: FEMNIST and UCI HAR.

The widely recognized University of California Irvine (UCI) HAR dataset
[8] was created using data from smartphone accelerometer and gyroscope
sensors, which were used to classify six types of human activities. It was
gathered from 30 volunteers, each carrying a smartphone while performing
six distinct activities: walking, walking upstairs, walking downstairs, sitting,
standing, and lying down. The dataset consists of time-series data captured
across the three axes of both sensors, along with the corresponding activity
labels. It has been extensively used in research for developing and assessing
HAR models using machine learning techniques. Each record in the dataset
contains a vector of 561 features, derived from both time and frequency
domain calculations.

The FEMNIST dataset [9] is an adaptation of the extended version of
the MNIST dataset that has been modified to be suitable for FL tasks. The
MNIST dataset contains 28 by 28 pixels images of handwritten digits and
characters (62 classes in total), and the goal of the DL model is to guess
the actual character represented. The FEMNIST dataset groups the elements
on top of the user that actually performed the handwriting, producing a
number of sub-datasets each of them with a different style of writing. The
number of users of the FEMNIST dataset is 3500, however, for the purpose
of our experiment, we considered only 30 users, in order to make experiments
comparable between the two datasets.

For UCI HAR we employed, as a base local model, a simple feed-forward
neural network, while for FEMNIST we adopted a convolutional network.
Each of the local sub-datasets is split into training and test set using a stratified
split with a 70%-30% ratio.

We performed federated classification experiments by employing 6
epochs and 20 rounds of federation, recording the accuracy score at the end
of the last round.

We tested both vertical and horizontal hybridization, by setting alternately
ry and 7y, to values spanning from 0% to 100% with a 10% step.

The experiments were implemented in Python using the Flower frame-
work (https://flower.readthedocs.io/en/latest/). Since Flower does not support
the implementation of hybridization, we adopted the two following methods
to simulate the two hybridization methods (as Figure 2.4 suggests):

* Vertical Hybridization was simulated by aggregating all the clients that
share their whole dataset instead of the weights into a single client.
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* Horizontal Hybridization was simulated by extracting from each client
the portion of the training dataset that they aim to share and assigning it
to a new “‘sink” client.

Each experiment was then repeated 20 times, by randomizing the clients
or the dataset portions to be shared. This ensures scientific rigor and smooths
out certain corner situations that may arise.

2.4 Evaluation Results

This section presents the outcome of the experiments presented in the pre-
vious section. The results are aimed at evaluating the HFL approaches on
the datasets. We investigate how different levels of data sharing in vertical
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and horizontal hybridization affect model performance. We first discuss the
results for the UCI HAR dataset, followed by FEMNIST, to uncover any
dataset-specific trends and performance differences. A general overview of
the results shows, as expected, an overall improvement in model performance
as the degree of hybridization increases, which is notable for both hybrid
approaches. The UCI HAR dataset performed best. Even with the relatively
small model size, it consistently achieved excellent results, maintaining accu-
racy above 90% and reaching almost 95% in experiments with higher levels
of hybridisation. This is shown in Figures 2.5 and 2.6, where the increase
in model performance as the level of hybridisation increases is evident,
with an increase of 2 percentage points already at a low level of horizontal
hybridization (20%).

The FEMNIST is the dataset where the performance improvements from
sharing data is most noticeable. As we can observe in the Figures 2.7 and
2.8, the sharing of a small number of data points could lead to a significant
improvement in performance. Specifically, sharing 10% of the data led to
an improvement of approximately 5% in accuracy, while sharing 20% led to
an additional improvement of approximately 2/3, resulting in a final perfor-
mance of 88%. This is comparable to the 90% accuracy obtained through
centralized training. Beyond a data sharing rate of 30%, the improvements
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Figure 2.5 Horizontal Hybridization Results for UCI HAR <]
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obtained are increasingly marginal, with a maximum of 1%. This suggests
that a data sharing rate of 20% represents an optimal balance between
performance and data sharing.

The results demonstrate that the sharing of a portion of the dataset has
a significant positive impact on the model’s performance. This effect was
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observed across two distinct datasets, UCI HAR and FEMNIST, indicating
that the improvement is not specific to any problem or model. The perfor-
mance enhancement was especially evident in the case of the FEMNIST
dataset.

2.5 Conclusion and Future Works

In this paper we examined the effects of hybridization for Federated Learning
scenarios. We specifically directed our research towards Human Activity
Recognition, imagining scenarios in which certain clients would be willing to
share (part of) their data with the central server for a reward, penalizing their
privacy to an extent. Results showed that a minimal amount of hybridization
does provide an increase in the performance. The extent to which the privacy
of the users is compromised by this is a future work. We aim to study
how to select carefully data in a way in which the privacy is minimally
affected, as well as to blend the two hybridization techniques, to select the
best configuration.
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Abstract

In recent years, deep neural networks have achieved success in Electric Vehi-
cles (EVs) monitoring, primarily due to their scalability with large-scale data
and numerous model parameters. However, EVs rely on resource-constrained
edge devices that struggle with complex models, and data privacy concerns
prevent sharing data outside the owning device. Federated Learning (FL)
and Knowledge Distillation (KD) have emerged as key solutions, enabling
model simplification and distributed training on private data. FL allows
models to be trained locally on edge devices, addressing privacy concerns
while keeping data decentralized and avoiding central server dependencies.
This approach requires lightweight models optimized for edge intelligence
deployment. To address this challenge, we propose architectural solutions
leveraging FL, KD and model compression techniques to create simplified
Artificial Neural Networks (ANNs) suitable for edge devices in EVs. The
proposed architecture integrates these methods into a federated environment,
ensuring distributed training while maintaining computational efficiency for
EV monitoring and predictive maintenance applications. By combining FL,
KD, and model compression, our approach enables efficient and privacy-
preserving Machine Learning (ML) models, enhancing Edge Intelligence (EI)
for EV monitoring in resource-constrained settings.
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Keywords: knowledge distillation, federated learning, edge computing, IoT,
edge intelligence.

3.1 Introduction

The automotive industry has witnessed a substantial expansion in both
the scale and intricacy of electrical and electronic system architectures. In
this regard, the EVs production is becoming increasingly prevalent in the
field. Therefore, the challenge of predicting diagnosing faults and improv-
ing the LI-ion Battery (LIB) lifetime in EVs becomes progressively more
demanding.

Modern monitoring systems approach the battery state parameters main-
tenance, such as the State of Charge (SoC), State of Health (SoH), State of
Power, Remaining Useful Life, within safe limits, safeguarding the battery’s
safety. These are based on ML and Artificial Intelligence (Al) models, which
can adapt the analysis to the specific technology. Furthermore, the compu-
tational trend is moving the data elaboration to the edge, with no requiring
EVs producers to share their own diagnostic data as training datasets, pre-
serving the industrial secrets and users’ privacy. Actually, edge devices are
characterized by low capacity and low performance that generally do not
allow complex operations. For this reason, model simplification becomes
necessary.

This scenario can be intended as a specific EI scenario, where Al models
and algorithms are deployed and executed on resource-constrained edge
devices. El refers to the integration of Al capabilities directly on edge devices,
enabling real-time data processing, decision-making and autonomy at the
edge of the network. In such contexts, the need to balance computational
demands with limited hardware resources is critical. Therefore, FL strategies,
that aim to train models in a distributed manner and keep data locally on
users’ devices to preserve the privacy, can be adopted. The basic idea of
FL unfolds in several key stages: i) a model based on an ANN is centrally
initialized and subsequently disseminated to various peripheral devices; ii)
these devices independently train the model using their locally available data,
sending back for aggregation [17] to the central server only the outcomes of
this localized training, such as the model weights.

This work aims to define a comprehensive and unified EI architecture
designed to the specific demands of EVs monitoring systems. The goal is
to leverage the potential of edge computing and distributed Al strategies to
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improve the real-time diagnosis, prediction, and overall health management,
specifically of LIBs. Within this framework, the FL strategy is a cornerstone,
providing an effective solution for decentralized learning. By enabling model
training on local devices FL ensures that sensitive diagnostic data remains
on the edge, thereby enhancing both privacy and security by preserving
industrial know-how and user-specific data.

Moreover, to meet the computational efficiency requirements inherent to
resource-limited edge devices, the architecture also incorporates complemen-
tary compression methods. Among these, KD not only facilitates the transfer
of knowledge from a larger, more complex “teacher” model to a smaller, more
efficient “student” model—making it ideal for deployment on devices with
limited computational power—but also mitigates a well-known limitation
of FL: KD strategies can effectively address both heterogeneous data and
heterogeneous models within an FL environment [18].

In summary, this architecture proposes the integration of FL, KD, and
compression techniques to create a scalable, efficient, and privacy-preserving
solution for enhancing the monitoring and lifetime management of EVs
within an EI scenario.

The remaining of the paper is organized as follow. Section 1.2 reports the
EI background and discuss the recent advance in the literature. Section 1.3
determines the scenario where the proposed architecture may be deployed.
That architecture is, therefore, discussed in Section 1.4. Finally, Section
1.5 summarizes the paper’s insights and brings light on the future research
activities.

3.2 Related Works
3.2.1 Edge Intelligence

In most of the cases, the computation on edge devices leverages data owned
by them-self, data not shared with others for privacy reasons. In this context,
El leverages data generated at the edge of the network by applying Al directly
to it. As stated in [28], there is not a formal definition of EI, though it is
commonly used to describe the execution of Al models on edge devices.
Therefore, they define EI as the efficient utilization of data in a cooperative
edge-cloud system, where both inference and training can occur across all
devices. This prospective is outlined by a six-level framework that categorizes
where applications are executed, as reported in figure 3.1:
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* Cloud Intelligence: a model (e.g., Deep Neural Network) is fully trained

and executed in the cloud.

* Level 1 — Cloud-Edge Coinference and Cloud Training: a Deep Neural

Network (DNN) model is trained in the cloud, but inference is performed
through a cooperation between the cloud and the edge. In this case, part
of the data is offloaded (e.g., migrated) to the cloud.

* Level 2 — In-Edge Coinference and Cloud Training: the DNN model is

trained in the cloud, but inference is carried out at the network edge. In
this setup, inference is handled by edge nodes or nearby devices, with
data either fully or partially offloaded to the edge using device-to- device
(D2D) communication.

* Level 3 — On-Device Inference and Cloud Training: the DNN model

is trained in the cloud, but inference is performed entirely on the device
itself, with no data being offloaded.

Level 6 All on-device
Training and Inference on

device

Level 5 All in-edge

Training: Edge Inference: Edge

Level 4 Cloud-edge co-training
Training: Edge-Cloud - Inference: Edge-Cloud

Level 3 On-device inference

Training: Cloud - Inference; Device
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§
S
&
Level 1: Cloud-edge co-inference
Training: Cloud - Inference: Edge-Cloud

Reduced amout or shorten path of data offloading

-

Figure 3.1 Six-level rating for EI described in [28]. <
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* Level 4 — Cloud-Edge Cotraining and Inference: Both the training and
inference of the DNN model are con- ducted in a cloud-edge cooperative
manner.

* Level 5 — All In-Edge: Both training and inference of the DNN model
occur at the network edge.

* Level 6 — All On-Device: Both training and inference are handled
entirely on the device.

As the level of EI increases, the amount and distance of data offloading
decrease. This leads to lower data transmission latency, improved privacy and
reduced Wide Area Network (WAN) bandwidth costs. However, this comes at
the expense of increased computational latency and higher energy consump-
tion. Therefore, there is not universally “best” level of EI. The optimal level
is application-dependent and should be determined by considering multiple
factors, such as latency, energy efficiency, privacy and WAN bandwidth
cost.

3.2.2 Federated Learning

Among the different technologies designed to implement training in edge
devices (e.g., Aggregation Frequency Control, Gradient Compression, Gossip
Training), FL is often adopted where the learning process involves a federa-
tion of devices or nodes that do not need to share their own data but only their
optimized model’s parameters.

FL progresses through key stages, as reported in figure 3.2. Firstly, a
neural network model is initialized in the central server and distributed to
peripheral clients. Therein, the model is trained with local data only, sam-
pled by the device itself. Importantly, this training happens autonomously,
without sharing raw data with a central server. Only the outcomes of the
training, which are the optimized model weights, are sent back to the central
server, which aggregates them using an aggregation strategy (e.g., Federated
Average [17], others [20] that implements the adaptive FedAvg, Lazy and
Quantizatized gradients [4], [22]). This process maintains data privacy as
raw data stays on local devices. This iterative process allows the model to
evolve and improve over time without necessitating the aggregation of raw
data in a central repository (Figure 3.2). The DFedAvgM framework [23]
operates without a central server aggregator. It’s implemented on clients
connected through an undirected graph, where each client performs stochastic
gradient descent with momentum and communicates only with its neighbors.
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Figure 3.2 In a Federated Learning scenario, each client trains its model leveraging its own
private data and sends its model parameters to a central server. The central server aggregates
the parameters received from each client to enhance the performance of the central global
model, which is then sent back to the clients. 1

This reduces communication costs and enhances privacy protection. The
authors introduce DFedAvgM and its quantized algorithms offering extensive
numerical verification of its performance.

3.2.3 Model Compression

In most of the cases, peripheral resource-constraint devices, with low compu-
tational capabilities, are not able to handle complex Al models because they
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cannot guaranty acceptable performance in terms of energy consumption,
memory footprint and latency, i.e., in inference processes.

The main idea behind quantization is to convert the weights and activation
values of a neural network model from high precision to lower precision,
thereby reducing memory usage and latency [15]. Typically, quantization is
applied to a pre-trained neural network, a process known as post-training
quantization, without any fine-tuning [3], [6].

As an alternative, the Pruning methods [8] aim to remove non-essential
components from DNN models while minimizing the impact on performance.
Over time, pruning techniques evolved into two categories: i) the structured
pruning as channels that serve as the primary pruning units; while ii) the
unstructured pruning employs heuristic techniques to eliminate insignifi-
cant parameters, such as low-weight values, gradients or Hessian statistics
[15].

Authors in [28] categorize EI technologies into training and inference
technologies, as shown in Table 3.1. We have enhanced this table by incor-
porating KD, which serves as a strategy that bridges the two categories.
While KD is implemented during the training phase, its primary goal is to
produce a compressed model. The basic concept of KD [10] lies in training
a simpler model (e.g., the student model) to imitate the behavior of the
original, larger model (e.g., the teacher model). It produces a more efficient
and quicker model to be executed. The teacher-student model is reported in
figure 3.3.

In [7], different orthogonal distillation techniques classifications have
been proposed. For example, the KD schema differentiates offline from
online. Methods falling in the first category mainly focus on improving
different parts of the knowledge transfer, including the design of knowledge
and the loss functions. The [25] defines the distilled knowledge as the flow in
the problem resolution trajectory, [13] uses Singular Value Decomposition
(SVD) and Radial Basis Functions (RBf) for accuracy enhancement and
minimizing computational costs, [19] incorporates distillation loss into the
training of a smaller student network whose weights are quantized. On the
other hand, the online distillation strategies aim to train both teacher and
student models in a unified training scheme or, in vary common scenarios,
to deal with lack of teacher network. The [26] proposes a collaborative
learning strategy, [12] builds a multi-branch variant of a specified network by
adding auxiliary branches, [24] leverages an additional classifier facilitating
collaborative learning [21] and mutual learning without the need for pre-
training a high- capacity teacher model. In many real-world applications,
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Figure 3.3 The schema illustrates the fundamental concept of KD: during the training
of a simplified neural network, knowledge from a larger network is transferred to the
smaller one.

Table 3.1 From Train to Inference technologies.

Technology

Highlights

I'ederaled Learning

Aggregation l'requency
Control

Gradient compression

DNN Splitting

Knowledge Distillation

Modecl Compression
Model Partition

Model liarly-1ixit
Edgec Caching
Input liltering
Model Sclection

Support for Multi- Tenancy

Traming data remains on individual devices, while
a shared model is trained centrally by aggregaling
locally computed updates, ensuring data privacy
Optimize the balance between local updates and
global parameler aggregation, all within the given
rcsource constraints

Involves converting each element ol the gradient
veetors to a low-preeision, finite-bit value. Gradicnt
gparsification, on the other hand, reduces communicalion
overhead by transmiiting only a subsel

of'the gradient veetor values.

Select a splitling point to reduce latency as much as
possiblc

Transfler the learnings ol a large pre-irained model,
the “tcacher model,” to a smaller “student model”
Pruning and quantization methodologics
Computation lasks are olTloaded Lo edge servers or
mobile devices, with a focus on optinuzing both
latency and cnergy cificiency for better performance
Accuracy-aware

I'ast response lowards reusing the previous resulls
of the same task

Deleciing dilference belween inputs, avoiding abundant
computation

Inputs-oriented optinuzation and accuracy-aware

Scheduling multiple DNN-based task
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FL meets limitations and several KD frameworks are designed to overcome
them. For example, the [9] improves communication efficiency reducing
communication among clients, [5] adopts a grouping strategy to group clients
that share homogeneous resources improving communication efficiency and
balancing computing resources, [1], [2], [16] focus mainly on handling model
and data heterogeneity.

3.2.4 Beyond the State of the Art

Actually, the scientific literature is challenging proposing a standard archi-
tecture for EI. Many methodologies may be involved both for training
and inference. FL, KD, quantization and pruning are examples of enabling
key technologies available for the exploitation of Al models into the edge
of the network. This work aims to propose an architecture that includes
all the mentioned methodologies on a simple workflow that optimizes the
deployment and execution of EI solutions for EV.

3.3 Use Case

The use case focuses on the development of health monitoring systems for
LIBs lifetime and contextual risk assessment in EVs. Among the various
monitoring strategies, ML-based methods provide high accuracy, although
they require large datasets for effective training [14]. Due to the complexity
and critical nature of managing LIBs in EVs, deploying ML systems on
resource-constrained microcontroller-based platforms is crucial. This inte-
gration enables real-time monitoring and predictive maintenance, optimizing
battery performance and extending operational life.

Although cloud computing offers incomparable performance that can be
leveraged for centralized activities (e.g., initial training, FL. central aggre-
gation), three main reasons lead to the need to push Al computation to the
edge:

* Sensing data: the sensing layer within EVs produces a continuous and
rich flow of data that cannot be transferred to the cloud to prevent
bandwidth saturation.

* Real-time response: in a monitoring context, it is desirable to have real-
time alerts rather than waiting for a stable connection with the central
processor.
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* Privacy concerns: manufacturers are not inclined to share their own
diagnostic data with cloud data centers where big data are collected and
processed.

The basic flow begins with defining and training an AI model in the
cloud, potentially utilizing a more complex model in a KD scenario [10].
Once trained, the model may undergo optimization techniques such as quan-
tization or pruning to reduce its size and improve inference time. After
these optimizations, the model is converted into formats compatible with
microcontroller-based devices (e.g., ONNX, TinyML), enabling deployment
on distributed clients within EVs.

Once each client runs its own optimized Al model, real- time monitoring
takes place locally on the EV. However, as new data continuously flows
from the vehicle’s sensing layer, the model can be further refined. These
improvements can be shared with the central cloud, as well as with other
clients, when stable connection is available, in a FL environment. This
decentralized learning process allows each client to contribute to the overall
model improvement without the need to share raw data, thus preserving
privacy while enabling continual learning and adaptation (Figure 3.4).

This use case can be classified as level 4 within the EI framework
proposed by [28], where both cloud and edge devices collaborate to perform
training and inference tasks. However, in scenarios where the cloud is unable
to handle training (e.g., due to the lack of a training dataset), the use case
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Figure 3.4 Use case scenario.
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shifts to a level 5, where the edge devices will be engaged for both training
and inference.

3.4 Architecture Proposal

In the context of EVs monitoring, leveraging data-driven approaches based on
ML and Al algorithms is a critical point because of the limited computational
and energy capacity of the machines. In the following sections, we will build
the final architecture step-by-step, describing each involved component.

3.4.1 Assumption

The proposed architecture shares computation responsibility between cloud
and edge computing, exploiting EI method- ologies for training and inference,
such as the FL, KD, quantization and pruning. The cloud is adopted as much
as possible for high-computation activities, such as serving as i) complex Al
model training with existing datasets and ii) FL central node aggregator. Most
of the inference and a relevant part of the training is intended to be executed
on the edge.

The EVs are equipped with low-performance edge devices capable of
handling models that are generally not too complex. These devices will
perform monitoring and diagnostic tasks on their own sensing data, thereby
preserving user privacy constraints. Moreover, since clients do not maintain a
continuous connection either with the central cloud or among themselves,
communication efficiency should be ensured. Clients will be responsible
for performing training and sharing their model parameters to contribute to
global model improvements.

3.4.2 Cluster Aggregator

The Cluster Aggregator, depicted in figure 3.5, is deployed in the cloud and
primarily functions as the central aggregator for the FL system. This role
is facilitated by several key modules responsible for specific tasks to ensure
smooth and efficient operations within the federated framework.

1) Model Aggregation Module: This module is going to execute the FL core
function. It generates the global model by aggregating (e.g., Federated
Average [17]) trained models from the peripheral devices. This process
ensures that the central model continuously improves by integrating
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Figure 3.5 Cluster Aggregator schema designed to handle FL central aggregator tasks and
to implement a distillation framework adaptable during the training process. <

knowledge from distributed nodes without directly accessing their raw
data, preserving privacy. This module is designed to handle different
forms of model updates and can incorporate advanced techniques, such
as weighted averaging, depending on the specific characteristics of the
distributed models.

2) FL State Manager: It plays a critical role in maintaining synchronization
between the cloud-based aggregator and peripheral devices. It tracks
the status of each client, ensuring that the aggregation process con-
siders only those clients that have successfully completed their local
model training. The state manager keeps a record of which devices are
actively participating in each round of FL, their connectivity status, and
whether their contributions are valid for aggregation. This component
also manages potential failures or delays in communication, ensuring
the system can handle interruptions and continue functioning smoothly.
Its role becomes even more significant in EVs scenario, where each EV
changes its position very frequently and a stable connection cannot be
guaranteed.
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3) System Configuration Handler: The handler is tasked with managing the
configuration of the entire system. This module ensures that the software
environment is correctly set up, with all dependencies and configura-
tions aligned for optimal performance. Additionally, it handles dynamic
updates to system settings, such as changing communication protocols
or modifying the aggregation frequency. Moreover, it guarantees that
all components are correctly initialized and maintained throughout the
lifecycle of the FL process.

4) Communication Handler: It manages the communication between the
cloud-based aggregator and peripheral de- vices. It sets up and over-
sees the data transfer channels, ensuring that the communication is
both efficient and secure. Given the distributed nature of FL, reliable
communication is crucial for transmitting model updates, hyperparame-
ters, and any other necessary metadata between clients and the cloud.
The Communication Handler also implements protocols to minimize
latency, reduce communication overhead, and ensure data integrity
during transfer.

5) Training and Model Distillation Modules: The Training Module on the
cloud side is activated when the global model is initialized and trained
using an existing dataset. Once this initial training phase is completed,
the global model is shared with the peripheral clients to begin the
federated learning process. The clients use the global model as a starting
point, performing local training on their own data and subsequently
sharing their model updates with the central aggregator.

In addition to the standard training workflow, the Model Distillation
Module plays a crucial role by implementing one or more KD strategies [7],
[10], [19] during the training process. These strategies can be employed for
several reasons:

* When the global model does not achieve an acceptable level of perfor-
mance, KD can be used to refine it further by leveraging smaller, more
efficient models that capture the key patterns of the original data

* Mainly in regression problem, different KD strategies make up for the
lack of the dataset used for training

e [11], [27], allowing the transfer of knowledge from the pre-trained
model to the global model without needing access to the original
data
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* When the FL process is subject to constraints, such as heterogeneous
models and/or non-IID data across clients, KD can help align the
learning processes [18].

By integrating KD into the training pipeline, the system can enhance the
robustness and flexibility of the FL process, improving model performance in
scenarios where traditional FL. might face limitations.

All Together, the modules described above form a robust infrastructure
that supports efficient and secure FL and their combination enables dis-
tributed training and aggregation while preserving user privacy, ensuring
system reliability and maintaining overall system integrity.

3.4.3 Cloud Components

Although the Cluster Aggregator is the main component deployed on the
Cloud, other elements need to be integrated to simplify model training
and ANN-based model simplification, making them deployable on resource-
constrained devices embedded in EVs (Figure 3.6).

1) Compression Server: It is introduced to reduce model complexity
and size, addressing the challenges posed by the low computational
performance and limited storage capacity of edge devices. It utilizes
various handlers (i.e., software components capable of managing spe-
cific functionalities) to apply common compression techniques such as
quantization, pruning and sparsification. These techniques are crucial for
optimizing models to efficiently run on edge devices with constrained
resources.

Quantization reduces the precision of the numerical values used to rep-
resent the model’s parameters, thereby decreasing both the model’s size
and its computational requirements. This allows edge devices to process
models more efficiently without compromising significant accuracy.
Pruning involves removing redundant or non-contributing weights from
the model, which not only reduces its complexity but can also enhance
performance by simplifying the model’s structure. This results in a
leaner, faster model that is more suitable for deployment in resource-
limited environments.

Sparsification, on the other hand, introduces sparsity into the model by
setting insignificant weights to zero. This spar- sity can be leveraged by
specialized hardware to accelerate computations, further enhancing the
model’s performance on edge devices.
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Together, these compression techniques enable the deploy- ment of
complex models on edge devices, ensuring efficient operation while
maintaining the balance between performance and resource utilization.
2) Release Server: The server is responsible for preparing ANN-based
models in specific formats, such as ONNX, to enable seamless inte-
gration and deployment across a wide range of platforms and devices.
The ONNX format, in particular, is highly valued for its interoperability
between different machine learning frameworks, allowing models to
be trained in one framework and deployed in another with minimal
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conversion effort. This flexibility is crucial in environments where mul-
tiple frameworks are in use, ensuring that models can be efficiently
transferred and utilized without compatibility issues. Additionally, the
Release Server plays a critical role in the context of TinyML, where
models must be optimized for execution on ultra-low-power devices
such as microcontrollers and sensors. In this scenario, the server sup-
ports the conversion of models into highly compact formats suitable for
deployment on resource-constrained edge devices. By integrating model
compression techniques and optimizing for reduced memory and power
consumption, the Release Server ensures that even complex ANN-based
models can run efficiently in embedded systems.

3) Deploy Server: Al models will be deployed leveraging the Over-the-air
(OTA) protocol that allows remote updates on microcontrollers without
requiring physical access or direct connections. This approach is partic-
ularly beneficial for IoT and embedded systems where devices are often
distributed in locations that are difficult to reach.

The OTA deployment process begins with a central server preparing
the new firmware or software update. The micro- controller periodically
checks for updates via a secure wireless communication channel, such
as Wi-Fi or cellular networks. When an update is available, the micro-
controller downloads the update package and performs integrity checks.
If the update passes the verification process, it is stored in a dedicated
memory partition on the device. Finally, the microcontroller reboots and
switches to the new firmware version, ensuring minimal downtime and
continuous operation.

Security plays a critical role in the OTA update process. To prevent
unauthorized or malicious updates, encryption methods, authentication
protocols, and secure boot mechanisms are often employed to ensure the
integrity and authenticity of the update process.

4) Data Storage Server: Storage space provides crucial functionality. As
its name implies, this server is responsible for storing large datasets
required for the training process. It ensures that data is readily accessible
and managed efficiently, supporting the extensive data requirements of
modern machine learning algorithms. The Data Storage Server also
handles data preprocessing and augmentation tasks, preparing the data
in a suitable format for training.

These integrated components work in tandem to create a robust and
efficient pipeline for deploying ANN-based models on resource-constrained
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devices embedded in EVs. By addressing the challenges of model size,
complexity, and data management, the system ensures that high-performance
models can operate effectively even in environments with limited computa-
tional resources.

3.4.4 Distributed Agent

The FL framework is intrinsically a distributed framework. In the proposed
architecture (figure 3.7), a Distributed Agent is hosted by each peripheral
client, which resides on an edge device within an EV.

1) FL Client Module: Within the agent, this module is responsible for
establishing communication with the central cluster, receiving the global
model’s weights, and sending back the updated weights after performing
local training on its local dataset. This module plays a crucial role in
the federated learning process, ensuring that the client’s contributions
are incorporated into the global model. It is important to emphasize the
complexity of the task managed by the Communication Handler. This
component must work in coordination with the FL Participation Handler
to address the asynchronicity of communication. Due to the intermittent
nature of connectivity between each EV and the central aggregator,
as well as among the EVs themselves, there is no guarantee of con-
tinuous communication. This sporadic connectivity necessitates robust
mechanisms to ensure that updates are transmitted accurately and effi-
ciently whenever a connection becomes available, thereby maintaining
the integrity and effectiveness of the federated learning process.

2) Inference Module: The local ANN-based model will be utilized in
inference tasks to implement the monitoring process. This module takes
the trained model and applies it to real-time data gathered from the
EV, enabling functions such as predictive maintenance, performance
optimization, and anomaly detection. By leveraging the local model, the
EV can make intelligent decisions without relying on constant cloud
connectivity, thus enhancing the system’s reliability and responsiveness.
Additionally, the architecture ensures data privacy and security, as the
FL approach allows data to remain on the edge device. Only the model
updates, which are less sensitive than raw data, are shared with the
central cluster. This decentralized approach not only enhances privacy
but also reduces the bandwidth required for data transmission, which is
critical in mobile and resource-constrained environments like EVs.
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Overall, the proposed architecture provides a scalable and efficient solu-
tion for deploying FL in EVs. By addressing communication challenges,
ensuring data privacy, and enabling local inference, the system enhances the
capabilities of EVs to perform complex tasks autonomously and effectively.

3.5 Challenges

The implementation of distributed artificial intelligence architecture presents
several key challenges:

* Communication among devices with limited Internet connectivity and
energy capacity: The intermittent availability of network connections,
coupled with restricted energy resources and with the mobility of the
clients, poses significant difficulties for effective data transmission and
distributed computing and FL state maintenance.

* Generalization of neural network architectures, Al frameworks: A crit-
ical challenge lies in ensuring that Al solutions can generalize across
diverse neural network models, software frameworks, and hardware
platforms, enabling broad applicability and scalability.

* Deployment on several architectures: Deploying Al models on micro-
controllers, each with different architectures and processing capabilities,
adds a layer of complex- ity. Ensuring compatibility and performance
optimization across these heterogeneous systems requires careful con-
sideration of both software adaptation and hardware constraints.

* Trade-offs in training and compression methodologies: Striking the
right balance between various training approaches and data compression
techniques is essential to optimize performance while managing the
limitations of resource-constrained devices

3.6 Conclusion

In this work, we designed and proposed an architecture aimed at implement-
ing an Edge Intelligence scenario. Thanks to its modularity, each EI rating
layer, from 1 to 5, can be realized.

Among different technologies, Federated Learning has been identified
as a distributed training strategy to prevent data sharing and preserve pri-
vacy. Since edge devices typically have low-performance hardware, we also
included modules for AI model compression and simplification.

Although the architecture has been designed for a generic EI scenario, we
identified the monitoring system of Electric Vehicles as a potential use case
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where the proposed architecture could be applied after development. Further-
more, a list of interesting challenges and open points has been identified and
is presented in this paper.
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Abstract

Evaluating the performance of Simultaneous Localization and Mapping
(SLAM) algorithms is essential for the progress of robotic systems. However,
conducting a comprehensive assessment of SLAM systems in the context of
recent advancements is challenging due to the wide variety of hardware plat-
forms, algorithm configurations, and datasets available. This study aims to
test SLAM algorithms on resource-constrained devices such as the NVIDIA
Jetson AGX Orin 64GB. Experiments are conducted with various visual-
based localization algorithms that either leverage deep learning models for
specific tasks within the SLAM process or are learned end-to-end to estimate
camera pose. The evaluation focuses on the following systems: RDS-SLAM
and VDO-SLAM, which utilize semantic information to achieve precise
motion estimation; TSformer-VO, an end-to-end Transformer-based model
designed for monocular visual odometry; and DeepVO, which based on
recurrent neural networks. The systems are evaluated using several metrics,
including ATE and RPE to assess pose accuracy and rotational drift, respec-
tively, alongside runtime, energy consumption, and resource usage to gauge
their efficiency and practicality for real-world applications.
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4.1 Introduction and Background

Simultaneous Localization and Mapping (SLAM) is a crucial technology that
enables autonomous systems, such as robots, drones, and AR/VR devices,
to navigate and understand their environments without relying on external
reference systems. SLAM algorithms operate by simultaneously constructing
a map of an unknown environment while tracking the system’s position
within it. They typically utilise a combination of sensors, including cam-
eras, LiDAR, and inertial measurement units (IMUs), to gather data about
the surrounding area. Integrating these sensors improves the accuracy and
robustness of SLAM but also introduces a higher computational burden,
posing a substantial challenge to achieving real-time performance. To main-
tain operational efficiency, optimizations such as simplifying algorithms,
reducing the number of processed features, and leveraging parallel processing
capabilities are essential. When deployed on embedded systems, SLAM
encounters unique challenges due to resource constraints, including lim-
ited processing power, memory, and energy consumption. These limitations
necessitate the development of highly efficient algorithms capable of per-
forming complex tasks in real time, such as image processing, sensor fusion,
loop closure detection, and optimization. Despite advances in the field,
numerous challenges persist. Ensuring robustness against sensor noise, man-
aging varying environmental conditions, and scaling algorithms to accom-
modate different map sizes and complexities are critical areas of ongoing
research. Furthermore, the demand for lightweight implementations that do
not compromise performance underscores the continuous evolution of SLAM
technologies.

The primary aim of this paper is to benchmark specific SLAM meth-
ods on the NVIDIA Jetson AGX Orin 64GB, a robust embedded platform
tailored for real-time processing in autonomous systems. Specifically, we
perform a comprehensive performance analysis, comparing RDS-SLAM [1]
and VDO-SLAM [2], two semantic SLAM techniques, against the Visual
Odometry (VO) performance of CNN-based methods trained in an end-to-end
manner. This benchmarking aims to assess the performance of these SLAM
algorithms under constrained resource conditions, with a specific focus on
two key aspects:
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* Performance Comparison: Evaluating the ability of each algorithm to
accurately localize in dynamic environments.

* Resource Utilisation Assessment: Analysing how each SLAM
method leverages the resources of the Jetson AGX Orin, specifically
regarding CPU and GPU performance, memory usage, and energy
consumption

Finally, the study provides recommendations for optimizing SLAM algo-
rithms on embedded platforms and identifies key areas for future research and
development.

4.2 Related Work

SLAM has attracted considerable attention over the past few decades, leading
to the development of numerous approaches [1-7]. A thorough review of the
existing literature on SLAM methods reveals a diverse array of algorithms
tailored for different applications and hardware platforms. For example,
ORB-SLAM [3] has been widely recognized for its efficiency and robust-
ness on conventional CPUs, demonstrating good performance across various
environments. Similarly, VINS-Mono [4] and VINS-RGBD [5] are noted for
their effectiveness in combining visual and inertial data. Recent studies have
highlighted the potential of DNN-based SLAM systems, such as RDS-SLAM
[1], VDO-SLAM [2], DF-SLAM [6], Dyna-SLAM [7], and DeepFactors [8],
which leverage deep learning techniques to improve feature extraction, pose
estimation, or environment understanding. End-to-end deep learning methods
like DeepVO [9], TS-Former [10], and DROID-SLAM [11] also mark a
significant shift in visual localization systems by using neural networks to
directly learn the entire process from raw sensor data to pose estimation
and map generation, bypassing traditional hand-crafted feature extraction and
geometric modeling. However, these methods frequently encounter limita-
tions compared to traditional SLAM techniques, such as lower accuracy and
significant dependence on large training datasets. Neural Radiance Fields
(NeRF)- based SLAM [12-16] offers a novel solution by incorporating
NeRF models into SLAM systems to enhance the representation of 3D
environments. In contrast to traditional SLAM methods that rely on discrete
points or sparse features, NeRF-enhanced approaches produce continuous
volumetric fields to create highly detailed and realistic 3D reconstructions.
Through the use of neural networks, these methods can model entire scenes
and facilitate photorealistic rendering by understanding the interactions of
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light with surfaces. However, NeRF-based SLAM methods face challenges
on embedded systems due to their high computational requirements, energy
consumption, complex integration, and limited generalisation, underscoring
the need for more efficient solutions.

A growing number of embedded computing platforms now feature
NPU/GPU units, enabling lightweight deep learning networks to function
in real time. Many researchers have worked to modify SLAM algorithms
for low-power embedded platforms, reengineering them to ensure compat-
ibility with these devices. Despite these advancements in SLAM technology,
implementing these algorithms on resource constrained platforms still faces
considerable challenges, largely determined by the distinct characteristics of
both the algorithms and the underlying embedded architectures. Although
some researchers [17, 18] have explored VO systems resulting in a decreased
accuracy, others [19-22] have successfully developed keyframe-based SLAM
systems. Various approaches have been explored to optimize computation
and power overhead in visual-inertial odometry (VIO), particularly through
hardware acceleration using FPGAs [23-25]. Although advancements have
been made, keyframe-based SLAM systems still face challenges in achiev-
ing an optimal balance between efficiency and accuracy for mobile robot
applications. One of the most recent developments, Dynamic-VINS [26],
an enhanced iteration of VINS-Mono and VINS-RGBD, showcases remark-
able performance on resource-constrained platforms such as the HUAWEI
Atlas200 DK and NVIDIA Jetson AGX Xavier. Finally, a hardware-software
co-design approach is proposed to optimize latency, power consumption,
and tracking speed in VIO systems by incorporating the Optical Flow (OF)
estimation on the sensor [27]. In the VINS-Mono pipeline, feature tracking
was substituted with an OF camera that employs an ASIC-based accelerator,
while the other components of the VIO pipeline operate on the main processor
of a Raspberry Pi Compute Module4.

Assessing the performance of SLAM algorithms is essential for both
researchers and users of robotic systems. Comprehensive benchmarking
enables in-depth evaluations, helping to identify the most effective SLAM
algorithms, and laying the groundwork for future enhancements and inno-
vations in the field. The wide variety of hardware configurations, algorithm
settings, and datasets complicates thorough comparisons across the state-
of-the-art. There is a notable scarcity of research focused on benchmarking
SLAM algorithms on embedded systems, highlighting significant gaps in the
existing literature that this study aims to address. For example, the research
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presented in [28] assesses power consumption, accuracy metrics, and process-
ing frame rates for ORB-SLAM and OpenVSLAM [29] on NVIDIA Jetson
embedded systems, particularly the Jetson Nano, Jetson TX2, and Jetson
Xavier. The SLAM Hive Benchmarking Suite [30] has recently addressed this
challenge by offering a scalable solution that leverages container technology
and cloud deployment to analyze thousands of SLAM executions.

4.3 Methodology

For this comparison study, a diverse range of approaches have been selected,
including semantic geometric SLAM methods as well as VO techniques
derived from deep learning models trained in an end-to-end manner. This
enables a comprehensive evaluation of various strategies to identify those
most suitable for embedded systems, focusing on balancing performance and
computational efficiency. The systems are assessed based on several metrics
such as pose accuracy and rotational drift, along with an analysis of runtime,
energy consumption, and GPU and CPU usage to determine their efficiency
and suitability for real-world applications.

4.3.1 Selected systems

We examine the following systems: RDS-SLAM, which enhances the local-
ization process with semantic segmentation; VDO-SLAM, which utilizes
semantic information for accurate motion estimation and tracking of dynamic
rigid objects; TSformer-VO, an end-to-end Transformer-based model for
monocular visual odometry that learns motion estimation directly from
raw images; and DeepVO, which leverages recurrent networks to capture
temporal dependencies.

Unlike traditional SLAM algorithms, which assume a static scene, RDS-
SLAM (see Figure 4.1) detects and excludes dynamic objects to enhance
the robustness of tracking and mapping. The algorithm extends the base
framework of ORB-SLAM3 by introducing two parallel threads: a semantic
segmentation thread and a semantic-based optimization thread. These threads
enable the segmentation of images into static and dynamic objects using
methods such as Mask R-CNN [31] or SegNet [32], while optimizing the
tracking data in real time without blocking the process. The semantic thread
is executed selectively to keyframes, rather than every frame. The semantic
information is then propagated across the global map, where each map
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Figure 4.1 Overview of RDS-SLAM [1].

point is assigned a moving probability. This probability is updated as new
keyframes are processed and is used to classify map points as dynamic, static,
or unknown. The algorithm identifies dynamic objects using segmentation
masks from semantic models, assuming that classes such as people and
vehicles are likely dynamic. Points classified as dynamic are excluded from
the tracking process to avoid introducing errors in the camera pose estimation.
In contrast, static points are used to improve the accuracy of the tracking. This
approach allows RDS-SLAM to achieve precise tracking and robust mapping,
even in environments with dynamic objects that typically pose challenges for
traditional SLAM algorithms.

The VDO-SLAM system (Figure 4.2) is also designed to handle dynamic
environments. Before the execution of the SLAM algorithm, two crucial
pre-processing steps are applied. First, Mask R-CNN is used for instance-
level semantic segmentation, which allows for the identification of both
static and dynamic objects, such as vehicles and pedestrians, by generat-
ing object masks. Second, PWC-Net [33], a state-of-the-art optical flow
network, is applied to estimate the dense pixel motion between consec-
utive frames. Using these data, VDO-SLAM can estimate the full SE(3)
motion of dynamic objects, including both their linear velocity and rotational
movement, while also refining its own camera pose. This integration allows
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for robust navigation in dynamic environments where traditional SLAM
methods, which assume static surroundings, would fail.

Visual odometry, a key component of the tracking phase in SLAM,
can also be accomplished using methods based on Convolutional Neural
Networks (CNNs). The goal is to enable the system to directly learn motion
estimation from raw image inputs, eliminating the need for traditional fea-
ture extraction and matching techniques. DeepVO combines Convolutional
Neural Networks (CNNs) to extract visual features from images with Long
Short-Term Memory networks (LSTMs) to capture and model temporal
relationships between consecutive images, enabling the prediction of camera
movements.

On the other hand, TSformer-VO takes a distinct approach by utiliz-
ing transformers to extract spatio-temporal features from video sequences.
Unlike DeepVO, which relies on recurrent mechanisms, TSformer-VO uti-
lizes spatio-temporal attention to capture interactions between images across
both spatial and temporal dimensions. This allows for a more holistic
understanding of the scene, leading to enhanced precision in estimating the
camera’s 6-DoF poses. By processing long-range dependencies within the
video data, TSformer-VO reduces pose drift and improves robustness in
dynamic environments. Additionally, the model’s end-to-end learning frame-
work enables it to adaptively optimize feature representations, making it a
powerful alternative to traditional visual odometry methods.

4.3.2 Selected systems

For the benchmarking setup, we used the NVIDIA Jetson AGX Orin 64GB,
a high-performance platform specifically designed for real-time AI and
embedded applications. The Jetson AGX Orin features a 2048-core NVIDIA
Ampere architecture GPU with 64 Tensor Cores and a 12-core ARM Cortex-
A78AE CPU, running at 2.2 GHz. The system is equipped with 64GB
of LPDDRS5 memory and provides 275 TOPS (INT8) of Al performance.
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The Jetson platform allows for efficient execution of SLAM algorithms,
balancing high computational power and energy efficiency, making it ideal
for real-time applications in resource-constrained embedded environments.
On the software side, all algorithms were deployed using Docker to guarantee
consistent and efficient testing across various approaches and datasets. This
containerization enables performance and results to be compared under the
same conditions, thus streamlining the testing process.

4.3.3 Evaluation metrics

The evaluation of SLAM algorithms is based on a set of well-defined metrics
designed to assess both accuracy and computational efficiency. These metrics
provide quantitative insight into the global alignment and local consistency of
the estimated trajectories. Specifically, we utilize Absolute Trajectory Error
(ATE) and Relative Pose Error (RPE) to measure the discrepancy between
the estimated and ground truth trajectories, capturing both overall accuracy
and the drift over time. Additionally, Frames Per Second (FPS) is employed
to evaluate the real-time performance of the system. To further assess com-
putational efficiency, we monitor system resource usage, including CPU
and GPU utilization, memory footprint, and power consumption. Detailed
definitions and the methodology for computing these metrics can be found in
the Appendix.

4.3.4 Dataset

For evaluation, we used the TUM RGB-D dataset [34], a widely recog-
nized benchmark for SLAM systems. This dataset provides various indoor
sequences captured using RGB-D cameras, which include both static and
dynamic scenes. These sequences are ideal for testing the performance of
SLAM algorithms in diverse and challenging real-world scenarios. To ensure
diversity in our evaluation, we selected a specific subset of sequences that
represent a wide range of environments, motions, and dynamics. The chosen
sequences are as follows:

* freiburgl_desk: This sequence captures normal movements within a
static office environment, making it suitable for evaluating the perfor-
mance of SLAM algorithms in controlled, steady indoor settings.

* freiburgl_xyz: In this sequence, the camera undergoes translations
along all three axes (X, Y, Z) while the environment remains static.
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It evaluates the algorithm’s ability to handle structured translational
movements.

* freiburg2_xyz: This sequence involves rapid translations in a static
indoor setting, challenging SLAM systems with faster motions, and
requiring precise tracking in environments with minimal changes.

e freiburg2_rpi: The camera performs quick rotations around the roll,
pitch, and yaw axes within an indoor space. This sequence stresses the
system’s ability to manage sudden rotational movements.

* freiburg3_long_office_household: A longer sequence set in a domestic
environment with various objects and changing lighting conditions.
This provides a complex, real-world scenario with longer-term tracking
requirements and varying conditions.

* freiburg3_walking_xyz: This sequence captures rapid movements with
significant translations and human dynamics, simulating more unpre-
dictable and dynamic real-world conditions.

* freiburg3_walking_static: Featuring fast movements within a static
environment, this sequence tests the robustness of SLAM algorithms
when confronted with high-speed camera motion while the scene
remains unchanged.

4.4 Experimentation

The experiments were conducted to analyze the performance of the selected
SLAM algorithms under realistic conditions, with a focus on their accuracy,
efficiency, and suitability for embedded platforms.

4.4.1 Performance evaluation

Our study begins with a visual comparison of the accuracy in trajec-
tory estimation across the selected localization systems, using sequences
from the TUM RGB-D dataset. Figure 4.3 shows the trajectories for the
freiburg3_structure_texture_far. For TSformer, three configurations are used,
considering 1, 2, or 3 images to predict the camera motion.

Table 4.1 & Table 4.2 summarize the average performance on selected
sequences. Inference for models, whether trained end-to-end or integrated
as a semantic thread, is performed using PyTorch (FP32), without utilizing
TensorRT for performance optimization on NVIDIA hardware. VDO-SLAM
demonstrates a balanced approach, achieving the best performance among
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Table 4.1 Performance Metrics: overall localization accuracy (ATE), Error between succes-
sive poses (RPE) and Inference Time <

Methods ATE (cm) RPE (cm) FPS
DeepVO 402.5 1.42 9.6
TSformer-VO-1 135.2 0.95 7.1
TSformer-VO-2 172.9 0.91 5.0
TSformer-VO-3 152.2 0.92 3.8
RDS SLAM (Mask RCNN) 34 0.96 3.2
RDS SLAM (SegNet) 33 1.00 7.5
VDO SLAM 34 1.00 8.1

the two SLAM systems tested, with an FPS of 8.1, reasonable energy
consumption (~10.85W), and a competitive ATE of 3.4 cm. However, a
key factor driving VDO-SLAM'’s efficiency is that semantic segmentation
is handled in a pre-processing step (0% in the SLAM pipeline itself).
This approach allows the system to focus the bulk of its computational
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Table 4.2 Resource Usage 1

Methods CPU (%) GPU (%) RAM (%) Power (mW)
DeepVO 20.99 46.45 15.93 14017.10
TSformer-VO-1 12.11 95.19 17.90 16881.53
TSformer-VO-2 10.65 96.77 17.98 16767.64
TSformer-VO-3 11.07 96.96 18.04 16637.78
RDS SLAM (Mask RCNN) 18.08 70.51 14.78 16000.26
RDS SLAM (SegNet) 16.26 60.20 13.49 14535.83
VDO SLAM 21.20 30.96 10.34 10852.83

resources on tracking (62.06%), while tasks such as mask generation (13.
47%) and map optimization (12.79%) consume significantly fewer resources
(see Figure 4.4). Although this preprocessing strategy improves real-time
performance during the execution of SLAM, it presents certain limitations.
From a design perspective, offloading semantic segmentation and motion
estimation to an earlier stage outside the main pipeline is not an ideal long-
term solution. Ideally, these tasks should be integrated directly into the SLAM
architecture to enable a more adaptive and responsive system that can adjust
to new scenes in real time. By separating these processes from the SLAM
pipeline, VDO-SLAM sacrifices flexibility, which could be a drawback in
environments where on-the-fly processing of dynamic objects and scene
changes is essential.

In contrast, the performance of RDS-SLAM is highly dependent on
the choice of semantic segmentation model. When using Mask R-CNN,
RDS-SLAM dedicates 51.64% of its computational resources to seman-
tic segmentation, achieving high accuracy (ATE of 3.4 cm) but with a
significant trade-off in real-time performance (3.2 FPS) and resource con-
sumption (16W). This makes it less practical for power-sensitive applications.
However, when SegNet is used, the performance of RDS-SLAM improves
substantially, with an FPS of 7.5 and lower energy consumption (14.5W),
making it comparable to VDO-SLAM. SegNet offers a lighter alternative
that better balances the trade-off between accuracy and efficiency. Despite
these improvements, both methods still lag behind true real-time perfor-
mance, underscoring the challenge of optimizing SLAM systems for dynamic
environments without excessive resource demands.

End-to-end deep learning-based approaches, such as DeepVO and
TSformer-VO, exhibit significant limitations. Although this architecture
promises to simplify the visual odometry pipeline, the results show that these
approaches struggle in terms of accuracy and resource efficiency. For exam-
ple, DeepVO achieves a poor ATE of 402.5 cm, reflecting significant drift
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over time, particularly in environments that differ from the training datasets.
Similarly, TSformer-VO, although slightly better in terms of accuracy, still
performs poorly compared to geometric SLAM methods. More importantly,
these end-to-end models suffer from extremely high GPU usage, with
TSformer-VO consuming more than 95% of the available GPU resources.
This excessive consumption of computational resources, coupled with limited
accuracy, makes end-to-end approaches inefficient for real-world applica-
tions on embedded systems. Although they deliver higher FPS, they remain
inadequate for real-time performance. Furthermore, their imprecision and
inefficient resource utilization make them unsuitable for tasks that demand
reliable localization.

4.4.2 TensorRT optimization for SLAM algorithms

Exporting the model to TensorRT is essential for running it on NVIDIA
Jetson devices, as TensorRT is specifically designed to maximize the per-
formance of deep learning models on NVIDIA GPUs. It achieves this by
implementing optimizations such as precision calibration, kernel fusion, and
layer fusion, which collectively improve inference speed and reduce memory
usage. In our investigation into improving the efficiency of SLAM algo-
rithms, we explored the possibility of optimizing the DeepVO PyTorch model
using TensorRT. To accomplish this, the model was initially exported to the
ONNX format, which serves as an intermediary representation that facilitates
compatibility with TensorRT. Then, we evaluated the performance of the
model using various precision formats, including FP32, FP16, and INTS,
along with the quantization technique utilizing PQT (Post-Training Quan-
tization). This allowed us to assess the trade-offs between model accuracy
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and computational efficiency across different precision levels. The results of
these optimizations, in terms of speedup compared to the original PyTorch
implementation, are presented in Table 4.3. These findings indicate that
the application of TensorRT to a deep learning model for VO can result
in significant speed enhancements while maintaining minimal variations in
prediction accuracy. Depending on the chosen precision level, it is possible to
effectively balance speed and accuracy, allowing tailored performance based
on specific application needs.

Table 4.3 Performance Comparison of DeepVO-pytorch Optimized with TensorRT <

Precision Format Speedup over PyTorch ATE (cm)
FP32 4.36x 405.5
FP16 3.80x 411.9
INTS 4.23x 468.5

4.5 Conclusion

This work evaluated the performance of various localization systems, such
as SLAM and VO, on resource-constrained devices, specifically the NVIDIA
Jetson AGX Orin 64GB. By benchmarking systems such as RDS-SLAM,
VDO-SLAM, DeepVO, and TSformer-VO, the study provided valuable
insights into the efficiency and accuracy of these methods under constraints
of computational power, memory, and energy resources. The results high-
lighted the trade-offs between real-time performance and accuracy. Although
RDS-SLAM achieved higher accuracy, it incurred greater computational
and energy demands. VDO-SLAM performs at a similar level in terms of
performance; however, it is important to note that the CNN-based component,
semantic extraction, and optical flow processing are conducted upstream
on pre-known datasets. Despite this pre-processing step, which limits its
adaptability to dynamic environments or new scenarios where the models
have not been previously trained, VDO-SLAM still fails to achieve efficient
real-time performance. On the other hand, deep learning-based models like
DeepVO and TSformer-VO showed limitations in accuracy and high resource
consumption, making them unsuitable for real-time applications.

The study emphasized the need for optimization, particularly in inte-
grating semantic segmentation directly into the SLAM pipeline for greater
flexibility. The findings suggest that there is significant potential for further
optimizing deep learning-based approaches to improve their viability on
resource-constrained platforms. Future research could focus on co-designing,
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refining these algorithms, and exploring ways to balance accuracy and effi-
ciency, while further tailoring them to the constraints of embedded hardware.
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4.6 Appendix
4.6.1 Calculation of the metrics used in evaluation

In order to evaluate the accuracy and performance of SLAM algorithms, we
employ several key metrics that assess both the global alignment and local
consistency of the estimated trajectories. The following metrics provide a
comprehensive understanding of the system’s behavior, including Absolute
Trajectory Error (ATE), Relative Pose Error (RPE), and Frames Per Sec-
ond (FPS). In addition, we monitor system resource usage using hardware
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statistics on CPU, GPU, memory, and power consumption to evaluate the
efficiency on embedded platforms.

4.6.1.1 Absolute Trajectory Error (ATE)

The Absolute Trajectory Error (ATE) is used to measure the global accuracy
of the SLAM system by evaluating the difference between the predicted
trajectory and the ground-truth trajectory after aligning them. Let the ground-
truth poses be represented as a series of homogeneous transformation matri-
ces Pft € SE(3) where i indexes the sequence frames, and let the estimated
poses be P¢*!. The ATE is computed as the root mean square error (RMSE)
between the positions of the estimated trajectory and the ground truth after
aligning them through a rigid body transformation.

The ATE is mathematically defined as:

1 n
ATERnsE = 52” t9" — gost |2, (4.1)
=1

where t/ " and t¢s* represent the translation vectors (positions) extracted from
the ground-truth and estimated poses Plgt and P¢%', respectively. The RMSE
measures the Euclidean distance between corresponding positions in both
trajectories, giving a global measure of accuracy.

4.6.1.2 Relative Pose Error (RPE)
The Relative Pose Error (RPE) evaluates the local consistency of the tra-
jectory by comparing the relative motion between consecutive poses in the
estimated trajectory to that in the ground-truth trajectory. This metric is
essential for assessing the short-term accuracy of the system in tracking small
movements, which is critical in dynamic environments.
Given two consecutive ground-truth poses Pft and Pffrl, the relative
transformation between these poses is:

¢ £\ " Lpgt
T = () P! (4.2)

i+1°

Similarly, the relative transformation between consecutive estimated
poses is:

Te = (Pe!) TIPS, 4.3)

The RPE is then computed as the difference between the relative trans-

formations of the ground-truth and estimated poses. The translational RPE is
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defined as the root mean square error (RMSE) of the translation vectors from
the relative transformations:

n

1
RPEyans = — (€' —t0,)— -t 2, (44
=1

where tft and t¢°* are the translation components of the relative transforma-
tions Tft and T$* and A is the time interval.

For the rotational RPE, we measure the angular difference between the
relative rotation matrices th and R¢**, which can be quantified using the
angle-axis representation. The rotational error is defined as:

t t T T es est T
1 n tr((Rf —-RY, ) (Ri "—Ri, )) -1

RPE,,; = — arccos ,
n i=1 2

4.5
where th and R¢* represent the rotation matrices of the ground-truth and
estimated poses, tr denotes the trace of a matrix, and A is the time interval.
This metric provides the average rotational error over the trajectory.

4.6.1.3 Frames Per Second (FPS)

In real-time applications, the Frames Per Second (FPS) is a critical metric that

measures the number of frames processed by the SLAM system per second.

High FPS is essential for ensuring that the SLAM algorithm operates effi-

ciently and in real time, especially in embedded or constrained environments

where computational resources are limited. FPS can be computed as:
number of frames

FPS = —. (4.6)
total processing time

This metric helps assess the speed and responsiveness of the SLAM
system.

4.6.2 Alignment methods

In this section, we describe four different trajectory alignment methods com-
monly used to compare predicted poses against ground-truth data in odometry
and SLAM systems: scale, 6DOF, 7DOF, and 7DOF with scale. Each method
focuses on optimizing different parameters (scale, rotation, and translation)
to minimize the alignment error.
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4.6.2.1 Scale alignment (scale)

The scale alignment adjusts only the global scale factor ¢ between the
predicted trajectory X and the ground-truth trajectory Y, without modifying
the rotations or translations.

Method:

* The objective is to minimize the distance between X and Y by adjusting
only the scale.
* The optimal scale factor ¢ is computed as:

X.Y
* The aligned trajectory is then scaled as:
Xaligned = ¢. X. (4.8)

This method is particularly useful for monocular systems, where the scale
is typically unknown and must be estimated post-facto.

4.6.2.2 6 Degress of Freedom (6DOF)

The 6DOF alignment adjusts both the rotation and the translation between
the predicted trajectory X and the ground-truth Y, but keeps the scale fixed.
This allows the correction of orientation and position errors.

Method:

* The six degrees of freedom include three for rotation and three for
translation.

* The alignment is based on the Singular Value Decomposition (SVD) of
the covariance matrix between X and.

* The covariance matrix cov,, is computed as:

1 n
COVyy = — (y; — meany)(z; — meanx)T. (4.9)
n

i=1
* The SVD of cov,, gives:
covyy = UDVT. (4.10)

where U and V are orthogonal matrices representing the principal direc-
tions of Y and X, respectively, and D is a diagonal matrix of singular
values.



4.6 Appendix 109
* The rotation matrix R is computed as:
R=U V7. 4.11)

where X is a diagonal matrix ensuring a proper right-handed coordinate
system.
* The translation vector ¢ is calculated as:

t = mean, — R.mean,. 4.12)
* The final aligned trajectory is:
Xaligned =R.X + t. (4.13)

This method is ideal for LiDAR or stereo systems where scale is fixed but
orientation and position errors need correction.

4.6.2.3 7 Degress of Freedom (7DOF)

The 7DOF alignment extends the 6DOF method by also adjusting the
scale factor ¢, in addition to the rotation and translation. This allows for
simultaneous correction of scale, rotation, and translation errors.

Method:

¢ In addition to the rotation R and translation ¢, the scale factor ¢ is
computed to minimize the alignment error.
* The scale factor c is given by:
1
c =— .tr(DY), 4.14)
Ox
where o, is the variance of the points in X, and ¢r(DY.) is the trace of
the product of the singular values and the diagonal matrix 3.
* The transformed trajectory becomes:

Xaligned = ¢.R. X + t. (4.15)

This approach is beneficial in systems where the scale might not be
exactly known, such as stereo or some lidar systems.

4.6.2.4 Scale + 7 Degrees of Freedom
The scale_7DOF alignment combines the benefits of the 7DOF alignment
with an additional scale optimization step. After applying the rotation and
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translation, the scale factor is optimized separately to further minimize the
final trajectory error.

Method:

* First, perform a 6DOF alignment to adjust the rotation R and transla-

tion ¢.
* Then, optimize the scale factor ¢ independently using the formula:

o Z (Xaligned : Y)
B 2 (Xaligned2) ‘ (416)

* The final trajectory becomes:
Xﬁnal = C- Xaligned- 4.17)

This method provides a finer correction of scale after the rotational and
translational alignment, making it useful when significant scale variations
exist between predicted and ground-truth trajectories.
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Abstract

Deploying Al at the edge can be challenging. Al algorithms are very com-
pute intensive. In the data centre, multiple large, power-hungry GPUs are
often employed. However, edge systems typically have constrained compute
capabilities and limited power. Further, many systems need to deal with
size, weight, cost, thermal, and other limitations. Successfully deploying Al
while meeting these limitations requires a holistic analysis of the system.
A Model-Based Cybertronic System Engineering (MBCSE) methodology
enables modelling and analysis of complex systems at a high abstraction
level. It can be used to analytically find an optimal system architecture
and hardware/software partitioning. Meeting the computational requirements
may call for the development of bespoke machine learning accelerators.
These are complex dedicated compute resources that deliver parallel com-
putation, local data buffers, and some level of programmability. Designing
an optimal accelerator architecture can be accomplished with an Al assisted
High-Level Synthesis (HLS) process to efficiently explore the design space.

This paper describes a Model Based Cybertronic System Engineer-
ing (MBCSE) methodology that can be used to craft a combined hard-
ware/software implementation of an inferencing algorithm, balancing per-
formance, power, cost, and other key design metrics. It begins with an
algorithmic analysis, determining areas of significant complexity. This is fol-
lowed by allocation of functions to physical computation elements, targeting
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both board-level and chip-level placement. During the allocation phase,
complex algorithms may be mapped to bespoke accelerators that will be syn-
thesized from the algorithmic description using high-level synthesis. Finally,
an analysis of design is performed to ensure that all design metrics are met.

Keywords: edge Al, system design, system optimization, high-level
synthesis.

5.1 Introduction and Background

Edge systems are often limited in several dimensions. Power consumption
and compute capabilities are often limited in support of form-factor, weight,
cost, mobility, and other requirements. This makes deploying Al on these
systems challenging, as Al algorithms typically consume significant compute
resource and power. One way to mitigate this is to architect the system
with the compute resources that meet, but do not materially exceed, the
requirements for the Al processing needed.

Al processing can be performed on different types of compute resources.
For example, inferences can be run on general-purpose processors, graphics
processing units (GPUs), arrays of multiply/accumulate processing elements,
FPGA fabric, or bespoke hardware accelerators. Each of these represents
compromises for the system designer. For example, deploying Al on a
general-purpose processor typically will require around 100 watts of power
or more. This results in a heavy battery, limited battery life, and potential
cooling issues. But it significantly eases the development efforts, as the same
software and machine learning frameworks can be used in the edge design
as was used by the data scientists in the data centre. A bespoke hardware
accelerator will be orders of magnitude more efficient but requires a custom
IC development effort.

Developers need a way to understand the impact of their design trade-
offs early in the design cycle to find the optimal architecture for the system
that addresses the myriads of design constraints imposed by the business,
regulatory, competitive, and other forces influencing the design of the system.
Yet, finding a suitable methodology that can address all the design needs is
tricky.

Model-based Systems Engineering has been used for software develop-
ment for 25 years. Unified Modelling Language (UML) [1] was the first
standardized graphical modelling language for specification, construction,
documentation and visualization of software intensive systems. Because
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UML was originally developed for modelling SW systems, it was not suitable
for general system modelling. System Modelling Language (SysML) was
based on UML but targeted more to the needs of general systems engineering.
It is widely used for modelling system functionality but has severe capacity
limitations.

Systems with functionality implemented in both SW and bespoke HW
blocks are called Cybertronics Systems [2]. These are difficult to model with
UML or SysML, which are targeted to single-domain modelling. Finding the
optimal HW/SW partitioning needs an extensive design space exploration
and capability to analyse different metrics like processor and bus utilization,
task latency, power consumption or network load. The modelling method-
ology must support clear separation of function from structure, function
allocation to structural elements and mapping of structural elements to any
target technology. One of the methodologies developed for this purpose is
Architecture Analysis and Design Language (AADL) [3]. It is used to model
the SW and HW architectures of embedded real-time systems. AADL is a
useful methodology for HW/SW system modelling and analysis, but it is
lacking capabilities to the operational and functional analysis and modelling
of cyber-physical systems.

5.2 Model Based Cybertronic Systems Engineering

Challenges of the cybertronics systems engineering are diverse. It begins with
the system context that can be a network, a computing enclosure with multiple
Printed Circuit Boards (PCB), a single PCB, a System-on-Chip (SoC), a
Field Programmable Gate Array (FPGA) or embedded SW. The physical
system sets the functional constraints that define the requirements for the
cybertronics subsystems. Furthermore, the individual algorithms communi-
cating with each other and consuming computing resources, can be allocated
to different processing elements. The design space is huge and finding the
optimal architecture is difficult.

Another challenge is the variety of the design domains that are usually
tightly coupled. An architectural component like PCB contains other archi-
tectural components that are cybertronics subsystems themselves such as
3DIC or SoC. SW functionality can be allocated onto multiple processors
that are potentially in different subsystems. In such cases the network of data
exchanges between the functions must be allocated to physical interconnect
that can be a network segment, platform bus like PCle, network-on-chip, or
something similar, depending on the implementation technology.
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Third challenge is the fragmented organization of the domain specific
development processes. Communication between the teams is negligible
because the different terminologies and specifications are interpreted differ-
ently. This makes maintaining the integrity of the system difficult.

Model Based Cybertronic Systems Engineering is a new model-based
methodology developed for modelling and analysis of cybertronics systems.
It borrows concepts from multiple modern systems engineering methodolo-
gies. The main target of this new methodology is to unify the modelling
methodologies on different system levels and enable seamless communica-
tion between the architects in the different implementation domains and the
design teams.

The first methodology is called HW/SW co-architecting [4]. It is based on
C++ function tree breakdown, where the functions are allocated to SW that is
executed on one or more processors or HW accelerators that are implemented
by using HLS. Because the C++ source code can be used both as SW code
and input for the HLS, the mapping decisions can be done late in the design
cycle. This approach works nicely for algorithms that are available, or can be
translated into, C++, like streaming video or Al algorithms.

The second methodology used in MBCSE is ARChitecture Analysis and
Design Integrated Approach, ARCADIA [5]. It is a very simple static infor-
mation model methodology for system modelling according to the INCOSE
SE handbook. Arcadia can be used to model the functional, logical, and
physical architecture of the system using standardized artifacts. The functions
and structures are kept separated, but the allocation of functions, exchanges,
and components to structures is supported. Arcadia methodology has no
technology binding nor simulation capabilities itself, so the designer can
specify any target technology or simulation by using properties. It also has
capability to transition a component to a subsystem in a separate project.
These three capabilities make Arcadia a perfect methodology for cybertronics
system modelling.

Yet, a comprehensive system modelling methodology must enable design
space exploration with different types of simulations. Property Model
Methodology [6] is a dynamic, simulation-based methodology for require-
ments driven system modelling and analysis. Simulations are needed to
validate the functional correctness of the system model, to analyse the system
performance of different architecture options and verify the implementation.
PMM and Arcadia complement each other and form a basis for a cybertronics
system modelling and validation methodology.
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MBCSE [7] workflow is described in the Figure 5.1. The horizontal
Requirements-Functional-Logical-Physical (RFLP) architecture process is
based on Arcadia. The transition from one design layer to another one is
automated to maintain the integrity between the layers.

The vertical pillars for each Arcadia layer represent the PMM concepts
used to import behavioural, performance, and implementation information to
the Arcadia model and interfacing to the different simulations. Complexity
management with subsystem transition is part of the Arcadia methodology.

The third integral part of the MBCSE methodology is interface to all
cybertronics implementation domains. To keep the number of details to a
manageable level in the system model the transition to a domain specific
design flow is a design step, not an automatic model generation.

The MBCSE methodology allows modelling any type of system. There-
fore, it can be used for modelling of cyber-physical systems with, for
example, mechanical, mechatronics, electrical, and physical subsystems as
well. Each model can be specified to be an abstract model without any
technology binding, or it can be bound to a target technology like a platform
network or PCB, where the components in the model are physical compo-
nents at this model level like a processor, SoC, or FPGA. But the component
is a top-level functional model of a separate subsystem that is decomposed
individually. Yet, all functions, requirements, and properties related to the
top-level are maintained there and propagated to the subsystem automatically.
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5.3 Designing Edge Al Systems with MBCSE Methodology

Edge Al systems have a special character. They are power and computing
resource limited and usually have hard real-time requirements. At the same
time, they apply multiple cascaded, or nested, Al algorithms. Therefore,
they are perfect candidates for model-based design methodology described
in Figure 5.2.

The design process begins in the traditional Al algorithm development
environment like TensorFlow, Caffe, or PyTorch. Once the algorithm is opti-
mized for accuracy and mathematical complexity, the network is translated
to C++ using one of the Python-to-C converters. The generated C++ code is
validated against the original Python model to ensure its correctness.

The same floating-point C++ model is a functional description of the
Al system functionality and is used as a starting point for the architecture
analysis and development. In the functional analysis the Al algorithm can be
treated as one entity, but for a more detailed analysis it must be broken down
to smaller entities that usually are the individual layers of the neural network.
Arcadia methodology enables function breakdown into any granularity. For
example, in the top-level system context the Al algorithm can be one function,
which is broken down into the individual layers in the lower subsystem level.
Additional information like kernel size or number of channels can be added
to the model as properties.

In the logical architecture phase, the functions are allocated to logical
components and the data exchanges between them through logical channels.
This is the first attempt to allocate the functionality to an implementation
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architecture. The amount of information at this point is still very small and
it is easy to change the logical allocation by just assigning a function to
another logical component. This architecture exploration phase enables a
performance simulation to analyse the latencies, interconnect traffic, pro-
cessor utilization, and many other metrics. The performance model can be
parameterized to test what-if exploration of design alternatives as shown in
Figure 5.3. Here, the convolution function is changed from a SW implemen-
tation to a HW accelerator resulting in a 96% reduction in the latency of the
computation without changing the performance model.

The purpose of the performance analysis is to find the optimal HW/SW
allocation and simultaneously design constraints for the HW designers. When
the optimal architecture is found, a physical architecture model is created.
It contains more detailed implementation information for creating a virtual
model for more detailed analysis and HW implementation.

Parallel to the architectural exploration, the C++ functions targeted to
HW acceleration are quantized by using fixed-point data types to model the
HW implementation effects to the Al algorithm. This quantized C++ code
is validated against the original Python model using the same testbench as
earlier for functional validation.

In the next step the quantized C++ code is partitioned into HW models
that are further optimized for HLS, while functions that remain as SW will
go through the standard SW development process.

The HW platform integration is based on the physical architecture model.
The components, ports, and interconnects can be extracted from the system
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model and refined in the domain specific design environment. Standard
components like processors, memories, and peripherals can be taken from
the library, while custom models are synthesized to RTL using HLS.

When the platform is integrated, it goes through the domain specific
verification flow.

5.4 Creation of Bespoke Al Accelerator

Once the MBCSE analysis shows that a bespoke Al accelerator is needed,
whether deployed as an ASIC or FPGA, a hardware design project must
commence to design, verify, and integrate that hardware accelerator. MBCSE
provides a set of requirements and constraints for the Al accelerator. It also
defines the data flows, both the inputs and outputs, to the larger system. This
constrains the interfaces used for the implementation of the Al accelerator.

While the deployment of the accelerator must meet the constraints derived
from the system analysis, there is still a great deal of latitude in the implemen-
tation. The nature of hardware design is such that aspects of the design, such
as power consumption or throughput, could vary by an order of magnitude or
two, while meeting the remaining constraints on the system. This means that
it is critical to understand both the constraints as well as the limitations of the
constraints. For example, there may be a requirement that an inference must
be completed in 2 milliseconds. This is a clear performance requirement.
But this computation may be performed in parallel with another calculation
that takes, say, 1.5 milliseconds, where the slower of the two limits the
overall throughput. Or the collection of the feature data from sensors may
take 1.5 milliseconds. In these cases, there will be no benefit to making the
Al accelerator go any faster than 1.5 milliseconds. Implementing a faster
accelerator will typically degrade other system characteristics, such as power
consumption or silicon area. However, for some systems, achieving higher
performance or lower power consumption is better, with no limit or point
of diminishing returns. Thus, itis critical for the designer to know both
the constraints and the limitations of the constraints to architect an optimal
implementation. The MBCSE flow delivers this data, and it should be used to
inform the design process.

With the constraint data, the hardware development effort can commence.
However, a traditional hardware development cycle for either ASIC or FPGA
can take months and requires a level of manual effort such that it is not
practical to create multiple implementations that are meaningfully different.
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In the traditional hardware design flow, an initial architecture is decided upon,
and minor course corrections can be made through the design cycle. But few
design teams have the resources to do true design space exploration. If the
design marginally meets the requirements, it will be accepted, even if it is sub-
optimal. Traditional hardware design relies on the experience and intuition to
select an architecture. However, if the design team has not built a bespoke Al
accelerator before, there is likely little or no experience base to draw from.

5.4.1 High-Level Synthesis

High-Level Synthesis is a technology that takes an algorithm as input and
produces a target technology specific implementation in the form of a syn-
thesizable RTL design. The input algorithm is generally in the form of
C++ or SystemC, but new approaches are supporting SystemVerilog and Al
framework CNNs as input [8], [9].

High Level Synthesis is a well-established technology [10], available as
open-source projects and from commercial EDA and FPGA suppliers. HLS
works by parsing the input algorithm and creating a global control data-flow
graph (CDFG) of the algorithm. This graph is analysed to determine data
dependencies, parallelism in the algorithm, and potential resource sharing
opportunities. The graph is then transformed into a set of state machines and
data flow constructs that exactly implement the original algorithm. From this
the RTL representation is constructed. The RTL implementation requires the
target clock frequency, and information about the target silicon technology.
This data would be in the form of an ASIC technology data for a targeted
ASIC, or for FPGAs, detailed information on the characteristics of the FPGA
design elements available.

The HLS tool can create a variety of implementations from a single
input algorithm. For example, a multiply/accumulate loop could be fully
unrolled, with a physical multiplier for every multiplication operation. Or
it could share a single multiplier instance for each loop iteration. The former
implementation would be fast but would be large and inflexible. The latter
would be slower but would be smaller and could more easily accommodate
a varying number of loop iterations. Or, a partial unrolling could be done,
giving a balance between the two. Typically, the hardware engineer will
provide guidance to the tool in the form of programming “pragmas’ or tool
settings. This gives the developer control over the level of parallelism and
pipelining in the resulting implementation, See Figure 5.4.
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Since the creation of each RTL implementation is automated, the creation
of several meaningfully different design options can be done quite quickly,
in hours instead of months. In a traditional design flow, this would be pro-
hibitively expensive. Each implementation can then be evaluated for power,
performance, and area (PPA). From the scheduled state machine construction,
the HLS tool can accurately calculate the latency for the algorithm for a
given implementation. With knowledge of the target ASIC technology or
FPGA device the HLS tool can ascertain the specific design primitives used to
construct each design alternative which provides a good basis for determining
the area. When combined with design activity (switching data), this can be
used to produce an estimate of the power consumption. This power estimate
will include the static power for each gate, as well as the dynamic switching
power. But it will not include the parasitics, which are only available after
RTL synthesis and place and route. While the power estimates will have
some degree of uncertainty, they are still useful for performing comparisons
between different implementations.

5.4.2 Implementation and optimization with HLS

With an HLS flow in place, deploying a bespoke accelerator is more than
just running the HLS tool. There are several modifications that can be done
that will improve the operating characteristics of the accelerator. These will
result in an implementation optimized for the specific application. The first
is to reduce the size of the network as much as possible. This involves well
understood pruning techniques. Often a trained network can be reduced by
90% or more with little to no reduction in accuracy [11].

Next would be select an optimal numeric format, or “quantizing” the
network. Using a more compact numeric representation will reduce the size
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of memory needed for weights, biases, and intermediate results. It will also
reduce the size of the operators that process that data. Multipliers will take
up the most area of the computational logic of the accelerator. And memory,
used for storing weight, biases, features, and intermediate results will take
up the most area and consume the most power. In terms of performance,
movement of the data to and from the processing elements will be the biggest
performance bottleneck.

In machine learning frameworks running on general purpose comput-
ers or GPUs, numbers are stored and operated on as 32-bit IEEE format
floating-point numbers. But, for most Al processing, values usually small
in magnitude, with a significant portion being between -1.0 and 1.0. Which
means that a 32-bit floating point representation is excessive, resulting in
significant unused range, which is wasteful in the design. Eliminating these
makes the design smaller and more efficient. Al algorithms usually do not
need to dynamic range supported by floating point numbers. Converting to a
smaller numeric format such as fixed point, reduced precision floating point
representations like bfloat16 [12] or posits [13] will result in a reduction in
memory storage requirements, faster movement of the data, and smaller oper-
ators in hardware. Using quantized aware training, the size of representation
can often be reduced by a factor of 4 or more [14]. By moving from a 32-bit
floating point number to an 8-bit fixed point number will reduce the size of
the multipliers by ~97%, with a roughly proportional reduction in the power
consumption. In an HLS flow the developer can choose to create a much
smaller and more efficient design, or the designer could use the silicon area
to add more multipliers and execute them in parallel, delivering increased
performance.

By changing both the neural network architecture, through pruning, and
the underlying math, through quantization, the accuracy of the network will
change. Thus, it is critical that throughout the pruning and quantization
steps that the accuracy is verified. Quantization and pruning actions will
impact each other and can be traded-off against each other. For example,
reducing the size of features or weights will reduce the accuracy of the
neural network. Increasing the number of layers or channels within each
layer will increase the accuracy of the neural network. Careful balancing of
the pruning and quantization will result in an optimal implementation. There
are Al approaches being researched for finding an optimal quantization and
neural network architecture, as this is an unbounded search space it is an ideal
application for neural networks [15].
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While optimizing the neural network, it is important to consider the
impact of these changes on PPA. HLS tools that provide PPA estimates, as
described earlier, allow the developer to make informed trade-offs between
micro-architectural alternatives in a way that is simply not possible in a
traditional RTL design flow.

5.4.3 Verification and integration

Once the accelerator is created, the next step is verification of the accelerator
and integration into the larger system. Verification can be done with both
formal methods and dynamic verification. One approach is to formally prove
equivalence between the algorithmic description and the synthesized RTL.
Some HLS tools provide this capability. However, it is unusual for formal
equivalence to fully verify the accelerator. To complete the verification, the
algorithmic model can be instrumented to collect stimulus and expected
responses that can be used in dynamic simulations. The combination of static
and dynamic approaches will often reach full verification coverage much
faster than manual methods.

Integrating the accelerator into the larger system means creating bus and
memory interfaces to the external circuitry, in addition to wired connections.
Most HLS tools have interface synthesis, which will create commonly used
bus protocols and supports memory interfaces. These will be supported
for both pre- and post-synthesis models, enabling common testbenches and
verifications strategies across abstraction levels.

5.5 Exemplary Results

To illustrate these concepts, we describe an exemplary system where this
design flow is applied. The system is a handheld address scanner that reads
postal codes off address labels on letters and packages. There are multiple
design domains in this project: the physical design of the package/enclosure,
the design of the printed circuit board (PCB) electronic sub-system, and a
system-on-chip (SoC). All these design domains need to support multiple
requirements: weight, battery life, performance, accuracy, communications,
security, and more. Balancing these requirements and demands require a
holistic approach that embodies the multiple design domains and facilitates
communication between divergent design teams.

For the electronics subsystem implementation there are three options:
using a standard processor on a PCB, using a standard microcontroller
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and FPGA for accelerating some functions, or a custom SoC. Using the
performance simulator in the cybertronics module level, which contains all
electronics and SW functions, the design space was narrowed down to SoC.
A standard processor solution can’t meet the timing and power consumption
requirements. Also, the thermal issues preclude this option. Using a micro-
controller and FPGA would meet the timing requirements, but the power
consumption of the FPGA exceeds the required limits, therefore the only
implementation option is an SoC.

The SoC implementation was thoroughly analysed using the performance
simulation and the optimal architecture contains a microcontroller and two
bespoke accelerators: one for convolution and max pooling and another for
the two dense layers. Based on the performance analysis, the convolution
accelerator can use 4 milliseconds for one feature map and the dense accel-
erator 3 milliseconds including data transfer times. The HLS design space
exploration was used to optimize the latency, area and power consumption.
Because the data and weights are stored locally in the accelerators, the
processing time is dominant in the latency and the target latency can be
reached with a minimum resource implementation.

5.6 Conclusion

Complexity of the Al algorithms in the Edge systems is growing rapidly.
Using general purpose processors or GPUs is no more practical because
of the high computational load, power consumption limitations, and timing
constraints. Most of the current design tools and methodologies focused on
automating the flow from Al algorithm development to implementation, but
they do not take in account the system-level aspects. The edge systems require
a careful analysis of the different implementation options, which needs a
new holistic approach that can handle the complexity of the system level
architecture.

Model-based cybertronics systems engineering methodology enables the
analysis and partitioning of the algorithms on multiple hierarchy levels
enabling distribution of algorithms across a multi-device system and opti-
mizing the device architecture to provide optimal HW resources for the
execution of the given algorithm. The C++-based modelling approach allows
free function allocation to different processing elements and creating bespoke
accelerators using HLS. This capability streamlines the development process
and enables late changes of function allocation between HW and SW.
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from FPGA Hardware to CGRA Technology

Pietro Nannipieri, Luca Zulberti, Tommaso Pacini, Matteo Monopoli,
Tommaso Bocchi, and Luca Fanucci

University of Pisa, Italy

Abstract

This work discusses advancements in edge Al processing for critical sys-
tems, focusing on satellites. We explore hardware solutions for real-time and
autonomous data processing using Field Programmable Gate Arrays (FPGAs)
and Coarse-Grained Reconfigurable Arrays (CGRAs). The research outlines
critical systems’ challenges, such as power constraints, radiation tolerance,
and the need for reliable Al processing. The paper details the design and
implementation of an HDL-based GPU system on an FPGA and the FPGA-
Al framework that automates the design of Al accelerators on FPGA. Future
research focuses on extending neural network support and exploring collabo-
rations for tape-out opportunities of CGRA prototypes.

Keywords: edge Al, acceleration, space, satellite, critical systems, FPGA,
CGRA.

6.1 Introduction

In the rapidly advancing landscape of technological innovation, Artificial
Intelligence (AI) is proving to be a pivotal driver for enhancing system
autonomy and performance across a wide range of critical applications.
These include not only space-based systems, such as satellites used for Earth
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observation and scientific research [1], but also autonomous vehicles, defence
systems, healthcare technologies, and industrial automation. In these diverse
fields, large volumes of complex data must be processed efficiently and
in real-time to ensure timely decision-making, reliability, and operational
success.

For instance, satellites carry various advanced sensors like cameras,
radars, altimeters, scatterometers, and lidars, which produce huge volumes
of data to be processed and analysed. Conventionally, these systems rely on
limited onboard processing, where raw data is gathered in mass storage for
subsequent downlink to ground stations for further analysis. In any event,
with the increasing need for timely information related to Earth observation,
scientific missions, and space exploration, there is an ever-growing require-
ment for real-time data processing [2]. This paradigm shift places significant
pressure on the avionics subsystems to process and transmit larger quanti-
ties of data with minimal delay, necessitating a new approach to onboard
computing.

Similarly, in other critical systems such as autonomous vehicles, military
defence platforms, and medical devices, Al must function with extreme reli-
ability, power efficiency, and real-time responsiveness [3]. Current solutions,
such as data compression techniques or basic on-the-edge pre-processing,
are far from giving an adequate answer to these complex demands. Besides,
real-time Al processing in critical systems should be resistant to environ-
mental challenges: whether it is radiation tolerance for space systems, power
constraints for remote sensing equipment, or safety-critical computation in
autonomous driving.

The need for hardware accelerators capable of executing Al algorithms
with high efficiency, reliability, and adaptability is increasingly clear. Systems
like Field Programmable Gate Arrays (FPGAs) [4], [5] and Coarse-Grained
Reconfigurable Arrays (CGRAs) are emerging as leading candidates for such
tasks. Because they can support parallel processing, adapt to changing work-
loads, and provide low-power yet high-performance computation, they are
particularly suited to an environment where real-time responses and resilience
to failure are paramount.

As industry agendas such as ESA’s ‘Space for a Green Future’ vision for
2025 [6] look toward harnessing Al for environmental monitoring, disaster
response, and real-time analytics, these hardware solutions will play a key
role in advancing next-generation capabilities. Beyond space, applications
such as autonomous navigation, object detection, and emergency response in
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smart cities will require similarly robust, power-efficient Al systems that can
operate seamlessly in challenging environments.

Edge Al represents a promising solution for developing more autonomous
and real-time systems, paving the way for innovative applications that can
address the complex challenges of modern critical environments. As we look
towards a future with more autonomous and capable critical systems, Al will
play a pivotal role in transforming how we observe, interact with, and under-
stand them. However, it is well known that Al algorithms are computationally
intensive. Therefore, it is necessary to identify reliable hardware solutions
capable of supporting the execution of those algorithms in critical application
scenarios.

In the following sections, we will present three ongoing projects to
meet this technological need. In the short term, we propose an FPGA-
based approach with two possible solutions, the GPU@SAT project and the
FPG-AI project, a tool flow to automatically generate Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) hardware accelerators
for FPGAs. In the long term, we propose the CGR-AI project to develop
a radiation-hardened Al heterogeneous processing platform relying on a
reconfigurable CGRA core.

6.2 State of the Art

Edge Al has garnered considerable interest among researchers in the field
of space applications, particularly for scenarios where algorithms requiring
acceleration must balance high-performance demands with stringent resource
constraints. The choice of technology is inherently application-specific and
driven by unique requirements, leading to a diverse array of proposed
solutions and hardware implementations in the literature.

FPGAs have emerged as energy-efficient platforms for executing artifi-
cial intelligence algorithms [4]. Their inherent hardware parallelism aligns
well with the computational demands of Al workloads. However, leveraging
FPGAs for neural network acceleration poses challenges, primarily due to the
significant engineering effort required to design custom, optimized hardware
accelerators. To streamline the development and experimentation of Deep
Neural Networks (DNNs) on FPGAs, several automation toolflows have been
introduced. Tools such as Microchip VectorBlox Al [7], AMD Xilinx Vitis Al
[8], and the MATLAB Deep Learning HDL Toolbox [9] support a wide range
of models, enabling users, even those without extensive FPGA expertise, to
efficiently deploy and accelerate DNNs on these platforms.
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Conversely, hardware platforms like Graphics Processing Units (GPUs),
which dominate commercial machine learning (ML) applications, are rarely
utilized in space missions. This is primarily due to their higher power
consumption and vulnerability to Single Event Latchups (SELs). Despite
the significant potential of deploying GPUs in space, particularly for Deep
Learning (DL) algorithms, to our knowledge, there have been no suitable
solutions specifically designed for satellites. Previous research [10], [11]
has primarily focused on evaluating the feasibility of using Commercial
Off-The-Shelf (COTS) GPUs, despite their inherent limitations for space
applications. Similarly, neuromorphic processors are gaining traction as a
promising alternative for space-based applications [12].

CGRAs offer a compelling compromise between flexibility and effi-
ciency. By combining spatial and temporal computation, CGRAs optimize
performance for specific Al workloads without necessitating task-specific
hardware redesign, achieving near-ASIC-level performance with software-
like reconfigurability. For instance, the work presented in [13] integrates ML
with CGRA compilation, significantly enhancing their accessibility and effi-
ciency for practical applications. Another noteworthy advancement is Eyeriss
v2 [14], a state-of-the-art DNN accelerator designed to enhance throughput
and energy efficiency for both large-scale models like AlexNet and compact
models such as MobileNet.

6.3 FPG-AI: Automation Tool Flow for Efficient Deployment
of Pre-trained CNN/RNN Models on FPGA Technology

FPGAs are currently the most suitable solution for bringing efficient and
performant Al capabilities onboard space missions. The high degree of
parallelism offered by FPGAs is compatible with Al algorithms, allowing
for spatial pipelining and achieving high efficiency and performance [4].
Besides this, there are several commercial Radiation-Hardened by Design
(RHBD) FPGA solutions, which also make them a good option for space
applications. However, the development time for an Al algorithm on FPGAs
is long since these platforms involve high design effort with required intensive
optimization due to their narrow resource budgets.

This challenge has been partially addressed by developing automatic Al
accelerator generation frameworks [15]. These tools facilitate accelerating
DNNs on FPGAs by a wide variety of users without any expertise. That is
important because it reduces the development time while maintaining high



6.3 FPG-AI: Automation Tool Flow for Efficient Deployment of Pre-trained 131

performance, hence making the use of FPGAs for Al in space missions
possible.

FPG-AI [16] is a technology-independent toolflow for automating the
acceleration of DNNs onboard FPGAs. It takes as input a pre-trained DNN
model along with its application dataset. First, FPG-AI prepares the target
network for hardware acceleration by performing optimizations on model
topology and shifting arithmetic from Floating-point (FP) to Fixed-point
(FXP). Then, a Design Space Exploration (DSE) process selects in the
parameters space of the underlying architecture the point that meets the
additional constraints provided by the user on application metrics, resource
consumption, and performance. In this way, the generation of the target
accelerator will be automated, and FPG-AI will be an end-to-end, ready-
for-use tool while still keeping a high degree of customization concerning
the user directives. Once the set of parameters is identified, DSE produces a
configuration file for tuning the hardware architecture. The accelerator in the
case of FPG-AI is the MDE, which can be a fully handcrafted HDL-based
design that hosts no third-party IPs and can be customized according to the
available resource primitives of FPGAs. Thanks to these properties, the MDE
imposes no limit on device portability and allows, therefore, the implemen-
tation of components from different vendors with disparate resource budgets.
Presently, this tool supports AMD XILINX, Microchip, Intel ALTERA, and
NanoXplore FPGAs.

FPG-AI generates as output the HDL files describing an accelerator
customized for the given model and device that meets the additional directives
received by the user. Unlike other solutions, the toolflow provides the HDL
sources of the accelerator and not the final bitstream, allowing the user to
exploit the unused portion of the FPGA for complementary tasks. Figure 6.1
reports the block diagram of FPG-AL.

The FPG-AI framework is characterized by several key features that
make it highly effective for deploying Al in space missions. One of the
standout characteristics is technology independence, achieved through the
MDE architecture. This solution’s handmade HDL code without third-party
IPs allows it to target multiple FPGA vendors, making the tool particularly
suited for quickly supporting new devices.

Another significant feature is the high degree of scalability and cus-
tomization of the hardware accelerator core, which allows users to set
constraints on resource utilization (DSPs and on-chip-memories), infer-
ence time, and application metrics, tailoring the solution to the specific
requirements of the space mission.
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The ease of System-on-Chip (SoC) integration is guaranteed by the
generation of an AXI Memory-Mapped accelerator which facilitates straight-
forward embedding into existing systems. In addition, FPG-AI’s accelerators
are completely autonomous during the computation of a neural network,
eliminating the need to split the workload with the host CPU, improving
efficiency and performance.

Currently, the FPG-AI solution supports Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), [17] broadening its applica-
bility across different types of AI models. Combined with the aforementioned
features, this versatility positions FPG-AI as a robust and adaptable choice
for implementing Al in space applications, ensuring high performance and
reliability in challenging environments.
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Figure 6.1 FPG-AI block diagram. <[

6.3.1 Network-in-Network (NiN) case study

In the following, implementation results are reported for an image processing
use case to exemplify the workflow of FPG-AI The model selected for
this study is Network-in-Network, a commonly used CNN model for image
classification on the CIFAR10 dataset. Each image in CIFARI1O is a 32
x 32-pixel colour image, which means it has three colour channels (red,
green, and blue) for each pixel. These images are divided into ten classes,
with each class representing a different object or category. The NiN model
involves three triples of Convolutional layers with padding set to "same". The
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Convolutional layers are followed by a Global Average Pooling layer which
provides predictions. Table 6.1 summarizes the features of the NiN.

As a first step, the pre-trained model undergoes the Model Compression
process of FPG-AI to quantize the network and shift from FP to FXP arith-
metic. Initially, pre-analyses are carried out to study the effects on model
accuracy caused by different bit-width settings of each quantity within the
network. In particular, the input dataset quantization pre-analysis evaluates
the effects on the application metric depending on the input dataset bit-width
and identifies the input dynamic range.

* Weights quantization pre-analysis evaluates the effects on application
metrics depending on the weights bit-width and identifies the weights
and biases dynamic ranges.

* Activations quantization pre-analysis: studies the effects on application
metrics of different activation bit-widths by evaluating one layer at a
time and identifies the activation dynamic range.

Table 6.1 Model summary of Network-in-Network. 1
Model Summary

Model NiN

Type CNN

Dataset CIFAR10

Input image dimension 32 x32x3

# Convolutional layers 9

# Convolutional filters for each layer 192, 160, 96, 192, 192, 192, 192, 192, 10
Convolutional filters dimensions 5x5,1x1,3x3

# Pooling layers 3

Pooling filters dimensions 2x2,8x8

Type of pooling Max Pooling, Average Pooling
# Fully Connected layers 0

# Neurons for each FC layer -

Total Parameters 969K

Memory for Parameters [Mbit] 3.69 Mb

After the pre-analysis, additional bit-true simulations are carried out to
study the combined effects of quantized inputs, weights, and activations. The
accuracy trend is analysed in a range across the optimal bit-widths provided
by the pre-analyses. In this phase, different truncation settings are applied
to modify activation bit-widths. The whole collection of simulation results is
finally saved into a table that will be used during the DSE tool phase.The DSE
then selects a quantized configuration among the ones generated by the Model
Compression step. For this case study, we decided to extract the configuration
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with the best application metric, obtaining a final accuracy of 88.88%.There-
after, the DSE exploits an iterative algorithm to best configure the parameters
of the MDE architecture. Once the DSE algorithm converges to a solution,
the toolflow runs an automation script that generates all the necessary files
for the hardware deployment of the network. As a first step, the chosen
quantization parameters and the obtained architectural parameters are written
on the MDE configuration file. The latter completes the HDL description of
the MDE architecture configured to optimally accelerate the given quantized
model on the selected FPGA device. At the end of this automatic process, the
user can finally synthesize and implement the accelerator using the vendor-
specific tools associated with the chosen FPGA component. Table 6.2 reports
the configuration at maximum parallelism for the NiN model on FPGAs from
diverse vendors. The results have been obtained by using the following tools
with default synthesis and place-and-route strategies: Vivado Design Suite for
AMD Xilinx, Synplify Pro for Microsemi, and Quartus Prime for Intel.

Table 6.2 NiN implementation results for maximum parallelism configuration. ¢l

Device ZU7EV RTPF500T XQRKU060 10AX048
LUT 56375 63028 105950 26115
(24.5%) (13.1%) (31.9%) (14.2%)
FF 14432 28386 20012 12819
(3.1%) (5.9%) (3.02%) (1.7%)
LUTRAM/uUSRAM/MLAB 1104 0(0%) 552 96
(3.1%) (0.38%) (1.4%)
BRAM/LSRAM/M20K 245.5 512(33.7%) 277.5 525(36.7%)
(78.7%) (25.7%)
URAM 5 - - -
(5.2%)
DSP 1210 1214(82%) 2410 1229
(70%) (87.3%) (89.8%)
MDE Frequency [MHz] 126.6 50.8 72.5 83.33
Inference Time [ms] 4.54 11.33 5.39 218.88
Power [W] 2.88 - 3.07 3.07
Accuracy [%] 88.88 88.88 88.88 88.88

These experiments demonstrate the adaptability of the proposed quan-
tization methods and the scalability of the MDE architecture. The acceler-
ated models have been deployed on FPGA devices from different vendors
(Intel, Xilinx, Microsemi) and various FPGA families, resulting in diverse
characteristics in terms of technology, available resources, and radiation
tolerance. This level of adaptability sets FPG-AI apart from other automation
tools in the existing literature.
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6.4 GPU@SAT: RISC-V Based SoC Featuring a Soft-GPU
Hardware Accelerator for Artificial Intelligence
On-board

In recent years, General-Purpose Computing on Graphic Processing Units
(GPGPU) [18] has been gaining popularity due to its high energy efficiency
and computational capabilities. Although Graphic Processing Units were
initially utilized only for graphic applications, GPGPU has since bridged the
gap into the use of GPUs in a wide range of tasks, including image processing,
cryptography, and Machine Learning [19]. GPGPU exploits frameworks such
as OpenCL [20] and CUDA [21], which provide high-level programming
interfaces, allowing for a significant reduction in development time. Compati-
bility with open-source tools, including TensorFlow, PyTorch, and Caffe, also
supports Al applications. Yet, its performance could be on a par with those
of custom hardware accelerators, while - because of the lack of flexibility
and customizability - GPGPU is not capable of efficiently executing distinct
families of algorithms. As such, combining the advantages of GPGPU with
the reconfigurability features of FPGAs could represent a viable solution for
the acceleration of a wide range of ML algorithms in applications with strict
constraints on cost, size, and power consumption (e.g., in space systems).
This approach could offer a cost-effective and scalable solution for space
missions that require high-performance computing capabilities. In this sense,
soft GPGPU holds the potential to revolutionize the field of space exploration
by enabling more complex and data-intensive tasks. In space applications,
special attention must be given to power consumption, resource efficiency,
and fault-tolerant design. To reduce costs and enable the use of commer-
cial FPGAs for Low Earth Orbit (LEO) missions, it is crucial to prioritize
fault-tolerant solutions.

An Al acceleration system compliant with the strict requirements of
both low and high-level space missions (e.g., fault-tolerance, resource uti-
lization, power consumption), exploiting the existing GPGPU framework,
as well as FPGA reconfigurability, is still missing. As such, we propose
the implementation of an SoC featuring the GPU@SAT IP from IngeniArs
S.r.l. [22], [23], [24], [25], which can execute OpenCL 1.2 kernels. This
could prove to be an efficient solution not only for the acceleration of ML
algorithms but also for the execution of any OpenCL kernel in various fields
of application (e.g., image processing, consumer applications, cryptography),
ensuring a higher degree of flexibility. Figure 6.2 illustrates the proposed base
architecture for the SoC. The primary objectives of the project are to develop
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an AXI-compatible system incorporating the GPU@SAT IP and the open-
source RISC-V architecture, with a strong emphasis on reliability—critical
for the successful execution of high-level space missions. Additionally,
we aim to characterize the system on various FPGA platforms, assessing
performance-to-power efficiency metrics.

High-speed
communication

interfaces
Soft-GPU

IP e
1%, | |, Peripherals
v

Figure 6.2 Overview of the System-on-Chip based on GPU@SAT.

6.4.1 Enhancing a soft GPU IP reliability against SEUs in space:
Modelling approach and criticality analysis on a
Radiation-Tolerant FPGA

To enhance the robustness of the GPU@SAT IP against Single Event Upsets
(SEUs), we propose a detailed methodology revolving around modelling,
fault criticality analysis, and a systematic application of fault mitigation tech-
niques. Figure 6.3 shows a schematic overview of the GPU @SAT architecture
and its main design modules.

We employ the Mobius [26] high-level modelling tool to estimate the
reliability of the system. The tool supports both Fault Tree Models and
Stochastic Activity Networks (SANs), but Fault Trees are used here due to
their simplicity and alignment to assess fault impacts without accounting for
repair mechanisms. The fault tree model allows the combination of basic
events like failures of sub-modules using logical gates (AND, OR, XOR,
etc.), making it possible to model how SEUs affect different components of
the GPU architecture. Specifically, to quantify the SEU rates, we use data
provided by Xilinx on the failure rates at Geosynchronous Earth Orbit (GEO)
of the CRAM and Block RAMs in the target FPGA device, in our case the



6.4 GPU@SAT: RISC-V Based SoC Featuring a Soft-GPU Hardware Accelerator 137

< AXl Data Interface >

| Global Memory Controller |
H .

¥

| CU Memory Controller |
A

., S S

|PE#0|  |PE#1 PE#2| |PE#3| |

PE #4 PE #5 PE #6 PE #7

""X"'""""'""""""""""":
¥

WF Scheduler |
+

| WG Dispatcher |

CUFO . .

—* CU#1
—> CU#7

< AXI Control Interface >

Figure 6.3 Overview of the GPU@SAT architecture. <

Radiation-Tolerant Xilinx XQRKUO060. These rates are applied to the various
GPU components, estimating the worst-case SEU rate for each module based
on the number of resources (e.g. LUTs, registers, BRAMs) used in each of
them.

As SEU events can be modelled using a Poisson distribution [27], the
firing time between them follows an exponential one. With this information,
we modelled the entire GPU architecture to estimate a baseline reliability
level using the Mobius tool. Table 6.3 presents the reliability estimation
results for the GPU and its primary sub-components over 60 days.

The reliability analysis shows that the GPU has a lower reliability than
its individual sub-components due to its high vulnerability to SEUs. The
Global Memory Controller and CU Memory Controllers were identified as
the least reliable parts, with high SEU sensitivity. Applying Triple Modular
Redundancy (TMR) directly to these components would be too costly in
terms of area and power, so partial redundancy techniques like Distributed
TMR and Block TMR with voters are suggested. The results show that,
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Table 6.3 Reliability values for the GPU and its components over a 60-day span. <

Atomic Model Time-Averaged Reliability
Workgroup Dispatcher 9.855E-01
Wavefront Scheduler 9.637E-01
Global Memory Controller 5.411E-01
RTM 9.752E-01
PE Array 6.372E-01
Control Interface 8.943E-01
CU Memory Controller 5.011E-01
GPUw/1CU 2.421E-01

while no components exhibited extremely low reliability, strategic application
of fault mitigation techniques can significantly increase system robustness
without introducing prohibitive overhead.

Given the high resource consumption of a GPU, applying fault tolerance
measures universally would be inefficient. Hence, we propose a classification-
based methodology [28] that evaluates each component based on:

¢ Criticality: How essential the component is for correct operation.
* Power/Area Impact: How much power and area each component
consumes on the FPGA.

Each component is classified into four criticality and power/area classes
(C1-C4). The classification helps prioritize which components to protect
more rigorously and which ones require less redundancy. The criticality of
each component is assessed based on:

e Fault Impact: Evaluating both the spatial and temporal importance of
the module in the GPU architecture.

* SEU Sensitivity: Based on the type of primitives (e.g., BRAM, registers,
combinatorial logic) and their sensitivity to SEUs.

* Component Type and Importance: Importance is determined by how
critical a module’s function is for the correct operation of the GPU (e.g.,
if it’s responsible for task dispatching or controlling memory access).

* Power/Area (PA) Impact: This accounts for how much area and
dynamic power each component consumes on the FPGA. The analysis is
based on post-place-and-route resource utilization and switching activ-
ity extracted from simulation benchmarks (e.g., matrix multiplication,
convolution). Components that consume more resources are prioritized
for less costly fault mitigation techniques to avoid excessive congestion
and power consumption on the FPGA.
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After analysing the criticality and PA impact, each component is assigned
a suitable fault mitigation technique. These techniques are categorized into
four classes, with higher classes corresponding to more impactful and
resource-intensive solutions. Two distinct classification tables have been cre-
ated to differentiate between operational and memory components, as these
typically require the application of different mitigation techniques. Table 6.4
and Table 6.5 summarize the proposed techniques associated with different
levels of criticality.

Table 6.4 Classification based on criticality, area, and power. I

Criticality
Class 1 Class 2 Class 3 Class 4
Class 1 e 3
Class 2 o2 3
P Class 3 1 2
Class 4 Cl 1l

Table 6.5 Operational & Memory Components Classes. <

Class Operational Element Memory
: Partial Duplication w/ Sell’ P
Cl Check Parily Tl
2 Parlial Thstributed THWE DTN TTumming Code
3 Block TMR w/ 1 Vater SEC-DED Hamming
Code
NEEN  Block IMR w3 Viters MR

6.5 CGR-AI: Innovative Coarse-Grained Reconfigurable
Array Platform for Computing Artificial Intelligence
On-Board

While FPGAs offer significant advantages for implementing Al in space,
they have limitations. Performance and power efficiency are often con-
strained, and the cost per device, particularly for Radiation-Tolerant (RT)
and Radiation-Hardened (RH) chips, can be substantial [29], [30]. To address
these challenges, the long-term solution may lie in developing a specific hard-
ware platform tailored for Al applications in space. Such a platform, built on
RT/RH technology, could offer the throughput required by applications and
the power efficiency required by the environment, justifying the large-scale
adoption of Al in space missions [31].
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However, maintaining a degree of flexibility is crucial. Designing an
Application-Specific Integrated Circuit (ASIC) for a specific Neural Network
(NN) accelerator is not sustainable due to the diverse and evolving nature
of Al applications [32]. Instead, future hardware platforms should balance
high performance with adaptability, supporting various Al models and the
ability to update and reconfigure as mission requirements change. This
approach would ensure that space Al systems remain robust, efficient, and
versatile, capable of meeting the demanding conditions of space exploration
and observation [33].

The purpose of the CGR-AI project is to develop an Al engine IP, Com-
plementary to RISC-V/FPGA for Al workload data crunching, powered by
a CGRA accelerator, to be implemented in std-cell technology. Such engine
shall overcome existing solutions in terms of:

* Flexibility: the platform may be easily adapted to a given application by
executing specific firmware to schedule memory transactions and load
CGRA configurations.

* Time Predictability: the CGRA-based architecture performs operations
in a fixed number of clock cycles. Given the global memory timing
model, each Al Engine operation is completed within a deterministic
time bound, ensuring algorithm execution for time-critical applications.

* Reliability: library and architectural solutions to withstand radiations
typical of higher orbits. Furthermore, CGRA resources can be used
to apply dynamic redundancy to the data path, exploiting dedicated
hardware voters for error correction.
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Figure 6.4 CGR-AI Engine block diagram. <
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Figure 6.4 depicts the proposed CGRA-based Al Engine architecture.
The CGRA [34], [35] is an Al accelerator capable of performing linear and
approximated nonlinear vector operations with dynamic element width. The
RISC-V CPU runs the firmware loaded into the Tightly-Coupled Memo-
ries (TCMs) and overlooks all the operations within the architecture. The
streaming Direct Memory Accesses (DMAs) provide custom pattern access
to/from local memory, and the Memory-Mapped (MM) DMAs provide access
to/from external memory. AXI bus is implemented to allow communication
with multi-core application class CPU, commercial peripherals, and main
memory/DDR controller. The Al Engine can parallelize common workloads
in neural network algorithms, like convolutions, pooling, and activation
functions. The spatial architecture makes the engine capable of distributing
resources for different algorithms, enabling load balancing during different
mission stages with dynamic requirements.

The project is currently in development, and we are in the process of
setting up an FPGA prototype and characterising the processing core on std-
cell technology. As preliminary results, in Table 6.6 we report synthesis data
obtained on the 65nm technology for an operating frequency of 625 MHz.

The analysis is focused on the single Tile module since its results can be
composed to form the desired matrix.

For each port configuration, we adapt the number of input and output ports
of the PE accordingly to the number of Functional Units (FUs) implemented
(third column), in order:

1. ambslx: all FUs are present.

2. ambsx: without LUT FU, which is the one with more utilization of
resources.

3. ambs: without LUT and MUX FUs.

4. am: only with ADD and MUL (e.g., to perform MAC in convolutional
layers)

5. Ix: only with LUT and MUX (e.g., to execute activation functions)

We refer to (a) as throughput [GOps]; efficacy is reported in (b) as area
efficiency [GOps/mm?2], where the theoretical throughput of the configura-
tions is divided by the related area and power metrics, and the best solutions
are highlighted in bold, and (c) as energy efficiency [GOps/W], a direct
measure of the energy needed for each operation: its inverse is W/GOps =
W/(Gop/s) = J/Gop.
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Table 6.6 Throughput compared to Area and Energy Efficiencies. <

625 MHz

# In# Out FUs @ ) ©
ambslx 3.75 17.7 88
ambsx 3.12 19.4 96.3

31In2 Out ambs 2.50 222 111
am 1.25 22.9 119
Ix 1.25 27.4 142
ambslx 3.75 16.1 81
ambsx 3.12 18.6 93.7

4 1In 4 Out ambs 2.50 214 110
am 1.25 26.5 151
Ix 1.25 24.8 129
ambslx 3.75 154 80.6
ambsx 3.12 17.3 90

4 In 4 Out ambs 2.50 18 94.9
am 1.25 16.1 88.4
Ix 1.25 22.7 120

6.6 Discussion and Conclusion

The execution of Al algorithms in critical systems is becoming increasingly
important as the demand for real-time data processing and autonomous
decision-making grows. Satellites with advanced Al capabilities can enhance
applications such as Earth observation, scientific research, and space explo-
ration by providing timely insights and efficient data management. However,
addressing the diverse requirements of performance, radiation tolerance, and
cost requires various solutions.

The GPU@SAT approach represents an immediate answer for appli-
cations needing an SW-programmable system, whose reliability has been
analysed and improved. Such a solution can be considered particularly inter-
esting thanks to the support both from Rad-hard and rad-tolerant FPGA:s,
thus suitable for space applications.FPG-AI provides an immediate, flexible
solution for these needs. The fact that it can afford high parallelism, ease of
customization, and integration makes FPG-AI a very promising candidate for
both present and near-future space missions. The radiation-hardened versions
of FPGAs can therefore offer such resilience against the harsh conditions in
space.However, these have their performance and power efficiency limita-
tions, not to mention the high cost, hence the need for continued innovation.
Overcoming these limitations will long-term be so crucial to sustain further
advancements in Al across many critical applications. The development
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of a dedicated hardware platform like CGR-AI, therefore, emerges as a
strong candidate for such a future direction. The objective is to develop
a platform that integrates high performance and efficiency, state-of-the-art
Al applications, flexibility in handling changing mission needs, and varied
Al models.While it may be the case that GPU@SAT and FPG-AI can at
present work as a robust and versatile solution for current Al needs onboard
satellites, continuous research, and development into more specialized hard-
ware platforms, such as CGR-AI, will be very important. These efforts
will ensure that the potential of Al in space is fully realized, supporting
more autonomous, efficient, and capable satellite systems that can meet the
challenges of tomorrow’s space exploration and Earth observation missions.
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Abstract

Large Language Models (LLMs) are increasingly becoming adopted for var-
ious applications in information processing and content generation. Coupled
with the diverse availability of model weights, quantization, and fine-tuning,
it is desirable to find the best-performing LLM within a certain memory
budget. Prompting strategy plays a similarly major role in the quality of
generation, with various methods existing that attempt to induce desired
behaviour, requiring a major time investment to develop. As new models with
better performance to memory ratio become available, it may be tempting to
implement them into an existing system for potential performance improve-
ments. In this work we explore the process of changing weights and note that
weights from larger models or of different quantization precision are unable
to replace the original model without modifications to the prompt contents,
which in turn implies complications in developing modular, weight agnostic
systems.

Keywords: large language models (LLM), natural language processing
(NLP), high-level planning (HLP), robotics.
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7.1 Introduction and Background

The interest to employ Large Language Models for various tasks has grown
over the past couple of years [1]. Among these are applications in robotic
systems, including tasks such as high-level planning [2], low-level control
[3] and semantic map creation [4], but most of these approaches rely on top-
of-the-line LLMs provided as a cloud service [5]. To increase the autonomy
of such systems, the inference process must be brought as close as possible to
the physical robotic agent. On-device LLMs for smartphones have received
official support from Google with Gemini Nano 2 for Android [6] and from
Apple with Apple Intelligence for MacOS ecosystem [7], a major step for on
the edge deployment.

Other LLM developers have published their model weights with relatively
open licenses, though such models are typically less capable than the ones
offered exclusively through the cloud [8]. One of the main characteristics
of an LLM is its size, which is measured in billions of parameters (“LLM
7B” denotes a model with 7 billion parameters). Currently, graphics cards
(GPU) serve as the primary means of deploying these models, as they offer
faster inference speeds than processor (CPU) based solutions [9]. Because of
the standard 16-bit precision used for LLM weights even a relatively small
model of 7B parameters (GPT-3, the “first” LLM, had 175B [10]) requires at
least 14GB+ of VRAM, which currently is only available on the upper end
of consumer grade GPUs [11]. Various Post-Training Quantization (PTQ)
methods are available that can successfully reduce the precision down to 4-
bits per weight while still retaining most of the performance [12], crucial for
deploying as close to the edge as possible.

The autoregressive nature of decoder-only transformer architecture that
underpins most LLMs [1] means that they generate the next (sub-)word based
on all the input text before it according to the defined sampling parameters.
As such the contents that are fed into the LLM are of high importance and
has led to the emergence of the discipline of ‘“Prompt Engineering” - the
process of developing the textual content of the prompt to invoke the desired
behaviour in the generation. Determining a prompting strategy for a particular
task includes not only deciding on the contents of the prompt but also
considerations such as if the task would be better executed over several
separate prompts, a method known as “prompt chaining” [13], and what
patterns [14] and methods [15] to employ for each prompt.

Creating an LLM-based high-level planner in a local context for a robotic
system places several limitations on model selection which in turn heavily
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influences the prompting strategy. The ideal solution would provide a valid
plan in the fastest time within the smallest amount of VRAM spending least
amount of energy. As response times are a major consideration, even though
GPUs are an additional power consuming component, currently it is not
viable to create the system without one, and even the smallest models can
strain and quickly deplete batteries of purely edge systems like smartphones
[16]. Because the context window (the maximum amount of text a model can
process at once) also contributes to memory usage, it may be necessary to
reduce it, which in turn limits the number of examples that can be given and
how complex of an instruction can be provided.

In this work we test how practical it is to change the underlying model
of an already developed LLM-based system as a way to gain improvements.
To this end we take our Natural Language Processing-High Level Planning
(NLP-HLP) module for a mobile manipulator system [17] that uses an LLM
for inference and replace it with different quantization precision weights
and from different model families to see if the prompts carry over between
different weights. A brief overview of LLMs, prompting strategies and LLM
use in robotics is given in chapter 1.2. We create a validation set for each
of our prompting steps and compare how well each set of weights processes
these test questions, with chapter 1.3 elaborating on the experimental setup.
In chapter 1.4 we display the results from our tests that were carried out on
the set of different precisions and on the set of different models. In chapter
1.5 we give our conclusions and outlook for further development.

7.2 Related Work

LLM-based systems, regardless of use case, are built on top of various
prompting strategies, which in turn rely on quality LLM weights to per-
form the generation. The landscape of LLMs has developed rapidly since
early 2023, when “LLaMA” model weights were leaked to the public [18],
beginning a wave of interest in local deployment of LLMs that as of October
2024 has resulted in over 140 thousand “Text Generation” weights of various
model families, finetunes and their quantizations being uploaded to the public
Hugging Face model library [19].

7.2.1 Local Large Language Models

Large Language Models as a distinct category emerged after the release of
GPT-3 [10]. The initial focus was placed on training ever larger models
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[20], as parameter count correlates with both performance and the concept
of “emergent abilities” - at a certain scale, models become able to perform
tasks that with fewer parameters they could not, thought [21] has questioned
how “emergent” these abilities really are. As larger models are more resource
intensive to both train and run, to the benefit of local deployment the focus
shifted away from scale of the model to the scale and quality of training,
such as the focus of the compact “Phi” model series [22]. The increase of
scale can be demonstrated by comparing GPT-3’s training of 300 billion
tokens versus the training of “Llama 3” series models of up to 15 trillion
[23] and “Qwen2.5” with 18 trillion [24], with both model families providing
weight sizes that can be comfortably deployed locally. Besides requiring more
memory, larger weights tend to be slower, which is a problem that “mixture
of experts” (MoE) models try to overcome by mixing the knowledge of a
larger with the speed of a smaller model, as done with [25]. This approach
has limited relevancy for use in edge computing applications, as the memory
requires all the parameters to be loaded in memory while actively only using
a smaller portion of them at any one moment.

To truly place these models on the edge, quantization of weight preci-
sion is necessary to maximally reduce the memory requirements while still
maintaining most of the performance [12]. Several methods for this process
have emerged with often different priorities, but two common inference and
quantization frameworks are the speed oriented, GPU-only ExLlamaV2 [26]
with its EXL2 format and the more general llama.cpp [27] with GGUF format
weights that also heavily invest in CPU-only and hybrid inference set ups.

7.2.2 Prompting

Prompting is the primary means of interacting with the LLM as the textual
content is the basis upon which new information is generated. Developing a
prompt that induces the desired behaviour is a sizable part of deploying these
LLM-based systems. A variety of methods have been developed by the LLM
research and open-source community to improve the generation quality [15].
Two noteworthy aspects that often get explored include determining what
kind information should go into a prompt and how much LLM calls per an
input should be done.

A common approach is known as “few-shot” or “n-shot” prompting [10],
where “n” designates how many examples are used in the prompt to condition
generation towards a particular output format. Another approach is to have
the model first generate additional information about the input, such as the
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“Chain-of-Thought” (“CoT”) [28] method, where each example includes an
intermediate reasoning step that is generated before the final answer. Various
prompting patterns are highlighted in [14] which can be used to invoke
specific behaviour in the models, such as having the model be the one asking
questions.

LLMs generate their answers auto-regressively one new token at a time,
with all the previous tokens affecting the probability of the next. If the model
gets distracted and begins generating “incorrect” data, it is unlikely to recover
[29]. Various methods attempt to mitigate this by generating several outputs,
like it is done with “Self-Consistency” [30], which picks the most com-
mon answer amongst the outputs. “Least-to-Most” [31] prompting seeks to
decompose a problem into subproblems and solves them sequentially. “Tree-
of-Thought” [32] for each decomposition step generates several possible
paths that are explored with search algorithms.

“Chain prompting” [13] is another fundamental skill utilized by many
methods and systems, as it allows creating complex interactions by breaking
up any task into several specialized prompts, which also allows creation of
more modular systems.

7.2.3 LLM in Robotics

In general, the versatility of LLMs has been explored in wildly differing
robotics roles. An implementation sceptical of LLMs ability to plan was
explored in [33], where the model was used to translate natural language
inputs into the structured planning language, which is then passed to a tra-
ditional planner. LLM as a planner was integrated into [2], where it generates
the whole plan which is then verified for geometric feasibility and performs
replanning if necessary. Implementation from [34] uses the LLM to rate a
list of predefined actions on their probability as the next action needed for
plan completion, while [35] uses an LLM to provide closed loop feedback
(including dialog). LLMs have also been used to generate code directly for
robot control, as shown in [36], while [3] has the LLM generate rewards for
low-level control functions. LLMs have also been used for mapping, such as
iteratively searching over a graph as presented in [37] or as in [4] where the
LLM is used to embed semantic information inside the map itself, making it
searchable through language.

All the examples provided above rely on using some of the largest models
available at the time, which helps showcase the performance of the method.
However, in order to create an autonomous robotic system that doesn’t rely
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on a constant internet connection, local LLM application, especially of the
smaller sized models, is of interest. Methods that attempt to rely on a smaller
LLM as the primary inference engine are less known. In [38] a LLM is
combined with a vision encoder to detect and reason about manipulation
task failures, while [39] uses the LLM to guide the learning process of new
long-horizon tasks. In [40] an LLM is one of the two main models tested
for generation planning steps that are then evaluated based on feasibility and
reward, whereas [41] notes the lower performance of open LLMs, but still
invest in fine-tuning one to act as communication and planning manager for
cooperative agents.

These methods rely on what now would be considered outdated models,
given the rapid development of openly distributed LLMs over 2023 and
2024 [42], so it seems as if switching to newer models should provide an
improvement in performance and make these smaller weights more enticing
to use. However, a big part of performance comes from the contents of the
prompt which are usually developed to maximize the quality of results out of
specific weights. If the LLM-based system consists of a lot of complicated
prompts and the new model does not immediately outperform the old, it
may require practically rebuilding the whole system. Therefore, we want
to explore how well prompts developed for one model perform on different
models and quantization precisions.

7.3 Experimental Setup

After a model is chosen, a lot of time is invested in developing the prompt
contents such that they invoke the desired generation. Prompting performance
is typically framed as being mainly affected by model size and the model
training data from which the various abilities are believed to emerge from
[20], [28]. As new models with better performance to memory ratios emerge
it can be worth exploring them as a potential avenue of upgrade for the
system. Another avenue might be to increase the available memory and move
to a higher precision quantization, which in theory should also result in
improvements [12]. However, this would mainly be practical if the prompt
contents can be retained for the new weights. If the validation shows no
improvements, it then implies that in certain applications model weights
are not “hot swappable”, as the prompt contents need to be rewritten which
reduces the systems overall modularity.
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7.3.1 System Description

The experiment is based on a previously developed HLP system, which
utilizes Llama 3 8B Instruct Q4_K_M [43] weights, so the prompts have been
developed in tandem with these specific weights. The HLP is designed to
fulfil the planning phase for a mobile manipulator system (MMS) performing
actions in a vaguely structured indoor environment. In the MMS’s low-level
planner, a set of action primitives is defined, that describes the system’s
abilities in a general manner or as highly adaptive functions [17]. The user
inputs a NL command that is sent to the HLP. The HLP then generates a plan
based on the MMS’s set of abilities. This system consists of a prompt chain
with 4 steps split into 3 stages: Filtering (“‘categorization” and “mobility”),
Structuring (“preplanning”) and Planning (“planning”):

* The “categorization” step determines the type of the incoming request
between 4 categories: “mobile manipulation”, “question answering”,
“casual discussion”, “any other query”. The rest of the system is only
interested in “mobile manipulation”. The prompt is 4-shot — containing
examples for all categories.

* Because the currently used demonstrator is a static industrial arm, the
“mobility” step is used to determine in a “True/False” fashion if moving

between working positions is required or not. Once the demonstrator is

Filtering
Mobility Categorization
Does the robot need to move to a Mabile manipulation, Question
different workstation? Answering, Casual Discussion, Any IN Move the green ball

Chther Query

into the bowl

Request: Move the green ball to the bowl
Type: Mobile Manipulation
Mobility: FALSE

l

Request; Move the green ball to the bowl
Type: Mobile Manipulation

Structuring Planning
Break up the request into relevant Generate a plan based on steps
objects and sub-tasks and available robot actions

Request: Move the green ball w the bowl

Objects:
["<green_ball=", "green ball", 0], Plan:{
["<bowl=", "bowl", 1] "Actions"; [ [1, "Pick", [0]],
Steps: [2, "Place", [1]1],
["Pick up <green_ball> and "Hand": ["empty"]

put it in the <bowl>", [0,1]]

Figure 7.1 Scematic of the MMS first demonstrator’s HLP system.
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transferred to a mobile platform, this step can simply be taken out. This
prompt is zero-shot and is the shortest of the ones tested.

* The “preplanning” performs two tasks: creating a description (con-
sisting of a marker, original text and a unique ID) for each object
relevant to the request, formatted as “[“<object_name>", “object
name”, 0]; breaking up the request into smaller sub-tasks that can be
planned for individually - “/ “Pick up <large_cactus>", [1]], [ “Place
<large_cactus> on <small_tile>", [0]]”’. The prompt uses 3 examples
of increasing difficulty.

* The “planning” step creates a plan for each subtask that consists of
assigning relevant action primitives to respective objects in a reasonable
order. The input consists of the sub-task text, a list of objects and the
status of the hand ([ “empty”] or [ “<obj>", “obj, 0]”). An input “put
the <box> on the <table>" should output a plan like “/[ “pick”, [0]],
[“place”, [1]]]". This is the most complex task of the set as it requires
some form of reasoning, which smaller models are much less capable
of [28]. This step employs CoT style step-by-step generation of step-by-
step plan, where it is asked to first restate the task, check its hand status
and then generate the step: “I. Pick up <obj>. My Hand: <obj>". It
also relies on 3 examples with increasing difficulty.

By defining standardized input and output formats for each step, it is
possible to integrate them together in a prompt chain in such a way that the
intermediate product can be processed by traditional programming. This also
allows the creation of a testing set for each step that is necessary to both
validate and track the performance of the weights and prompts, though an
alternative for tasks that are hard to standardize is to use another LLM to act
as a judge [44].

7.3.2 Testing process

The validation process rates the generated output as follows: if the output
could not be successfully processed by the script functions, then it is rated
as “-17; if the output could be processed but was wrong or unexpected it is
rated as a “0”; if the output was processed and aligned with the expected
result, it is rated with “1” and considered acceptable. Scoring only takes into
consideration expected results and no malus is applied for failed generations.
The validation set was created specifically for this test, however it is relatively
simple and small.
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The initial validation set for all tasks consist of 25 test inputs for each
output type. The “categorization” set consists of 25 requests for each of
the categories, to test how well the model can identify the correct category.
“Mobility” consists of separate sets for “True” and “False”. Both “preplan-
ning” and “planning” consist of 25 each. “Preplanning” is tested on “objects”
(if the right objects were generated), “object length” (if no extra objects were
created) and “Steps” (if the expected number of sub-tasks were generated).
“Planning” is evaluated on “Plan” (if the expected plan was generated) and
“Hand” (if the correct status of the hand was registered). In total 11 positions
are evaluated across the current implementation of the system, for a total of
275 points.

7.3.3 Model selection

A selection of different models using Q4_K_M GGUF quantization and
alternate quantization precisions for the “Llama 3 8B Instruct” model are put
through the validation system to see if there is transferability of the designed
prompts in an application with strictly defined input/output formats.

GGUF quantization method was chosen for its versatility to be deployed
for CPU, GPU or hybrid inference, however only GPU inference has been
used for the development and testing of the system. The chosen precisions
are: “Q8_0", “Q6_K”, “Q5_K_M”, “Q5_K_S”, “Q3_K_L”, “IQ3_XXS”,
“IQ2_M” and “IQ2_XXS” [43], [45] , which roughly cover the range of
available precisions.

The choice of models for testing was based on their size (able to fit into a
single consumer-grade GPU) and their status as weights released directly by
the developers. Third party finetunes were not considered for testing. Overall,
the selected models represent a size range from 1B to 15B parameters.

Several benchmarks exist that attempt to quantify and compare the perfor-
mance of different LLM models. The Open LLM Leaderboard [47] combines
6 such benchmarks to provide thorough evaluation of open-source models,
while Berkeley Function Calling Leaderboard (BFCL) [48] specializes in
testing model ability on tool use or function calling, which is a skillset com-
parable to the tasks expected of the planner. A different kind of benchmark
is Chatbot Arena [8], which lets users compare two models and rate which
they believe is better, but as such can be susceptible to user preference, “Style
Control” is used to help mitigate it. These sorts of benchmarks play a role in
informing decisions about which models to choose and create expectations
about the model relative performance.
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7.3.4 Testing environment

The testing is performed on Ubuntu 22.04 using an Nvidia GTX 3060 12GB
graphics card, running CUDA version 12.3 and Python 3.11.5. The models
were loaded using llama.cpp [27] with the llama-cpp-python [53] wrapper,
which uses GGUF format weights and serves as a quantization method. The
used maximum context window is fixed at 2048 tokens across all models.
Sampling parameters include setting “temperature” to “0.0” (greedy sampling
for most deterministic generation), which also removes random seeds as a
factor in sampling. Despite this, tests were run at least 3 times with different
seeds to verify no change between generations.

7.4 Results

With “Llama 3 8B Inst Q4_K_M” serving as the base line, two sets of weights
were tested against it. The first set was used to determine if it is possible to
shift the system to a different quantization precision either to free up memory
by going to a lower precision or to improve performance by going to a higher
one. The second test looked at the viability of replacing the LLM with a
different model series all together. At temperature “0.0” no changes were
noticed between the generations in either batch.

7.4.1 Differences between quantization precisions

Results from the first test shown in figure 7.2 visualize how 3- and 2-bit
precisions rapidly degrade in quality, which aligns with general understand-
ing of their behaviour [12], as smaller models incur more loss at lower
precision. 4-bit and higher precisions however underperform expectations
as none of them manage to noticeably improve upon the default weights —
Q4_K_S (smaller than default) match results (245 points), but both models
make different mistakes. The larger “Q6_K” and “Q8_0" weights score lower
(237 and 242 respectively), while in theory these models should maintain
more of the original non-quantized performance. “Q4_K_M”, “Q4_K_S” and
“Q5_K_M” were the only weights to not suffer from any completely failed
generations.

Comparing the specific outputs of “Q4_K_S” and “Q4_K_M" for “mobil-
ity” tests, both models make 3 mistakes, but only 1 is different between them.
The questions that are failed by both are “Find the basketball” for “False”
and “Move the chairs” for “True”, which might point to semantic ambiguity
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Quantized weight performance overall (out of 275 points)
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Figure 7.2 Correctly passed tests for quantization precision comparison. <

in the validation set. “Q4_K_M” failed on “Flip the book to the next page”
for “False” while “Q4_K_S” failed on “Carry this chocolate cake for me” for
“True”. Such minor differences can be a cause of concern, as it can mean
that a new model could pass the validation test but then fail on tasks the
previous model had no problem doing. This implies the need for prompting
methods that can minimize such differences as well as potentially maintain a
history of previously performed actions that a promising model can be further
tested on.

7.4.2 Differences between models

During the second test, as seen in figure 7.3, none of the tested models were
able to outperform the default model, despite several of them being larger
in size and having a higher score on the Open LLM and BFCL benchmarks
(Table 7.1). The further development of Llama 3 - “Llama 3.1 8B Instruct” -
seems to perform about as well as “Gemma 2 9B instruct”, while “Qwen2.5
14B Instruct” takes second place behind the default model. Model size plays
a noticeable role as the larger models performed better, though not to the
degree it would be expected. The prompting template also did not seem to
factor in, considering that “Gemma 2” uses a “user/model” style prompting
versus “Llama 3” that uses “system/user/model”, which effects how prompts
are structured. Overall, a similar conclusion can be drawn to what was
seen with the quantization precision — prompts are unlikely to carry over to
smaller models, but larger models do not guarantee superior results despite
technically better performance.
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Different model performance overall (out of 275 points)
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Figure 7.3 Correctly passed tests by various LLMs.
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Table 7.1 Model Selection (all models using GGUF type Q4_K_M, all weights used in tests

sourced from [46] <]

BFCL Chatbot

Parameters OpenLLM Arena score
Model Name . enrs Overall Acc

(in Billions) score [47] 48] (Style

Controlled) [8]

Llama 3 8B Instruct [23] 8.03 23.91 34.32 1143
Llama 3.1 8B Instruct [23] 8.03 27.77 50.87 1133
Llama 3.2 1B Instruct [49] 1.24 13.76 20.59 1045
Llama 3.2 3B Instruct [49] 321 23.85 46.92 1094
Gemma 2 2B Instruct [50] 2.61 17.05 22.38 1116
Gemma 2 9B Instruct [50] 9.24 28.86 51.59 1179
Mistral 7B Instruct v0.3 [51] 7.25 19.11 - -
Nemo-Instruct-2407 [52] 12.2 23.53 42.56%* -
Phi 3.5 mini instruct [22] 3.82 27.4 - -
Phi 3 medium 4K instruct [22] 14.0 32.67 - 1118
Qwen 2.5 3B Instruct [24] 3.09 21.03 47.09 -
Qwen 2.5 7B Instruct [24] 7.62 26.87 53.69 -
Qwen 2.5 14B Instruct [24] 14.8 32.11 57.68 -

* - value taken from “Open-Mistral-Nemo-2407"

Looking at individual categories, certain model performance can vary
between different tasks drastically. As seen in figure 7.4, “Gemma 2 9B
Instruct” has very strong results when it comes to identifying the status of
the robot’s hand after the conclusion of the plan but has some of the weakest
results when it comes to the actual planning. Further investigation reveals
that the model struggles with placing the correct item IDs in the respective

actions, a critical failure with no discernible cause.
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Planning success rates
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Figure 7.4 Planning success rates for the various models. I

7.4.3 Result comparison to VRAM usage

As the available memory budget is an important metric to consider in the
choice of models, the maximum amount of VRAM used during testing was
noted for all weights tested and is relative to the model size in parameters.
VRAM usage peaks during the “plan” step, as it has the longest instruction
prompt.

Figure 7.5 shows how the larger models that require more memory seem
to plateau and perform on par with the middle of road models, meanwhile
the performance of the sub-7B models is more scattered, where the largest
of this group (“Phi3.5 mini Q4_K_M) shows the second worst results and
is outperformed by the almost twice as small “Gemma 2B Inst Q4_K_M".
Its benchmark scores seen in Table 1.1 do not correlate well with real results
seen in figure 7.3 and figure 7.4. Further investigation reveals complete failure
of the “mobility” step, with which other sub-7B models did not struggle as
much. An example comparison for the “mobility” question “shuffle the deck
of cards”, “Llama 3.2 3B inst Q4_K_M” answers with “{ “Mobile”: False}”,
while “Phi3.5 mini Q4_K_M" answers with “’{ “Mobile”: True}\nThe action
of shuffling a deck requires moving the cards, which implies that you would
need to leave your current workstation (the table) where they are placed.
Therefore, this task necessitates mobility beyond just manipulating objects
on-table without leaving it entirely.” A model being too verbose is a problem
from performance perspective, as even if the model can generate the correct
answer, the additional time spent generation unnecessary tokens slows the
overall execution time of the system. It also should be noted that all the
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Total Score vs Max VRAM usage (Instruct, Q4 K M)
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text generated after the answer has no contribution to it, rather the model
is “justifying” why it printed the answer it did.

7.4.4 Result comparison to Benchmark performance

Comparing the test scores against the BECL benchmark results, it can be seen
in figure 7.6 that the models with higher benchmark scores show better results
overall, while the default model massively over performs. The “Qwen2.5 3B
Inst Q4_K_M” performs well on the “planning” tasks which most other small
models struggle with which is reflected in the BFCL results, however on fur-
ther inspection of the generated outputs, it seems that all “Qwen2.5”” models
have a problem with following the defined structure of “CoT” reasoning,

15 Total Score vs Open LLM Benchmark BFCL Overall Ace (Instruct, Q4 K M)
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Open LLM Benchmark score

Figure 7.6 Testing results relative to model performance on the BFCL. <
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typically ignoring the “My hand: <object>" part, which all the other models,
even the ones that fail most of the plans, do maintain, which might imply a
different training approach from the other model families.

7.5 Conclusions

Development of an LLM-based system in a resource constrained environment
faces many challenges. Besides the obvious limitations on model size, a
general problem that such systems may encounter is the over-specializations
of prompts for certain applications to not only a specific model (Llama 3
8B Instruct), but to specific weights (Q4_K_M precision) which complicates
the adaptation of the system to different models. Tests performed showed
that larger models with higher rated benchmark performance were unable to
surpass the performance of the default model, falling short. Perhaps more
concerning is the fact that the models that almost matched the performance
typically did so by making a different set of mistakes. A similar trend
was seen between different quantization precisions — lower precisions lose
performance, yet going higher does not seemingly improve it. While larger
precisions did show better results than larger models, considering that both
would require rewrites of the prompt content, what should be the criteria used
to decide where to invest time in? As locally testing all the various models and
their finetunes is simply not viable, trusted benchmarks are a critical aspect
when it comes to deciding on what weights to spend development time. But
it seems that certain prompt content may favour one model over another.

This implies the need to solve two problems. The first problem is to
eliminate the variance that comes from weights making minor but differ-
ent mistakes, which requires developing the existing system further with
more advanced prompting methods, however the main drawback will be the
increase of execution times, which at some point may no longer be practical
for a robotic system. Second problem relates to weight “onboarding” to an
existing LLM-based system by a more elaborate validation system that is
capable of rating new weights without bias for specific weights. Both changes
should strive to reduce the need for rewriting of prompts and to improve trust
in the reliability of LLMs to perform these tasks.

More research is needed to better understand the deployment of the more
compact LLM models in robotic systems and on the edge in general, but this
impression may simply be the result of the research cycle, given how recent
many of the innovations and performance jumps in local LLMs have been.
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Abstract

Vision Transformers (ViTs) achieve high accuracy in multiple vision-related
tasks; however, substantial computational and memory demands limit their
deployment on resource-constrained edge devices. ViTs process images by
splitting them into uniform patches, treating each patch as a separate token.
Since not all regions are equally important—detailed areas may require more
tokens, while broader regions need—fewer optimizing token processing is
essential for improving efficiency. To enhance computational performance, a
hybrid token reduction approach is implemented, integrating token merging
and pruning strategies. The strengths of CTS, which merges semantically
similar and adjacent patches using a CNN-based policy network, and DToP,
which halts the processing of tokens that can be predicted with sufficient
accuracy in the early layers of the network, are combined in this method.
A reduction in computational complexity of up to 2x is shown by the
experimental results, with only an approximate 1% drop in accuracy observed
on the NVIDIA Jetson AGX Orin 64GB. Exporting a pruned PyTorch model
to TensorRT remains a challenging task that requires considerable effort. The
difficulties involved are emphasized, and additional work needed to achieve
full compatibility with ONNX export standards is outlined.
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8.1 Introduction and Background

Vision Transformers (ViTs) have achieved outstanding results in various
vision tasks, but their substantial computational and memory requirements
pose major obstacles to deployment on resource-constrained edge devices.
A combination of software and hardware innovations has emerged to tackle
these challenges, focusing on reducing computational complexity, memory
consumption, and improving power efficiency. For example, ViTA [1] intro-
duces a dedicated hardware accelerator that optimises ViT inference for
real-time applications on edge devices, reducing computational overhead
and enhancing efficiency. Another approach [2] utilises an integer-only sys-
tolic array accelerator to minimise power consumption and computational
demands. Additionally, the ME-ViT accelerator [3] offers a memory-efficient
FPGA-based solution that optimises data flow and storage, lowering memory
usage and power consumption. The 109-GOPs/W FPGA-based accelera-
tor [4] marks significant progress by incorporating a weighted data flow
mechanism that minimizes energy consumption. This approach prioritizes
data reuse, optimizing resource efficiency and reducing power usage. On
the other hand, researchers have explored various optimization techniques,
including quantization, distillation, and pruning to bridge the gap between
the high performance of ViTs and the constraints of edge environments,
making them more practical for resource-limited settings. For instance,
MobileViT [5] introduces a variant of ViTs that merges convolutional neural
networks (CNNs) with transformers, resulting in a lightweight model that
maintains high accuracy while being suitable for mobile and edge devices.
TinyViT [6] employs knowledge distillation to create a smaller, more effi-
cient transformer model that retains high performance, making it ideal for
edge applications. Similarly, EdgeViTs [7] are specifically designed for edge
devices, incorporating optimized attention mechanisms and downsampling
strategies.

ViTs typically generate visual patches by splitting an image into a uni-
form, fixed grid, where each grid cell is treated as a distinct token. Though
straightforward, this approach overlooks the varying complexity of image
content, as certain regions can be represented with fewer tokens due to
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their homogeneity. For example, in an image depicting a busy street, tasks
such as identifying vehicles and pedestrians may necessitate a higher density
of tokens. In contrast, broader areas of the image, such as the sidewalk
or the sky, may require significantly fewer tokens. This disparity in token
necessity raises an important question: is it truly essential to process such
a large number of tokens at every layer of the network? Given that the
computational complexity of ViT scales quadratically with the length of input
sequences, a reduction in the number of tokens presents a viable strategy
for decreasing computational costs. By intelligently selecting and utilising
tokens based on their relevance to the task, performance can be optimised
while simultaneously reducing the resource demands on the model.

In this context, our work introduces a hybrid token reduction mechanism
aimed at enhancing the efficiency of ViTs for semantic segmentation tasks.
This method integrates two cutting-edge techniques: patch merging and early-
pruning. A class-agnostic CNN-based network, trained independently from
the ViT, merges semantically similar and adjacent patches, while early-
pruning stops the processing of tokens that can be confidently predicted in the
early layers, reducing unnecessary computations. We implement this method
with semantic segmentation transformer models, specifically ViT-Base and
ViT-Tiny, and perform experiments on the NVIDIA Jetson AGX Orin 64GB
platform.

8.2 Related Work

Token reduction techniques are generally tailored to the specific task they
address. State-of-the-art methods predominantly focus on classification. In
this case, token pruning methods often permanently eliminate tokens, as
they no longer affect the outcome. However, in dense prediction tasks like
semantic segmentation, patches cannot be completely discarded, as each one
plays a role in the pixel-level predictions needed for detailed results. For
such tasks, ViTs handle a large number of tokens, where both the size and
number of tokens must be carefully selected to preserve essential details
while minimizing computational complexity. Given the demands of dense
prediction tasks, not all token reduction methods are suitable, with merg-
ing techniques generally proving more effective than pruning approaches.
Unlike pruning, which irreversibly discards tokens and risks losing critical
information, merging aggregates similar patches, retaining essential details.
This approach allows the model to maintain accuracy while reducing com-
putational complexity by carefully selecting which tokens to combine based
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on their relevance, thereby providing the flexibility needed to adapt to the
complexities of different image content. Among the token reduction methods
extended to support dense prediction tasks is DynamicViT [8], [9] that
employs a dynamic token selection mechanism. Similarly, ToFu [10] has
produced notable results in image generation tasks, highlighting its potential
in areas requiring dense, detailed predictions. The authors of TCFormer [11]
propose their method as a general solution applicable to a wide range of
vision tasks, such as object detection and semantic segmentation. Nonethe-
less, TCFormer faces a major drawback: the computational complexity of
its KNN-DPC algorithm increases quadratically with the number of tokens,
which undermines its efficiency, especially when handling high-resolution
images.

To the best of our knowledge, only three token reduction methods
have been specifically designed for the segmentation. One such approach is
Content-aware Token Sharing (CTS) [12], which introduces a class-agnostic
policy model using a CNN network trained separately from the ViT. CTS
identifies whether adjacent image patches belong to the same semantic class;
if they do, they can share a common token. This is achieved through binary
classification to form fixed-size groups of patches within the input image,
ensuring spatial coherence while eliminating the need to process unnecessary
tokens. Another approach, Dynamic Token Pruning (DToP) [13], enables
early-pruning for tokens, allowing simpler tokens to complete their pre-
dictions earlier in the network. DToP divides the transformer into distinct
stages and utilizes auxiliary blocks for early prediction generation. It also
incorporates the attention-to-mask (ATM) module [14] as the segmentation
head, which improves its efficiency in handling dense, pixel-level predic-
tions. Finally, SVIT [15] introduces an innovative method that utilizes a
lightweight two-layer MLP (Multi-Layer Perceptron) to dynamically select
tokens for processing within the transformer block. One of its key features
is that it prunes tokens while retaining them in feature maps, enabling
their reactivation in later layers. This ensures that important information is
preserved, even if some tokens are not processed in the early stages of the
network.

8.3 Methodology

Re-evaluating the traditional fixed-grid approach in ViTs paves the door
to more efficient architectures that can handle diverse visual tasks with
greater precision and reduced computational overhead. In the vast majority of



8.3 Methodology 171

images, there exist homogeneous regions where it is unnecessary to process
redundant patches separately. By minimizing the number of input patches,
we can reduce the total number of tokens handled by the ViT blocks. This
approach helps prevent the system from expending resources on superfluous
tokens, leading to lower energy consumption. This drives our investigation
into improving the efficiency of ViTs through a token merging and prun-
ing strategy tailored for inference on edge devices, specifically aimed at
enhancing performance in semantic segmentation. Our method integrates the
strengths of two state-of-the-art techniques: content-aware patch merging
through CTS and early token pruning via DToP. Figure 8.1 outlines the
proposed hybrid token optimization mechanism. Tokenization initiates the
process, dividing the image into a regular grid of patches. To minimise the
number of patches that need processing, we utilise a class-agnostic CNN
network to merge neighboring, semantically similar patches. Next, the token-
sharing module transforms these non-uniform size patches into tokens Z4
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Figure 8.1 Outline of the Proposed Hybrid Token Optimization Technique. <J
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using a linear embedding function as follows:

Zi = fembed (P'L) (81)

where Pi represents the group of patches obtained from the image, in which
each patch pi € P is defined as a sub-region of the image, and fo;,peq (-) the
embedding function that maps into supertokens Zi.

As in DToP, the ViT backbone is organised into M stages, with auxiliary
heads identifying high-confidence tokens that are masked and excluded from
further calculations. Let C denote the set of high-confidence tokens, where
each token is determined by a confidence score ck € C':

¢k = f(z;) if confidence (z;) > threshold (8.2)

This operation is performed on carefully selected layers, specifically after
a certain number of transformer blocks. Finally, the model processes the
remaining tokens to generate the final output through per-token predictions.

8.3.1 Content-aware Patch Merging

To apply the CTS method to any conventional transformer-based model, it
is necessary to incorporate a token sharing function Z4, a token unsharing
function, and a policy model. The class-agnostic policy network determines
which patches are eligible to share a token prior to their entry into the
ViT. It focuses on grouping only square neighboring regions, facilitating the
seamless reassembly of tokens at the output of the ViT backbone. CTS comes
with a lightweight CNN network to generate probability scores for each 2 x 2
patch group. It is based on the EfficientNetLiteO model [17], pre-trained on
ImageNet-1K [18]. This model predicts a similarity score S for a window of
n patches wj = {pl,p2,...pn}:

S=0 Wl(w) (8.3)

where Wp is the learned weight matrix of the policy network and o (.) is the
sigmoid activation function.

Finally, only the top 103 patch windows w;j are merged into 2x2 groups,
based on the highest-ranked probabilities. As a result, the number of patches
that are converted into tokens is significantly reduced (Figure 8.2). For
example, a 512x512 resolution input image traditionally produces 32x32
patches, with each patch covering 16x 16 pixels, resulting in 1 024 patches
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Figure 8.2 Results of Patch merging: grouped patches in blue, individual patches in red.

4

to process. After applying the CTS method, only 715 patches are sent to ViT,
reducing the number of tokens by 30%.

8.3.2 Early-Pruning

The core concept of DToP is to identify easy, high-confident tokens in the
intermediate layers and exclude them from further computations. After a
predetermined number of attention block layers, the model directs tokens
to an auxiliary segmentation head, which adapts the ATM, and applies a
stopping criterion based on the confidence of its predictions. Specifically, at
stage M, a confidence score c(m) is calculated for each token Z4, which is
formalized as follows:

Zm+1)={zi|c(m) <0} (8.4)

where Z(m + 1) represents the set of tokens passed to the next stage. Tokens
with confidence scores exceeding a predefined threshold 6 are classified as
high-confidence tokens and are discarded, while the low-confidence tokens
proceed further through the network. This underscores the significance of
strategically positioning auxiliary heads within the network. Placing them
too early could make it difficult for the model to accurately predict the
class of any tokens. We adopt the recommendations from the original DToP
paper concerning hyperparameters and the positioning of auxiliary heads,
acknowledging that they may not be optimal in all scenarios.
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8.4 Experiments

We integrate our hybrid token reduction mechanism into the SegViT seman-
tic segmentation framework [14], which serves as the baseline for our
performance comparison study. All experiments are performed using the
MMSegmentation (mmseg) toolbox [19], which allows for easy customiza-
tion of models by combining different backbones. We integrate ViT-Base,
which includes 12 encoder layers, a 768-dimensional hidden layer, and 12
attention heads, alongside ViT-Tiny, which features 12 encoder layers, a 192-
dimensional hidden layer, and 3 attention heads. Both process images by
dividing them into 16x16 pixel patches. We follow the standard training
settings in mmseg and use the same hyperparameters as the original papers.
For DToP, we adopt the configuration recommended by the authors, and
split the ViT backbone into three stages with token pruning occurring at
the 6th and 8th layers for ViT-Base. This setup is intended to achieve an
effective balance between computational cost and segmentation accuracy.
Additionally, we choose to examine a model divided into two stages and
position the pruning head after the 8th layer. Since the authors did not
provide configurations for ViT-Tiny, we applied the same configuration as
ViT-Base, as ViT-Tiny contains the same number of blocks. Experiments are
conducted on ADE20k [20], a dataset focused on semantic segmentation.
Mean Intersection over Union (mloU) assesses segmentation accuracy, while
giga floating-point operations (GFLOPs), measured with fvcore package [16],
reflect model complexity, and frames per second (FPS) indicates throughput.

For inference on the NVIDIA Jetson AGX Orin 64GB, we primarily use
PyTorch because of its flexibility and ease of use during model develop-
ment. To optimize performance and fully leverage the hardware capabilities
of the NVIDIA Jetson platform, TensorRT is the preferred option. How-
ever, we encountered several challenges when exporting pruned models to
ONNX and TensorRT. While PyTorch 2.4 supports all necessary layers, it
presents compatibility issues with the OpenMMLab libraries. Specifically,
the mmseg framework, which depends on MMCV (a foundational library
for computer vision tasks) and MMEngine (a runtime engine for managing
training, validation, and inference loops), complicates cross-compilation with
the latest Python and the preferred CUDA version. Although we ultimately
succeeded in validating the ONNX export, TensorRT indicated a size mis-
match in one of the backbone layers. It appears that a specific layer contains
parameters not supported by TensorRT, necessitating further investigation to
find a solution.
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Table 8.1 Performance of Token Reduction Method integrated with ViT-Base <

Method mloU [%] GFLOPs FPS
SegViT 48.3 112.8 6.8
+CTS 47.8 75.4 13.3
+DToP@[6,8] 46.1 86.3 3.9
+CTS&DToP@[6,8](ours)* 47.2 63.0 12.7
+CTS&DToP@[6,8](ours) 47.7 62.1 4.5
+CTS&DToP@[8](ours) 48.3 68.3 6.5
*on a single AIOOGPU

Table 8.2 Performance of Token Reduction Method integrated with ViT-Tiny <1

Method mloU [%] e GFLOPs FPS
SegViT 37.8 12.0 15.6
+CTS 37.3 7.6 15.4
+DToP@[6,8] 38.0 9.9 8.2
+CTS&DToP@[6,8](ours)* 37.7 6.8 19.0
+CTS&DToP@[6,8](ours) 37.7 6.8 9.3
+CTS&DToP@[8](ours) 38.5 6.9 13.1
*on a single AIOOGPU

Table 8.1 and Table 8.2 summarise the performance achieved by the
model in FP32 format. The results show that integrating our hybrid token
reduction method into SegViT allows us to maintain a comparable mloU,
with segmentation accuracy loss kept within a maximum of 1%. This method
achieves a reduction in complexity of up to 45% for ViT-Base and 42%
for ViT-Tiny. By applying only the token merging via CTS, we observe a
reduction in computational complexity for ViT-Base and ViT-Tiny of 33%
and 37%, respectively. The early-pruning technique via DToP impacts both
computational complexity and inference speed, with the number of auxiliary
heads playing a crucial role. Although placing the pruning heads at the 6th
and 8th positions yields a 23% reduction in GFLOPs for ViT-Base. This
advantage comes at the expense of increased inference time, which can slow
the process down by nearly a factor of two.

Figure 8.3 illustrates the inference time for each layer of the model,
including the auxiliary heads used for pruning. It shows that pruning tokens
with segmentation heads equipped with ATM modules tends to be excessively
slow, underscoring the need for future work to focus on optimization. Given
this observation, a single auxiliary head presents the best trade-off between
reducing complexity and time inference.

Figure 8.4 and Figure 8.5 display visualized predictions, where the num-
ber of pruned tokens increases from bottom to top. In “easy” samples, most



176  Optimising ViT for Edge Deployment: Hybrid Token Reduction

—e VT - Base et —e VT Base
o WIT - Timy 3 - YIT-Tiny
£ L £
] ¥ E
B B .
] g
o o
m o
£10° £10°
E H
a a
- " i B
T S TR TPL S T, 3 L B T~ i L L R T T T TN, N B S WL . TR A,
N S Y S L AL LRSS LTS
B R A U N R R A i S APTNE PP d‘?‘ P (‘\& AR AR N
& & & & L
R &
Layers Layers
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tokens are pruned after the 6th ViT block, while in “hard” cases, the majority
of tokens are retained until the final layer. The second auxiliary head (at the
8th layer) was often unable to prune a significant number of tokens, as it was
placed too soon after the first head. This highlights that using two pruning
heads in smaller networks like ViT-Base and ViT-Tiny is not always necessary
or effective.
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Figure 8.4 ViT-Base segmentation results with pruned tokens masked in black <
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8.5 Conclusion

We introduced a hybrid token optimization mechanism specifically designed
for semantic segmentation, which merges semantically similar neighboring
patches and incorporates dynamic token pruning based on an early-pruning
strategy. Implementing our on-the-fly pruning approach significantly influ-
ences architectural design, requiring careful attention to resource allocation
and dynamic token management. Nevertheless, proposed token reduction
mechanism can seamlessly transition to a fixed-token strategy. By simply fix-
ing the number of top-k most confident tokens pruned by each auxiliary head,
rather than relying on the threshold 0, we unlock several advantages. This
streamlines hardware design by providing predictable resource allocation and
optimizing performance. It also enhances memory management, improves
scalability, minimizes overflow risks, and enables parallel processing. Our
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token reduction technique has been integrated into transformer models (ViT-
Base and ViT-Tiny) within the mmseg framework. Through experiments
conducted on established segmentation benchmark with an NVIDIA Jetson
AGX Orin 64GB, we showed that this optimization method can lower compu-
tational costs by up to 45% while maintaining accuracy with minimal impact.
Nevertheless, while using auxiliary heads to prune high-confidence tokens
lowers computational complexity, it significantly affects inference speed. We
suggest that future work concentrate on exploring methods to optimize the
architecture of auxiliary heads. Despite its advantages, the complex mmseg
framework and the dynamic pruning can complicate model export, as both
ONNX and TensorRT require a consistent model structure. Future work will
tackle these challenges, aiming to create a more seamless and efficient export
pipeline. Efforts will focus on verifying the compatibility of the pruned mod-
els with TensorRT and ensuring consistent shapes for all inputs to conditional
layers. This may involve modifying the mmseg framework to include shape-
alignment operations or developing custom ONNX operations to address
shape mismatches.
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Abstract

With a rising demand for ubiquitous smart systems, processing and inter-
preting large quantities of data generated on the edge at a high velocity
is becoming an increasingly important challenge. Machine learning (ML)
models such as Deep Neural Networks (DNNs) are an essential tool of
today’s artificial intelligence due to their ability to make accurate predic-
tions given complex tasks and environments. However, Deep Learning is
computationally complex and energy intensive. This seems to contradict
the characteristics of many edge devices, which have only limited mem-
ory, computational resources, and energy budget available. To overcome
this challenge, an efficient ML model design is crucial that incorporates
available optimization techniques from hardware, software, and method-
ological perspective to enable energy-efficient deployment and operation
on the edge. This work comprehensively summarizes recent techniques for
training, optimizing, and deploying ML models targeting edge devices. We
discuss different strategies for finding deployable ML models, scalable DNN
architectures, neural architecture search, and multi-objective optimization
approaches, to enable feasible trade-offs considering available resources and
latency. Furthermore, we give insight into DNN compression methods such
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as quantization and pruning. We conclude by investigating different forms of
cascaded processing, from simple multi-level approaches to highly branched
compute graphs and early-exit DNNs.

Keywords TinyML, energy efficient Al, neural architecture search, pruning,
quantization, cascaded processing.

9.1 Introduction

With the rise of the Internet of Things (IoT), the need to interpret large
quantities of data from embedded sensor systems has become ubiquitous. The
possible application domains are nearly endless, ranging from Smart Cities
over sustainable resource use to agriculture and many more. Yet, including
computationally complex data processing with models like Deep Neural Net-
works (DNN) seems contradictory to the characteristics of small, embedded
devices, which usually have substantial limitations regarding energy usage
and computing capabilities. To overcome this challenge, multiple approaches
have been taken to reduce the energy footprint of machine-learning models,
often referred to as TinyML. This work will survey recent literature concern-
ing the most prominent aspects in this field with a focus on embedded sensor
systems, which we define as:

* Processing element embedded in a device made for a specific application
» Computations are done by a microprocessor, microcontroller, or FPGA
* Optionally includes an acceleration unit (NPU, DSP, etc.)

* Reduced or no operating system

* Battery or energy-limited

The study starts with scalable DNN architectures in Section 2 Scalable
Deep Neural Architecture search to find efficient network topologies in Sec-
tion 3. The review DNN compression methods to optimize neural networks
during and after their training are reviewed e.g., Pruning in Section 4 and
Quantization in Section 5. The survey is concluded by looking at cascaded
systems in Section 6, which allow partial execution of machine-learning
models. Section 7 provides a short summary and discussion.

9.2 Scalable Deep Neural Network Architectures

Scaling DNN:g, i.e., increasing their capacity, is a commonly used technique
to control the trade-off between the performance of a DNN, e.g. accuracy,
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and its resource requirements. The most common form of scaling is achieved
either by adding more layers, changing the resolution of the input, or chang-
ing the network’s with, e.g. by increasing the number of filters in a DNNs
convolutional layer, see Figure 9.1. In the following we provide an overview
of relevant scalable DNN architectures commonly used on edge platforms.
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deeper

residual skip
connection

higher
resolution

-

o
m i
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Figure 9.1 Illustration of commonly used approaches for DNN scaling. DNNs can be scaled
by either (a) widening the input of the DNN, (b) deepening the DNN by adding more layers
and residual skip connections, or (c) increasing the resolution of the feature maps by adding
more filters.

9.2.1 Residual networks

Residual networks [1] have been proposed to facilitate the training of very
deep neural network architecture. Training such architecture is often hindered
by problems such as the vanishing/exploding gradient problem or degradation
problems caused by the depth of the DNN [2]. ResNet attempts to address
these problems by explicitly fitting layers to a residual mapping instead of
the entire underlying mapping. The authors hypothesize that it is easier to
optimize the residual mapping than the original unreferenced mapping. They
argue that “to the extreme, if an identity mapping were optimal, it would
be easier to push the residual to zero than to fit an identity mapping by a
stack of nonlinear layers”. In feedforward networks, residual mappings can
be realized by introducing “shortcut connections,” which are connections that
bypass one or more layers. In the case of ResNet, the shortcut connection
simply performs an identity mapping and is then added to the result produced
by the stacked layers it bypasses. Therefore, introducing it adds almost no
computational complexity (just an elementwise added operation).

The standard “residual block™ used by the authors in their proposed
ResNet architectures consists of two fully convolutional layers and a bypass
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connection. However, given the exploding training times for very deep neu-
ral networks, the authors also propose an alternative “bottleneck” block. It
consists of three convolutional layers (instead of two), where the first and
the last are 1 x 1 pointwise convolutions, leaving the intermediate layer as a
bottleneck with smaller input/output dimensions.

9.2.2 MobileNet

MobileNet [3] is a class of DNNs that specifically focuses on deployment
on edge platforms, both from a size and runtime perspective. One of the
main features of the architecture is the heavy use of depth-separable con-
volutions, “which is a form of factorized convolutions which factorize a
standard convolution into a depth wise convolution and a 1x1 convolution
called a pointwise convolution”. This means that instead of performing both
filtering and combining inputs into a new set of outputs as one operator
(standard convolution), the operation is factorized into a separate layer for
filtering and a separate layer for combining. The main advantage of this
approach is that the factorized representation drastically reduces both the
computational complexity and the size of a DNN model compared to using
standard convolutions.

To enable scalability, the authors introduce a width multiplier parameter.
The role of the parameter is to thin a network uniformly at each layer.
Furthermore, they introduce a depth scalar parameter, which is multiplied
by the spatial dimensions of the initial input of the network and as a result
also scales down the activation tensors of all subsequent layers. In recent
years, the authors of the original MobileNet paper have presented two updated
versions of the MobileNet architectures. MobileNetV2 [4] is very similar to
its predecessors, except that it uses “inverted residual blocks with bottle-
necking features”. As in the original MobileNet architectures, these blocks
consist of a depth-separable convolution but also include a third linear 1x1
convolutional layer that is not followed by any nonlinearity, e.g., ReLU. The
authors claim that “experimental evidence suggests that using linear layers is
crucial as it prevents nonlinearities from destroying too much information”.
In addition, the blocks introduce a shortcut connection like that of residual
blocks. However, the authors explain that while in regular residual blocks
the expansion layers, i.e. the high number of channels, are connected by
the shortcut, here the bottleneck layers, i.e. the low number of channels, are
connected. Hence the name “inverted residual block”. The advantage of this
inversion is a much more memory efficient design.
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MobileNetV3 [5] improves on its predecessors by introducing lightweight
attention modules based on squeeze and excitation networks [6] in the
bottleneck structure. Furthermore, all layers are upgraded with a modified
version of the swish nonlinearity (h-swish), which the authors claim is faster
to compute and more quantization-friendly. Both the swish operator and the
squeeze and excitation layers use the sigmoid operator. Since this can be
expensive to compute on some platforms, it is replaced by the hard sigmoid
(piecewise linear approximation of the sigmoid function). In addition, par-
ticularly expensive layers of MobileNetV2 have been redesigned to be more
efficient. This includes the last layers of the previous architecture, where the
authors describe that they were able to ,,drop three expensive layers at the end
of the network at no loss of accuracy.*

9.2.3 EfficientNet

EfficientNet [7] is a class of eight differently scaled DNN architectures
(BO-B7). The scaling is performed as a combination of depth, width, and
resolution scaling, which the authors call compound scaling, and which they
control by an additional parameter ¢. The authors note that increasing the
three available scaling dimensions comes at different costs which means that
a trade-off between the parameters must be made. For example, the authors
mention that for regular convolutional operations, doubling the network depth
parameter will double the FLOPS, but doubling the network width parameter
or resolution parameter will even quadruple the FLOPS.

As their baseline network, the authors use a regular CNN (BO) tar-
geting 400M FLOPS, which the authors searched for by using a multi-
objective neural architecture search that optimizes both accuracy and FLOPS,
and which they based on their previous work [8]. The authors used

ACC (m) * (%S(m)) * as their optimization objective, where ACC (m)

and FLOPS(m) denote the accuracy and FLOPS of the model while m and
T denotes the target FLOPS, and w = —0.007 is an additional hyperparame-
ter used to control the trade-off between the two metrics. From their baseline
network (B0), the authors then use a two-step process to derive all seven other
architectures (B1-B7):

e STEP I: assuming twice as many resources are available as a starting
point and then do a small grid search of the three scaling parameters for
depth, width, and resolution.
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e STEP 2: fix the best-found depth, width, and resolution parameters as
constants and scale the baseline mesh with different ¢ using to get the
final set of architectural trade-offs B1-B7.

9.2.4 Scalable weights

Another common approach to achieve dynamic scalability at runtime is to
adapt trainable parameters (‘“weights”) based on the received input. A con-
ditionally parametrized convolutional layer (CondConv) is proposed in [9]
that can be used as a drop-in replacement for standard convolutional layers.
Their design parametrizes the kernels of a regular convolution as a linear
combination of n experts Wy, ..., W, weighted by a1, ..., o, functions of
the input learned by gradient descent. The authors argue that “this is much
more computationally efficient than increasing the size of the convolutional
kernel itself, because the convolutional kernel is applied at many different
positions within the input, while the experts are combined only once per
input”. In conclusion, CondConv can introduce the same amount of additional
capacity as MoE while being more computationally efficient by requiring
only one convolution.

Deformable convolutions [10], [11] implement the concept of dynamic
receptive fields by sampling feature pixels during the computation of con-
volutions from adaptive locations based on the input. The offset of each
sample is generated using an additional convolution that generates an offset
field based on the input feature map. As a result, deformable convolutions
generalize various transformations for scale, (anisotropic) aspect ratio and
rotation. The concept of weight prediction, first proposed by [12] allows for
directly modifiable weights in a feedforward network that are contextually
modified at runtime by a second controller network. The authors propose
this architecture as a memory efficient alternative for representing temporal
information compared to recurrent neural networks. The idea was adapted
to more modern DNN architectures by [13], [14]. Here, the filters of a
convolution are dynamically generated from the input using an additional
“filter generating network™. The two inputs of the convolution can be either
identical or different, depending on the task at hand.

9.2.5 Practical Considerations

Scalable DNN architecture helps to easily adapt a network to a given set of
resource constraints, often by simply tuning a set of hyperparameters that
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do not require extensive prior knowledge about the internal structure of the
DNN. This makes the architecture presented in this section ideal candidates
for deployment on edge systems or other resource constraint environments.
In addition, scalable DNN architectures are versatile in that they can easily be
used in combination with other techniques such as neural architecture search,
pruning, and quantization, which we will discuss later in this review.

9.3 Neural Architecture Search for Resource Aware DNN
Deployment

The search for a feasible DNN architecture that can be deployed on an
edge system with given resource constraints is typically formulated as a
multi-objective hyperparameter optimization (HPO) problem [15], solving a
black-box function that maps from a set of DNN architecture-specific hyper-
parameters to a set of target metrics such as accuracy, memory consumption,
latency, or throughput, on which platform-specific constraints are defined.
In this definition, sampling the black box is equivalent to training a DNN
with a specific configuration on a given dataset. Often synonymously used
with HPO is Neural Architecture Search (NAS). NAS describes the process
of finding good DNN architectures in an automated, non-human controlled
way. Although it is primarily concerned with only maximizing DNN perfor-
mance, i.e., solving a single-objective optimization problem, most concepts
can be intuitively extended to a resource-aware multi-objective search. As a
result, multi-objective NAS for edge platforms has recently become more
of a focus as well, e.g. [16, 8]. There are three approaches to NAS that
are prominently discussed in the literature: First, black-box HPO [17]-[20],
second, differentiable NAS [21], [22] and third, zero-cost NAS [16], [23],
[25]-[30]. Black-box HPO works reliably and can be easily extended to the
multi-objective case, but it is also slow and often inefficient sample, requiring
many different DNNs to be trained and evaluated.

Differentiable NAS relaxes the optimization problem so that the archi-
tecture can be optimized as part of the regular training of a DNN. However,
recent research suggests that differentiable NAS has stability problems and
does not generalize well [24]. Finally, zero-cost NAS is very time-efficient
since it does not train DNNs directly but uses an empirical surrogate model.
As aresult, it does not provide accurate information about the performance of
an architecture, but only simple statistics derived from the surrogates [31]. In
the following, we discuss each of the three approaches and their implications
for resource-aware NAS.
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(a) Blackbox Multi-Objective Optimization (b) Differentiable NAS (¢) Zero-Shot NAS
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Figure 9.2 Three types of NAS are considered in the literature: (a) For black-box multi-
objective optimization, many DNNs must be trained. However, optimisation results in a Pareto
set of exact trade-offs between the different objectives. (b) Differentiable NAS returns only a
single trade-off but is time and resource efficient because it optimizes the DNN during a single
training run. (c) Zero-shot NAS allows fast DNN specialization for deployment goals, but the
performance of the proposed trade-offs is only estimated.

9.3.1 Black-Box Multi-Objective optimization

The most common approach to solving HPO problems is black-box opti-
mization. A traditional approach to tackle black-box (multi-objective) opti-
mization is evolutionary algorithms (MOEA), one of the most common being
NSGA-II [32]. As an example, [33] explore hyperparameter and compression
parameter optimization using evolutionary algorithms for DNN deployment
and combine it with pruning and quantization. A drawback of MOEA is that
due to their population-based nature, they are sample inefficient, which can
be time and resource consuming in the case of NAS, where many DNNs need
to be trained and evaluated.

To overcome this problem, Bayesian black-box optimization [34] can be
considered as a more sample-efficient alternative to MOEAs. Here, cheap
to evaluate surrogate models, usually Gaussian processes (GPs), are used to
approximate the black-box objective functions. During optimization, for each
trial performed, a nested optimization is performed on the GPs, which have
been previously fitted with an acquisition function based on all trials observed
so far. The result of this nested optimization is in turn used to propose the next
parameterization (or set of parameterizations) to the outer optimization loop,
which in turn evaluates them on the actual objective functions, thus repeating
the iterative optimization process.

Black-box optimization for HPO has also been regularly combined with
reinforcement learning (RL). For example, [17] observed that a DNN archi-
tecture can be defined by a variable-length string, and that it is therefore
possible to use a recurrent neural network (RNN) to generate such strings.
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The authors call such an RNN a “controller”. By training the DNNs (child
networks) generated from the strings emitted by the controller, accuracy on a
data set can be obtained, which in turn can be used as a reward signal. This
signal can then update the controller (i.e., the controller learns to improve its
search over time through RL).

Another approach to neural network design with reinforcement learning is
based on using a Q-learning agent that samples a CNN topology conditioned
on a predefined behavior distribution and the agent’s prior experience [18].
The authors define the layer selection process as a Markov decision process.
The agent sequentially selects layers via an e-greedy strategy until it reaches
a termination state. Like [17], the reward given to the agent is constructed
from the validation accuracy of the generated network.

In addition, the authors use a replay buffer that stores the network topol-
ogy and predict performance on a validation set for all sample models. This
means that if an already trained model is resampled, it is not retrained, but
the previously found validation accuracy is presented to the agent.

A major problem with all black-box HPO approaches is that they require
many different DNNs to be trained and evaluated, which can become a time
and resource consuming task. In addition, black-box optimization struggles
with large parameter spaces, as the sampling complexity increases exponen-
tially with each parameter added to the search space, an effect informally
referred to as the “curse of dimensionality” [35].

9.3.2 Differentiable NAS

Unlike Black-box HPO, Differentiable NAS [21], [22] does not search over
a discrete set of candidates architectures but instead relaxes the search
space to be continuous. As a result, the target architecture can be optimized
with respect to the performance of the validation/test dataset using gradient
descent, solving the problem of having to evaluate many different architec-
tures. Since gradient descent is more data efficient than regular black box
search, differentiable NAS can achieve competitive performance to NAS
while requiring much less computational resources.

The search space considered by differentiable NAS consists of compu-
tational cells as building blocks of the final architecture. Each cell is an
acyclic graph containing an ordered sequence of nodes. Each node is a latent
representation, e.g. a feature map, and directed edges connecting them are
operations that transform the latent representation. This means that each
intermediate node is computed based on all its predecessors.
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Differentiable NAS can be seen as a bi-level optimization problem. The
goal for the architecture search is (a) to find architecture, i.e., a combination
of building blocks that minimise computational complexity and (b) a set of
trained weights associated with the architecture that minimizes the training
loss.

Another variant of differentiable NAS is hierarchical NAS [36], [8]. It
not only searches at a cell structure level but also at network structure level,
thereby formulating a hierarchical search space. The authors noticed that
in modern CNN design the outer network level controls spatial resolution
changes, while the inner cell level controls specific layer-wise computations.
Regular NAS follows this principle as well but only automatically searches
the inner cell level while the outer network level is designed by hand. This
can become problematic for use cases which are sensitive to spatial resolution
changes.

9.3.3 Zero-Cost neural architecture search

Like differential NAS, zero-cost NAS attempts to minimize the search costs
associated with black-box optimization. However, unlike differential NAS, it
focuses on a redundant learning strategy to minimize computational cost by
using a well-trained weight-sharing model, i.e., a supernet from which many
architecture variants, i.e., subnets, can be drawn at zero-cost. To find the best
architecture o under given resource constraints, a zero-cost proxy metric is
used that can score a subnet without training and validation on a dataset.

Several proxies have been discussed in research: [26] use the overlap
of activations between data points in untrained networks, [27] quantify the
expressiveness of an architecture, which they call Zen-Score, while other
works used gradient-based zero-cost proxies such as the gradient norm to
estimate model performance [28-20].

In recent research, zero-cost NAS approaches have been proposed to
easily allow for specialization of network architectures to different target
platforms. This allows for an efficient search of architectural variants for
differently scaled edge systems.

For example, once-for-all~networks [16] provide an optimization strat-
egy tailored to a multi-objective search space with different device and
resource constraints. To achieve this, the authors decouple network training
and search. During the training phase, the authors train a single network
using a technique they call Progressive Shrinking. Once the single network is
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trained, different submodels are sampled from it and evaluated, requiring no
further (re)training. These subnetworks can have different input resolutions,
different kernel sizes or filters in their convolutional layers, and a different
number of layers.

Another example of network specialization using zero-cost NAS is Pre-
NAS [25], where the authors improve the efficiency of regular black-box
optimization (which the authors call “one-shot NAS”) by combining it with
zero-cost NAS. To improve search efficiency, the authors propose to construct
a reduced (“preferred”) search space based on high-quality architectures
selected under various resource constraints using zero-cost NAS, which is
easier to search by black-box optimization than the original “full” search
space.

9.3.4 Practical considerations

One of the biggest challenges that must be considered when using NAS as
part of DNN deployment for embedded targets is the typically large amount of
time required by the techniques we presented in this section. This is especially
true for the black-box optimization which, while generally providing con-
sistently good results, requires extensive sampling of the underlying search
space which is the most expensive part in NAS. Other techniques presented
in this chapter, namely Differential NAS and Zero-Cost NAS attempt to
alleviate this problem, either by relaxing the problem to be differentiable
so that it can be solved as part of network training or by relying on cheap-
to-sample, often model-based surrogates of the expensive to sample search
space. However, both techniques have caveats that should be considered:
Differential NAS has been shown to have robust problems with optimal
architectures often found to generalize poorly [24]. Furthermore, Differential
NAS does not produce a Pareto front from which an optimal trade-off can
be selected, but only a single architecture that is considered optimal after
training. Many Zero-Cost NAS techniques, while allowing extremely fast
DNN specialization for different deployment targets and resource constraints,
report only simple statistics about found architecture candidates, not actually
trained and evaluated networks. To summarize this section, choosing the best
NAS strategy in the search for DNN architectures feasible for edge deploy-
ment is a trade-off between search time and the quality of the result obtained.
For the best possible results, black-box optimization, ideally combined with
Bayesian optimization, should be chosen, while for fast but less accurate
results, zero-cost NAS techniques should be preferred.
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9.4 Deep Neural Network Pruning

A common way to achieve compression of DNN to allow its use in resource-
constrained environments is DNN pruning. Pruning is based on the idea
that some of the trained parameters of a DNN can be removed, i.e. pruned,
without significantly degrading the accuracy of the network. It is based on
the understanding that most neural networks are overparameterized and have
redundancy in their trained weights [37]. The approach is well known and has
been discussed by several authors as early as the late 1980s [38]-[40].

While at first pruning was mainly proposed with better network general-
ization, less overfitting, and improved learning speed in mind, today it has
become a popular technique to achieve DNN compression with minimal or
no loss of accuracy.

The simplest way to prune a DNN is to set a subset of its trainable
parameters to zero during training resulting in sparse parameter tensors. By
setting parameters to zero, they are removed from the scope of the optimizer
used to train the DNN. Therefore, the removed parameters no longer affect
the training and validation loss of the network.

How pruning is performed during training can be roughly characterized
by a few different parameters, which we will discuss in the remainder of this
section.

9.4.1 Pruning granularity

There are two common techniques to perform DNN pruning: Unstructured
Pruning and Structured Pruning. Their main difference is the granularity at
which the techniques introduce sparsity into a DNN.

Unstructured Pruning introduces sparsity by removing individual neurons
from the parameter tensors of a DNN while structured pruning removes entire
structures of neurons. Typically, Structured Pruning targets structures such as
filters [41] or channels [42] in convolutional layers. However, it is possible to
extend Structured Pruning to rows or columns of linear layers as well.

An advantage of Structured Pruning over Element Pruning in the con-
text of DNN compression, is that pruned structures can not only be set to
zero but can be completely removed from the parameter tensor. This is not
possible with element pruning, which produces matrices of arbitrary sparsity.
However, Structured Pruning also has drawbacks: Removing structures from
a DNN is much more invasive than Element Pruning, and its implementation
is not as simple as setting individual values to zero. In regular feed-forward
DNN:s, layers are usually connected in a sequence. Information is passed
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through the network from top to bottom. Therefore, the output feature map
of one layer becomes the input feature map of the next. By changing the
shapes of the parameter tensors in these layers, the shapes of their input
and output feature maps change as well. Therefore, removing structures from
layers inherently means removing the data dependencies between them. This
makes the implementation of Structured Pruning complex and requires a
global view of the DNN structure. Structured Pruning becomes even more
complicated in branching feed-forward networks, such as residual networks
[1]. Here, data dependencies can span multiple layers run in parallel instead
of just sequential layers.

It is possible to apply Structured Pruning and Element Pruning to a
DNN together. [43] describe how they first apply Structured Pruning to
convolutional layers of a DNN and then apply Element Pruning to the
remaining structures. They call this approach Hybrid Pruning. They argue
that Structured Pruning is a coarse-grained method, while Element Pruning is
a fine-grained one. Therefore, Element Pruning can be used to remove con-
nections that would otherwise be missed by Structured Pruning. In addition,
Element Pruning and Structured Pruning can be used together by applying
them to different layers or layer types in a DNN.

9.4.2 Pruning heuristics and sensitivity analysis

A major challenge in DNN pruning is to decide which elements or structures
have the least impact on the validation loss of a DNN when removed.

The most accurate approach to achieving optimal pruning would be to
remove each structure or element of a network one by one and evaluate its
impact on the loss. This is referred to as the oracle criterion [44]. However, the
downside of this strategy is that it is extremely resource and time consuming.
So much so that it is inapplicable in most scenarios.

Therefore, other heuristics have emerged to approximate optimal pruning
in a more computationally efficient manner. The process of quantifying
the importance of parameter tensors of DNNs is referred to as Sensitivity
Analysis [45]. Much research has been done in recent years to find good
approximations for both Element and Structured Pruning techniques. In the
following, we give an overview of some of the most used heuristics.

9.4.3 Magnitude or threshold based heuristics

Early work focused heavily on second-order derivative-based heuristics to
approximate pruning. For example, [39] and later [40] propose calculating
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saliency scores for elements to determine their usefulness. They then use
these scores to zero out a certain number of elements that they consider to
be the least useful. [39] call this approach optimal brain damage (OBD).
To avoid having to compute the saliency using the oracle approach, their
heuristic approximates the objective function of a neural network using a
Taylor series. However, this method requires additional computation.

As aresult, more recent work has focused on simpler heuristics to approx-
imate the usefulness of the trained parameters. The most common ones use
simple threshold functions [45], [46] They consider a parameter useful if
its absolute value is above a certain fixed value. If instead the value of the
parameter is below or equal to the fixed value, it is marked as a candidate
for removal. The heuristics are generally based on the understanding that
a higher value creates a greater activation and is therefore more likely to
have a significant impact on a layer’s output than a smaller value. However,
manually defining good thresholds requires extensive network analysis and
is not intuitive. To solve this problem, most of the authors mentioned above
approximate the distribution of values in the weight tensors of neural net-
works with a Gaussian distribution with a mean of zero. They then use the
standard deviation of the distribution in combination with a scaling factor
to automatically define pruning thresholds on a per-tensor basis. As a result,
the only unknown variables remaining are the scaling factors. [45] derive
these factors by increasing the sparsity in the layers of an unpruned baseline
network and monitoring its accuracy changes. However, this is expensive
because the baseline network must be trained first.

9.4.3.1 L-Norm heuristics

Threshold and magnitude-based approaches are not only useful for evaluating
the importance of single parameters, but also for ranking complete parameter
structures of neural networks. Therefore, a common way to evaluate the
importance of such structures is to sort them by their 11-norm. [41] describe
how they use the norm to estimate the overall size of filters in convolutional
layers. Furthermore, using the norm also gives an estimate of how large the
values in the resulting output feature maps will be. In addition, the 12-norm
is sometimes considered as a means of classifying parameter structures in
neural networks.

9.4.3.2 Gradient Ranked Heuristics
Another heuristic for structure pruning has been proposed by [44]. The
authors present a parameter structure ordering heuristic based on Taylor series
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derived from the difference in loss when certain parameters are removed from
a network. The approach is like the OBD heuristic described earlier in this
section. This is also explicitly stated by the authors. Their resulting heuristic
accumulates the product of the activation tensors and the gradients of the
cost function with respect to the activation tensors. The gradients can be
easily obtained via the backpropagation algorithm. Intuitively, the heuristic
considers structures to be less significant if their parameters are close to zero
and have a flat gradient.

9.4.3.3 Activation based heuristics

Another approach to approximate the importance of parameter structures
is proposed by [47]. The authors analyze the sparsity of activation tensors
during training. They do this by monitoring the average percentage of zero
values (APoZ) found in outputs computed by rectified linear unit (ReLU)
activation functions throughout the network. The higher the percentage of
zero values generated by the ReLU, the less significant the structure is
considered by the heuristic. [44] also mention the ApoZ approach in their
paper. However, the authors caution that the approach may not perform well
on early layers of neural networks. They note that early layers are typically
trained to detect less defined features, resulting in denser activation tensors.
Only for later layers, when feature detection has become more precise, do the
activation tensors become sparse.

9.4.3.4 Relevance-based heuristics
Another criterion for pruning neural network structures is based on Layer-
wise Relevance Propagation (LRP) [48] originating from the field of explain-
able AI (XAI). This approach assigns relevance scores to individual neurons
in a neural network. Traditionally LRP serves as an XAI method to highlight
the relevant parts of a given input to generate a local explanation for interpret-
ing complex non-linear machine learning models, e.g. the relevancy of pixels
of an input image can be highlighted in terms of a heat-map representing the
influence of input parameters that are decisive for an image classification.
This relevance-based pruning criterion for pruning CNNs works by itera-
tively pruning the least relevant units, i.e. weights or filters of a network. The
relevance scores are obtained via back-propagation from the output layers
to the input layers and are assigned to all neurons of all layers, where the
main characteristic of LRP is the backward pass through a network that can
be computed efficiently. The relevance scores are then used to identify the
least relevant units, which are the ones that can be pruned to discard all
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aspects of a network that do not contribute to the decision of a model. A
pruned network can then be fine-tuned to recover possibly lost accuracy.
This process is repeated until the desired level of compression is achieved.
The LRP criterion is shown to be effective in reducing computational and
parameter costs. Furthermore, based on experiments, the authors in [49] show
that this pruning criterion performs consistently well or even better than
state-of-the-art pruning criteria when model refinement and fine-tuning is
applied.

9.4.4 Pruning schedule

A pruning schedule, sometimes called a pruning recipe, describes when, how
often, and how much of a network is pruned during training. A very straight-
forward approach to schedule pruning is referred to as one-shot pruning.
Its use has been described in early papers such as [39]. The general idea
is to first train a network until it reaches a reasonable accuracy. Then, the
whole network is pruned using a certain heuristic to remove the structures
or elements with the lowest score. Based on this score, several of them are
removed. Additionally, the authors found it beneficial to retrain the network
after pruning.

One-shot pruning schemes are also described in more recent papers, for
example by [44, 45]. However, both authors also distinguish another type of
pruning schedule. They call it the iterative pruning schedule. This approach
focuses very strongly on the idea of pruning and retraining a network several
times instead of just once. Therefore, not all parameters are removed at
once, but step by step over several pruning iterations as part of training. This
allows the network to adapt more gradually to the decreasing set of trainable
parameters.

Both authors also suggest specifying the number of trainable parameters
to be pruned on a layer-by-layer basis rather than for the entire network. This
is based on the understanding that the layers of a neural network may have
different sensitivities to pruning. [44] show that some layers can be pruned
much more aggressively than others before any degradation in the accuracy
of a trained model becomes noticeable.

An extension to iterative pruning schedules is presented by [50]. The
authors build on the idea that the number should be gradually increased
instead of removing a constant number of parameters in each pruning iter-
ation. They propose an algorithm that automatically increases the number of
pruned parameters in a DNN over a range of n pruning steps based on a
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few predefined parameters. They call this the Automated Gradual Pruning
algorithm. They state that the intuition behind the algorithm is “to prune
the network rapidly in the initial phase, when the redundant connections are
abundant, and to gradually reduce the number of weights pruned each time as
fewer and fewer remain in the network™.

9.4.5 Practical considerations

Pruning is a core technique when it comes to fine-tuning the size of a DNN for
a given problem, i.e. dataset, during training. The technique has proven to be
extremely versatile, even when combined with other compression techniques
such as quantization or NAS. To conclude this section, we would like to
point out some practical considerations when using pruning as part of a
DNN deployment pipeline: First, structured pruning will lead to immediate
performance gains because pruned structures can be transparently removed
from tensors, resulting in fewer computations, without any changes to the
environment used to run the DNN at runtime. Unstructured pruning, on
the other hand, only creates sparse tensors that require support from the
environment to be executed efficiently at runtime. Second, the choice of a
reasonable pruning schedule is of great importance, with iterative pruning
using Automated Gradual Pruning generally providing better results. Third,
simpler heuristics such as L-normed-based heuristics offer a good trade-off
between accuracy and speed, while LRP based heuristics can provide more
informed decisions and tend to produce an overall better pruning result at the
cost of often higher compute times. Still, the outcome of pruning using LRP
depends highly on the network and layer types used, and multiple parameters
need tuning to make it applicable in the general case, see [51].

9.5 Quantization

One of the main methods to reduce the energy consumption of DNNs is
to reduce their size and computational complexity using quantization [52].
Quantization of DNNs refers to the quantization of both the parameters
(weights, biases, scaling factor ...etc.) and activations. DNN Quantization
corresponds to some of or all the following benefits (depending on the model
of quantization):

* Reduction of the NNs’ size which reduces the required energy to
transmit and store the trained models when deployed on edge.



198  Recent Trends in Edge Al: Efficient Design, Training and Deployment

* Reduction in the complexity of the operations (mainly Multiply and
accumulate MAC) leading to reduced power consumption of these
operations,

* Reduction in size (bit-width) of the NN parameters and activations leads
to improved power efficiency regarding memory access, required buffers
and moving the data around on the edge target device.

9.5.1 Quantizers

First, we would like to define what quantization is, its different types and
all the relative terms. The mathematical operation maps the input space into
quantified values in the output space and can be divided, in general, into
uniform and non-uniform. As the name suggests, non-uniform quantization
produces non-uniform output values which can be represented by a floating-
point and achieved using lookup tables. This is part of the model compression
which will not be covered in this section, as it helps to reduce the model size
for transmission or storage purposes but does lead to computational benefits
or reduction in energy consumption.

On the other hand, uniform quantization is the most common method used
in DNN quantization. Here, the input space is mapped uniformly to the output
space according to the following generic equation.

xQ= clamp (%—i—z, a, b) , 9.1)
where round() is a generic rounding function, s is a scaling factor, z is a
zero-point, ¢ and b are the minimum and maximum that define the range, and
clamp(z, a, b) is a clipping function defined as follows:

a if x<a
clamp(z,a,b) =< x if a<z<b » =min(maz(z,a),b) . (9.2)
b otherwise

The implemented Rounding has an important impact on the quantization
procedure and results. Here we list some of the commonly user rounding
schemes:

* Nearest: round(xz) = |z].

* Round down: round (z) = |z].

* Round up: round (z) = [x].

* Stochastic rounding [53]: stochastic rounding rounds the values up or
down stochastically, round (z) = |z] + (p > x — |z]|) where p is a
random variable sampled from a uniform distribution.
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* Adaptive rounding [54]: where each individual value is rounded up or
down to minimize the overall loss in the network.

Equation (9.1) defines an affine uniform quantization A.K.A. asymmetric
uniform quantization. It can be further restricted by limiting ¢« = O and b =
20 _ 1 to produce integers with bit-width of bw. In addition to the benefits
of reducing the operands bit-width and thus the required energy for memory
access, the integer operations consume less energy [55] - [57] leading to even
further energy savings. Additionally, a symmetric singed-integer quantization
can be achieved by restricting a = —2*~1, b = 2¥*~1 —1 and » = 0. Finally,
we can restrict this to represent fixed-point arithmetic by limiting s to powers
of 2. This restriction helps to reduce energy consumption further as it does
not require any multiply or divide operations but rather only bit shifts.

The quantization operation defined in equation (9.1) is irreversible, but an
approximation can be achieved with:

XRX=5(xQ—2) =S5 (clamp (%, a, b) —z) . 9.3)

The quantization error/noise is then measured using g = x — Z. This
error affects the correctness of the operations, but it was found that NNs are
resilient to such errors and the performance is negligible or can be managed
using different methods.

9.5.2 Granularity

After we defined and explained quantization and rounding schemes, we will
look at how to apply these to neural networks. The basic building block of
NNss is the matrix multiplication A.K.A multiply-accumulate (MAC) defined
as O = ? + WX, where ? is the bias vector, W is the weights array, and
X are the inputs. This operation is then approximated as follows:

0=Db+WeXq (9.4)

where Wy and X are the quantized tensors w.r.t W and X. It is worth
noting that the quantization parameters such as scaling factor, zero-point and
range (bit-width) are set separately for the wights and activations. Equation
(9.4) quantizes both the weights and activations it is also possible to quantize
only the wights [58] — [59]. Weight-only quantization is generally simpler
and easier but misses on a lot of the benefits of additionally quantizing
the activations as the first only makes use of smaller size and less memory
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access but still requires floating-point operations. On the other hand, quan-
tizing activations normally requires a dataset (unlabeled) to determine the
appropriate range and scaling factors for each layer. The bias was left out of
quantization as it normally required more bits to maintain high accuracy. E.g.
the authors in [60] use 8 bits for the weights and activations and 32 bits for
the bias.

The quantizers (scale, zero-point, range, bit-width ...etc.) can be specified
for each layer (weights and activation) separately, this is referred to as per-
layer quantization. Moreover, others have shown that reducing the granularity
even further and performing channel-wise quantization (i.e. specifying a
different quantizer per output channel/kernel) improves the results [61]—
[63]. Others went beyond and quantized per-group of weights or activations
[64]-[65]. The trade-of here is often that increasing granularity improves
performance and accuracy but comes with an extra overhead in the form of
extra parameters per quantizer and thus more memory access and required
buffers.

9.5.3 Methods

Here, we discuss the two main categories to quantize NNs with minimal
performance degradation and how do they compare. The first approach (Post-
Training Quantization PTQ) is simpler as it takes in a trained NN and
performs the quantization after training, while the second (Quantization-
Aware Training QAT) is more complex as the quantization must be accounted
for during training.

9.5.3.1 Post-Training quantization

Early approaches of quantizing NNs relayed on post-training quantization
due to its simplicity. In these methods, the NN expensive computations
(training) is performed once and then the trained NN can be quantized
using different techniques. Using this method, NNs can be quantized to 8-
bit weights [62] and [66] or even 4-bit weights [59], [63], [64], [67] and [68]
or a mix of the two [69] with zero or minimal degradation in accuracy and
performance.

Additional activation quantization is more complicated than weight-only
quantization as it produces more errors that propagate though the network.
E.g. In [70] the authors use 8-bit and kept the mixed activations with
INTS8/FP16 due to the high required dynamic range. Moreover, unlike weight
quantization, activation quantization often requires training or validation
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datasets to collect the statistics about the data to determine the quantiza-
tion range and scaling required. Yao et al. Managed to quantize the same
large language model to 8-bit activations using Token-wise Quantization and
knowledge distillation [69]. To determine the activation range, [63] uses
the min/max and therefore no clipping occurs, while [63] uses Analytical
Clipping for Integer Quantization ACIQ to clip the outliers and achieve a
tighter range producing less overall rounding error. In [71], the authors get
around the need for training or validation data by using distilled dataset that
is designed to match the statistics of the original data. On the other hand, [72]
learned a parameterized (range) activation function during training that can
be used to clip the values. This approach, however, might not be considered
as a post-training quantization approach as it requires changes to the training
procedure.

9.5.3.2 Quantization-Aware training
In the previous section, we explained how a trained network can be quantized
to 8-bit and even in some cases 4-bit weights and activations with minimal
or no loss of accuracy. However, in most cases, quantizing the NNs beyond
8-bits yields significant performance degradation. This degradation can be
mitigated if the quantization is accounted for during training. This is com-
monly referred to as Quantization-Aware Training QAT [60], [73] and [74].
Simply put, the NN graph is updated with the same quantizers from Section
6.1 into the parameters (weights, bias, ...etc.), activations or both during
training. This way the training of the NN will account for the quantization
error producing more robust NNs.

The biggest question in incorporating the quantization operation into
training comes from back-propagation/gradient descent and its reliance on

(a) Post-Training Quantization (b) Quantization-Aware Training

Training
Data

Training
Data

Val Data "
Trained
QNN

Quantize &
Training

Trained
QNN

Trained
NN

Quantize Backward

W Quant QW Layer

Figure 9.3 The workflow of the two main quantization methods: (a) Post-Training Quan-
tization and (b) Quantization-Aware Training (including the straight throw estimator for the
backpropagation)
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derivatives. Mainly, the rounding operation in these quantizers has zero
derivatives almost everywhere. Therefore, we cannot back propagate the
error to update the networks parameters. To solve this question, Begio et
al. analyzed and studied four different approximations [75]. Of which, the
most promising is the straight-through estimator [76]. This estimator is quite
common due to the simplicity as it replaces the derivative with the identity
derivative, and it’s proven to achieve the task of training.

9.5.4 Practical considerations

To make sure the review on NN quantization is comprehensive, a few
practical considerations must be considered by the designers.

* PTQ vs QAT: PTQ is generally preferred over QAT when the goal
is INT8 or even sometimes INT4 due to simplicity. However, QAT
is preferred for sensitive applications or when severe quantization is
required.

* Floating-point vs Fixed-point quantization: We have covered mostly
Fixed-point quantization as it leads to reduction in model size and com-
putational requirements. On the other hand, Floating-point quantization
is helpful to reduce the model size for compression purposes but does
not lead to a reduction in computation requirements. This is because the
model must be uncompressed to the original values for inference.

* Fusing layers: The quantization operation can often be fused into the
activation layer e.g. ReLU [63] to improve the quantization range as
ReLU clips all the negative values anyways. Moreover, it can be fused
into the normalization layer [69] and [77] to reduce the overhead cost as
both operations require scaling and shifting the values.

* Layer equalization: It is observed that quantization to <INt8 often
leads to degradation of accuracy, especially in depth-wise convolutions
due to the high dynamic range within the layer [78]. One method to
compensate for the high dynamic range is to use a channel-wise quanti-
zation as mentioned earlier which introduces complexity as each channel
will require a different scale and bias parameters. Another solution is
to perform cross layer equalization [78], Batch norm tuning [77], bias
correction [79] or weight factorization [80].

* Hyper-parameter selection: Quantization of NNs and especially QAT
adds few more parameters that need to be set/optimized for best per-
formance (power/latency vs accuracy). This is not specific for NN
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quantization, but it adds to the complexity for the optimization task.
Refer to Chapter 4 for more details.

9.6 Cascaded Processing

In addition to the techniques mentioned above, it is also possible to reduce the
energy footprint of a smart sensor system by introducing cascaded processing.
Instead of using one big model, this approach relies on multiple models
executed one after another (cf. Figure 9.4). By including exit points between
models, the system can trigger the execution of the next one lazily, only
using the energy needed for a particular decision. Each model in this chain
should be designed in a way that builds upon the decision from the previous
model(s). In this way, the processing of one model might suffice to conclude
so that at every point, the execution may be aborted.

Figure 9.4 Example of simple cascade. Three classifiers are executed one after the other to
classify three different labels.

This section will cover the current most relevant literature for cascaded
processing, starting with traditional hierarchical models and their applicabil-
ity to distributed sensor systems. Afterward, we will cover Early-Exit-NNs,
which bring the same idea to neural networks.

9.6.1 Hierarchical systems

A typical example of a hierarchical system can be found in condition
monitoring as depicted in Figure 9.5: Given a sensor system that should
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Figure 9.5 Complex hierarchy with multiple levels. The classification flow is separated into
different branches. <

classify the current machine status into different fault types and severities.
The cascade’s first model could detect anomalies, classifying abnormal and
normal behavior. As this decision can be made quickly, the model should be
small and can be run continuously. If a fault has been found, the following
model classifies fault types. At this point, the processing can be stopped if
the found anomaly has been a false positive. Otherwise, the second model is
followed by an additional model for each fault type that classifies the severity
of each fault. In that way, the models in the severity level can be specifically
tailored towards a distinct fault type, leading to a more efficient model for the
individual decision.

Building a foundation for hierarchical models, Silla and Freitas survey
different applications for hierarchical classifications in [79]. While the pos-
sible application domains are interesting, this paper’s most relevant work is
how the authors generalize hierarchical classification in a unified framework.
First, they introduce a class taxonomy as a poset (C, <). C is a finite set
of class concepts with a partial order < over C, which is asymmetric, anti-
reflexive, and transitive. This definition matches a directed acyclic graph
(DAG) but is often simplified to a tree structure, where each node is limited
to one parent node.Additionally, the authors cluster models for hierarchical
classification problems into four groups: Local classifier per node (LCN),
Local classifier per parent node (LCPN), local classifier per level (LCL), and
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global classifier (GC). LCN classifiers are found in models with a binary clas-
sifier at every node, whereas LCPN models can include multi-class classifiers.
The LCL approach uses only one multi-class classifier per level, meaning
no branching can be done with LCL classifiers. A GC uses just one big
model to classify each label.Based on this definition, the authors categorize
a hierarchical classification problem in a 3-tuple (T, ¥,®) ,where T specifies
the type of graph (DAG or Tree), U whether a class label is associated with a
single path (SPL) or multiple (MPL), and ® the depth of labels from full depth
(FD) to partial depth (PD). Additionally, they describe a categorization of
different types of hierarchical algorithms as a 4-tuple (A,=,Q,0), where A in
association with U represents if the algorithm performs single path prediction
(SPP) or multipath prediction (MPP), = refers in line to ¢ to mandatory leaf-
node prediction (MLNP) or non-mandatory leaf-node-prediction (NMLNP).
Q reflects the model’s ability to perform on tree or DAG-based problems as
described with T. © reflects the classifier type (LCN, LCPN, LCL, or GC),
as described above.

The here described framework was initially introduced to categorize
any hierarchical classification problem. However, for the goal of reducing
the energy footprint of a model, the possible model structure usually boils
down to

(AEQO)=(MPP,MLNP, T,LCPN) . 9.5)

In this setting, problems like the above-mentioned condition monitoring
use case can use hierarchical machine learning to save energy. In the example,
the no-fault label could be reached by either the first or second classifier,
making the model MPP. Additionally, MLNP is mandatory for saving energy,
as we want to be able to stop calculating at any helpful point in the hierarchy.
Even though a tree model is not entirely mandatory, allowing additional links
to nodes other than child nodes often makes no sense and just improves
complexity. Additionally, we want to be able to tailor each classifier in the
hierarchy to a specific task. Allowing for additional links would bypass this
principle. An LCPN classifier is the most flexible approach for structures,
permitting asymmetric taxonomies with branching while allowing multi-class
classifiers at each node.

With hierarchical predictions, another problem arises with partially cor-
rect predictions, which normally would result in a low score with standard
metrics. In the condition monitoring example, the model might have correctly
classified the fault but got the severity wrong. To approach this question, the
authors recommend using the hierarchical precision, recall, and f-measure
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introduced by [80], where ]3, denotes a set consisting of the most specific
classes predicted for the sample ¢ as well as all its ancestors, and JA} the set
holding the true most specific classes for <. Considering the ancestors of class
labels, these measures address the problem of partially correct classifications
in the final scores.

_ >, [PnTy _ >, [T _2.hPhR
W= R MR M - O9)

The usability of hierarchical machine learning for energy saving, specif-
ically for small sensor systems, has also been identified by [81] Here, the
authors introduce a general description of a cascaded LCL model tailored
towards lazily triggered stages. They differentiate between simple wake-up
mechanisms, a two-stage hierarchy with only anomaly detection, and more
sophisticated cascades. For the latter, they introduce a pass-on label, which
a classifier can use to defer a decision. In this case, the decision is passed
on to the next level, triggering further computations. A model’s pass-on rate
(POR) directly influences the hierarchical metrics described above. A POR of
1 would mean the decision is passed on to the final classifier for each sample.
This leads to the hierarchical precision and recall metrics equaling their non-
hierarchical counterparts for the last classifier. Additionally, the authors assign
each stage a cost measure, as more memory is needed with increasing stages.
Combining these thoughts about POR, Cost, and hierarchical metrics, the
authors introduce an upper bound for optimizing a hierarchy wrt. compu-
tational costs and memory. With this upper bound and cost measure, they
carry out proof of concept with synthetic test cases to optimize the number
of stages in different scenarios. These scenarios are compiled to include class
distributions ranging from equal to extremely skewed, where some classes
are more likely than others. The authors conclude that optimisation can find
lower-cost hierarchical models for more skewed class distribution. This effect
becomes apparent when considering the locality of the most likely prediction
point in the hierarchy. As some labels are more likely than others, detecting
these in the early stages can save a lot of energy. For the condition monitoring
example, this effect can be observed for the first two classifiers. If the no-
fault label occurs most often, the hierarchy uses only the first (or, in some
cases, the second) classifier. This leads to enormous energy savings as the
computational complexity of each model should rise with the levels in the
cascade. This phenomenon clearly shows the inherent data dependency of a
hierarchical model regarding the reduction in energy consumption. The more
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uniform the data distribution of the underlying problem is, the less effective
a hierarchical approach becomes.

One can also consider mixing different classifier types in the hierarchy
to further elevate the benefits of hierarchical processing, as some decisions
may need more complex models than others. However, with that idea in
mind, the question of how to pick each model in the hierarchy arises. The
authors in [82], [83] approach this optimization question with reinforcement
learning. They train an agent to pick a model from a set of available models
for each node in the hierarchy of an LCPN model. As the reward function,
they use a cost measure based on the computational complexity of each
possible model type, combined with the accuracy of the complete hierarchy.
Therefore, the agent learns to make a trade-off between accuracy and energy
consumption, which, in essence, leads to a multi-objective optimization prob-
lem. To improve that result, the computational complexity is replaced with
a hardware-in-the-loop approach to accurately measure the resulting energy
consumption during the agent’s training in [84]. While this work mostly
validates the findings of [82], it shows slightly different behavior of the
found agents. With real measurements, the agent picks an MLP more often,
while the agent with the complexity approximation tends to use Random
Forests. This behavior might be linked to compiler optimizations and caching,
which can be beneficial for some models. This result shows that energy
measurements should always be included to some degree when optimizing
for a constrained device, as a theoretical measure cannot cover every possible
factor of real-life systems.

9.6.2 Distributed Computing

Another area where a hierarchical model can be beneficial is distributed
computing for IoT devices. [85] introduces a distributed hierarchical infer-
ence approach, where some nodes in the hierarchy are computed locally and
others in the cloud. This has the benefit of saving communication costs that
might be unnecessary. They look at a scenario with multiple connected IoT
appliances, which all have some parts of the information needed for home
automation. In a classic approach, all these appliances would send data to
a central hub or cloud infrastructure at every time step, which leads to an
immense communication overhead. However, some decisions are possible
without knowing the context of the other devices. In the hierarchical context,
these decisions can be made with small models running locally on the IoT
device. If this is not possible, the devices may pass the prediction to the
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cloud, triggering the next node in the hierarchy. The authors test this approach
with three data sets from three application domains (urban energy demand,
human activity, and server performance) with a decrease in system energy
consumption of 62% for a taxonomy of MLPs.It should be noted that the
authors used a DAG instead of a tree architecture for their models, as some
nodes in the hierarchy connect to the same child node. This is because the
cloud node(s) need information from multiple parent nodes because of the
nature of [oT applications, where usually numerous sensors are required for
a decision. Therefore, a typical hierarchy becomes a flipped tree and can only
be described with a DAG.

The described benefits of IoT devices are tested in a case study in [86],
where the authors use a physical system to measure the energy consumption
of an LCL model for human activity recognition. The model uses multiple
different classifiers in a cascade that are partially executed on the device.
As a novelty, they introduce an offload controller that decides if the model
should be run on the device or offloaded to a central hub. This controller
consists of an additional classifier that has been trained on binary labels,
which are extracted from the original multi-class problem. In addition, the
controller uses only the features necessary to compute the next hierarchical
layer that might be offloaded. This means that the controller performs a
reduced complexity pre-evaluation of the problem solved by the following
levels to decide if the computation needs to be offloaded. The paper shows
energy reduction of 3 times over the baseline of a purely offloaded system,
including communication costs, while improving accuracy slightly.

Taking the idea of split computing further, [87] introduces a dynamic split
mechanism to split the computation between different models and a single
DNN across multiple devices. In their proposed scenario, various loT devices
are connected to a hub. Based on the currently available network bandwidth,
the introduced system can decide to hand off the computation to the hub. In
addition, the authors train an agent with Q-learning to dynamically assign
the network type (Wi-Fi, cellular, Bluetooth, etc.) for the data transfer of
the remaining network layers. The authors can decrease the inference time
by 13.5% compared to pure on-device execution, including communication
time. However, it should be noted that no energy metrics are compared here,
so while more time efficient, the shown approach might still draw more
energy than pure on-device execution. Nonetheless, the approach should be
considered when designing a hierarchical model.
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9.6.3 Early-Exit Neural Networks

Most hierarchies mentioned before were constructed of classical machine-
learning approaches like Support Vector Machines or Random Forests. Even
though some architectures also used MLPs in their taxonomies, the work
in [88] converts the concept of lazily triggered computations to Convolu-
tional Neural Networks. Like the NMLP principle for classic hierarchies,
the BranchyNet introduced here includes exit points in the neural network
architecture (cf. Figure 9.6). The network can stop computing if a decision
can be made in some earlier parts of the network based on a confidence score.
Like nodes in the classical hierarchy, the authors define a branch as a non-
overlapping subset of the complete network, with one entry point and multiple
exit points. To train BranchyNet, the authors use a weighted formulation of
the loss function which sums over the loss functions of each exit n with a
weighting factor w,,. In this formulation, any arbitrary loss function that uses
a one-hot encoded output vector for the prediction and ground truth ¢ or y,
respectively. 8 describes the network’s parameter of the branch before the exit
point n. The choice of w,, influences the exit strategy of the network. Giving a
high value for earlier exits causes more discriminative feature learning in the
earlier branches. This leads to more early exiting but might compromise the
accuracy. Contrarily, the network’s accuracy increases with higher weights
for the later exits, but exiting in the earlier stages becomes rare. During
training, the network is trained as one unit without exiting early. However,
for the inference, the authors use the entropy of the output at each exit point
to determine if the calculation can be stopped. The computation is stopped if
it is lower than a threshold 7;,, reducing the inference time. Again, 7, is a
hyperparameter that influences the trade-off between accuracy and inference
time but might also be set automatically based on experimental results. The
authors use three basic CNN architectures (LeNet, AlexNet, and ResNet) with
added exit points to test the approach. They sweep through various values
for T, which allows for a trade-off analysis of accuracy vs. runtime. For all
three basic architectures, the BranchyNet approach leads to an optimal vector
T that achieves a 2x-6x average runtime decrease while maintaining similar
or superior accuracy compared to the non-branched networks. In addition
to these results, the authors also observe a decrease in cache misses with
more aggressive values for T'. This leads to the conclusion that with a smart
branch design, this behavior could be exploited to use the cache of a system
effectively.
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Figure 9.6 General structure of an Early-Exit CNN. After some CNN layers, exits can stop
the computation based on a confidence metric <[
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A similar approach is taken in [89]. The authors also introduce exit points
in the network, but instead of the entropy, they use a learnable decision
function ~,, (o, (x)) as an exit strategy. Depending on the output of the pre-
vious CNN-layer o,,, the decision function can decide to exit the execution.
In addition, similar to mixed hierarchies with different model architectures,
the authors propose a selection algorithm to fill branches in the early exit
network with different architectures. They argue that easier classes might
be classifiable with a simple AlexNet while others might need something
more advanced like ResNet. With this approach, the authors achieve a speed-
up of 1.5x to 7.53x, depending on the acceptable accuracy degradation. For
example, the adaptive strategy can have a speed-up of around 2x compared to
ResNet50 while staying in the range of 1% in terms of accuracy loss.

An additional implementation of an early exit strategy can be found in
[90] called MSDNet. In their approach, branches are interconnected with
a small classification network. The authors identify two problems with
intermediate exits in standard architecture. Without any modifications, the
early layers lack coarse-level features, which leads to worse classification
results for earlier exists. Therefore, they introduce additional coarse features
by adding parallel convolutional layers that calculate features on coarser
scales. These features are concatenated with the ones from finer scales for
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intermediate classification. This addition leads to a substantial increase in
accuracy for the exists.

The second problem is the interference of earlier classifiers with later
ones. The authors noticed that adding intermediate classifiers for early exiting
harms the accuracy at the final exit. Therefore, like a densely connected
network, they add connections between earlier and later convolutional layers.
In this way, the network should be able to forward information from earlier
stages, which would otherwise be lost. After this change, the final exit
becomes independent from the intermediate exits.

To optimize Early-Exit-NNs for on-device execution, [91] introduces an
on-device transfer learning approach to fine-tune the intermediate exits in
the field. The authors first train a generic MSDNet with equidistantly placed
intermediate exits. On-device, they personalize the global pre-trained model
by training only the intermediate exits. Due to the structure of MSDNet with
bypass connection spanning the whole network, re-training the intermediate
exits does not affect the final exit’s performance. Therefore, they can use the
classification result of the final prediction to teach the intermediate exists even
if no labeled data is available in the field. They continue the personalization
by tuning the threshold to decide if the calculation can be stopped at an
intermediate exit. Like Multi-Objective Optimization, the authors use a small
user-input data set to obtain a Pareto front to fine-tune the threshold. With this
approach, the authors could measure a significant improvement in inference
time and accuracy.

In addition, further field testing is done in [92] with a modified version
of BranchyNet. Instead of solely relying on the entropy to decide on the next
branch, the authors include energy-aware criteria based on the battery level.
Only a shallow branch is computed if the remaining capacity is lower than
a threshold. Otherwise, the decision is based on the entropy, as described in
the BranchyNet paper. The authors also conduct thorough energy profiling
and hardware-aware optimization steps that are out of the scope of this work.
Nonetheless, it shows the importance of optimising the target platform, as the
authors can deploy their approach to a processor with just 24kB SRAM and
128kB flash memory. In addition, they are also able to predict the battery size
needed for their system.

9.7 Discussion

The highlighted literature shows that compared to flat classifiers, cascaded
systems can decrease the latency by a substantial amount, which often
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translates into a decrease in energy consumption. The type of hierarchy can
vary from simple cascaded structures to DAG or tree structures with multiple
branches. The key here is always the uneven distribution of data in real-world
systems, where some labels are either more frequent or easier to predict than
others. This leads to a system that can abort computation early if certain crite-
ria are met, which can be boiled down to the NMLNP property of hierarchical
models. When interpreting nodes in a hierarchical model as sub-sets of a
Neural Network, the NMLNP property can also be seen in early-exit-NNs,
which also have the property to abort computation with intermediate exits.
These architectures rely on course features computed by early CNN layers,
which, for some labels, are enough to come to a correct prediction. Based on a
confidence score, the system can stop computing at intermediate exits, which
boils down to a hyperparameter optimization problem on thresholds. Depend-
ing on the thresholds, the network can trade between accuracy (regular usage
of later exits) and energy efficiency (frequent usage of earlier exits).
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Abstract

RF sensing in wireless communication networks is a novel approach for
motion detection, but it faces challenges in accurately localising motion
which is crucial for confinement in lighting control use cases. A probabilistic
model enables motion localisation through sensor fusion. However, in proba-
bilistic models the posterior estimations do not scale well with large networks
as likelihoods of all possible system states need to be computed. It will be
demonstrated that variational Bayesian techniques offer attractive approxi-
mations to the posteriors where the approximations require computational
resources that scale with the number of nodes. This method is of general
interest to large networks as it models nonlocal effects through localised
updates.

Keywords: RF sensing, sensor fusion, probabilistic models, variational
inference, confinement.

10.1 Motivation

In a smart lighting system, one can control the lighting by sensing motion
through the wirelessly connected lights (nodes) which is also known as
RF sensing. For some background on RF sensing the reader is referred to
Liu [1] and Wu [2]. Fluctuations in RSSI values, Received Signal Strength
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Indicator, between nodes are strong indicators of nearby motion. For lighting
control, the system should be able to detect human arm motions and steps as
specified by the NEN norms [3]. As major motions generally lead to large
RSSI fluctuations, it becomes a challenge for lighting control to sense minor
motions within a room while not being sensitive to major motions just outside
the room. An example situation is given in Figure 10.1.
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Figure 10.1 Downlights and indicated node pairs that are monitored for RSSI fluctuations.
On the left a person working in an office and on the right a person walking on a corridor. <

Probabilistic hidden Markov models are popular for motion sensing for
lighting control. Typically, parameters such as motion rate during presence,
average duration of presence, and probability of entering a room are intro-
duced (see for example Papatsimpa [4]). These parameters can be used for
propagating states and updating them with observations.

For modelling the signal variations due to motions in the surroundings, it
is natural to extend the probabilistic models by modelling crosstalk. Motion
directly underneath a node pair is visible, but a fraction of said motion is also
visible to nearby other node pairs. The introduction of crosstalk complicates
Bayesian inference as the number of different presence states now scale
with 2% where N is the number of presence areas. This essentially blocks
the application of Bayesian inference for large networks. Another hurdle
for large networks is the limited bandwidth for communication. In a mesh
ZigBee network, the communication budget is 30-50 bytes per second per
node, which limits the network size to about 50 nodes.

The goal of this paper is to apply a probabilistic model for
motion/presence localisation by monitoring fluctuations in RSSI values
between nearby node pairs. Using a variational Bayesian method, one can
approximate posteriors by maximising the so-called free energy. As we will
see, the maximisation is an iterative process that only involves local interac-
tions. This leads to a scalable approach in which the computational power
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and memory scale with the number of nodes. Moreover, the calculations
can be distributed over the nodes themselves, enabling a truly decentralised
approach.

10.2 Spensor Fusion via a Probabilistic Model

For localising motion, a probabilistic model will be constructed (see Bishop
[5], Murphy [6] and Morey [7] for an introduction to probabilistic models).
The probabilistic model has the fluctuation of RSSI values of the node pairs
as observational data X. By monitoring the fluctuations in RSSI values of a
node pair one effectively obtains a motion sensor. In the remainder of the
article node pairs will be referred to as sensors.

The probabilistic model contains hidden states of the physics in the
various areas. These hidden states describe at each time instant ¢ for each
area: the presence s(t) and the motion m (¢) . In addition, at each time instant
the visibility of a motion from an area i to a particular sensor j is described
by Ci;(1).

In order to simplify the calculation, one would like to make the Markov
assumption which influences the choice for the value of the time-step. A
simple model can be obtained by choosing the time-step to be larger than
1 second in which case motion at time ¢ only depends on the presence state
at ¢ but not on a previous motion state. As the RSSI fluctuations X(#) only
depend on the m(¢) and the probability that a motion is visible C to a sensor,
one can write the distribution as

P(X(t),m(t),s(t),s(t—1)|C(t))
= P(X(t)|m(t), C(1)) HP(mi () [ 83 (8)P (si(t) | si(t—1))

P (Si (t — 1))

Note that in the equation above it was assumed for simplicity that the
presences in each area are uncorrelated. In Figure 10.2 an example of the
interactions is given at a time instant.

With the Markov assumption, the posterior can now be determined by
Bayesian inference

P(s(t),m(t),C (t)|X (:t)) (10.1)
PX@)]s®),m(@),C(1))
P (X (1)

P(s(t),m(t),C ) |X (t=1)),
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Triggers by sensor 1

Area(C)b Transm. Transm. Area(C)b
visible to areab to areab to visible to
sensor 1 sensor 1 sensor 2 sensor 2

Transm. areaa Area(C)a
to sensor 1 visibleto M1

Motion (m)in area a Motion {m)in area b

Presence (s{t)) in a Presence (s(t)) in b

Figure 10.2 Bayesian network at a time instant showing the dependence between the various
states and the sensor observations. <«

where X (:t) denotes all RSSI fluctuations up and including t, and X(t)
denotes RSSI fluctuations at time t. Assuming the independence of presences
in areas one finds for each area i

P(si(t),mi (1) |X (: t-1)) = P (my (t) | 8 (1)) P (83 () [X (: t=1))
P(si ()X (: t—1)) = P (s () | 85 (t — )P (3 (t — 1) |X (: t—1)) .
s;(t—1)

Note that the propagation of presence states involves a transition matrix
P(Si (t) | S; (t — 1))

The posterior in Equation 10.1 will be computed at each time-step using
variational methods (see also Attias [8] and Jordan [9]). By maximising the
free energy one can approximate the posterior P (s (t),m (t),C (t) | X (t))
by a probabilitty distribution ¢ in terms of the KL-divergence Dy (P||q).
This yields

P(s(t),m(t),C1)[X (1))

P PX(1),5(t).m(1).C (1)
~a gq a S(t)’m(t)’c(t)q(s (t),m(t),C(t))]|log AORIORE0)

(10.2)

For notational simplicity the explicit time-dependence will be dropped in
the remainder.
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In order to solve the equation above one often makes additional assump-
tions on the probability distribution ¢q. However, the mean-field approxima-
tion such as ¢ (s (t),m (t),C (t)) = q(s(t)) g(m(t))q(C (t)) is blocked
as probability for motion during absence is zero. Zero probabilities lead to
problems with the logarithms. Instead, we approximate g by

q(s,m, C)=[Tq(Cilmi) q(milsi) q(si), (10.3)
i
where g (m; = 1|s; = 0) = 0 and j refers to the sensor index. For nota-
tional simplicity the difference between the q’s such as ¢ (s1) and ¢ (s2) has
been made implicit. Note that this approximation contains more distributions
compared to the mean-field approximation; ¢ (m;|s; = 0) has no relation
with ¢ (my|s; = 1).

10.3 Update Equations

Equation 10.2 can be solved by iteratively maximizing the lower bound
evidence. With each update for one of the ¢'s the lower bound evidence gets
increased. Please see Figure 10.3 for a subset of the network that is relevant
for determining the states. Please note that Mo, is the visible motion towards
sensor j excluding any motion from m;.

______________________

enso 0

R

Figure 10.3 Isolated part of the network that is relevant for determining the states. ¢l
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In the following subsections the update equations for the various factors
will be determined by plugging Equation 10.3 in Equation 10.2. In the
derivation the following relation will be often employed

P(X|a)P(a)

>, P(X|a">P(a’) '
(10.4)

The relation can be proven by using the method of Lagrange multipliers
and treating ) ., ¢ (a) = 1 as a constraint (see also Arfken [10]).

It is instructive to work out the update equation in case a mean-field
approximation would apply. Consider the example in Figure 10.4 and write
q(s,t,u) as q(s)q(t)q(u). In this example the update equation for ¢ (¢)
would be

argmaxgq) za: q(a)(log P(X,a)—logq(a))=

q(t) = argmax, ;) > a(s)q(t)q(u) 10g%

s,t,u
= argmax,) Y- q(s)q (1) q(u) log )

s,tau
= argmaxq(t);Q(t) (10.5)
g P(s|)"™  P(tu)"™ —logq(t)
. P(s\st)Q(s) w P(tlugJQ(u)
Y, SP(sIt’/’)q(s) P& |u) 1)

)
—
——

Figure 10.4 Example network with a mean-field assumption. <l



10.3 Update Equations 227

In case t only takes two values (0,1) and ¢ is the opposite value of ¢ then

a(t)=$ [loa 5 | =8 Sals)loapify + S a(wloarih
) (10.6)
where S is the Sigmoid function.

Therefore, in order to update ¢ (¢) one only need to know the approxi-
mated posteriors of its direct neighbours. Moreover, Equation 10.5 is just a
Bayesian inference in which the prior and likelihood are products of powers
by how much the surroundings appear which is according to expectation. In
the following subsection the update equations will be derived for the various
q’s. In Figure 10.3 a part of the network is visualized which is useful when
deriving the update equations.

10.3.1 Update equation for g (C;j|m; = 0)
Plugging Equation 10.3 in Equation 10.2 one finds

q(Cijlm; = 0) = argmax > q Moi; q(si)q(mils;)

q(Ci5lm;=0) s;,m;,m0;5,Cij
P(Xj,moij,si,mi,Cij )
)] j j J
q<Cz]|mz) Ogq(moij)q(Si)q(mi\Si)q(CijImi)
= argmax  »,  q(mo;;)q(si)q(m; = 0ls;)

Q(Czj|mz O)Szymozyoz; ( )
X' mOij,si,mizo\Cij P(C”)
¢ (CijImi=0)10g g 5015 Y alme=07s:)a(Cog i =0)
= argmax Y q(s;),q(m;=0[s;) q (Ci;|m;=0)
(Clj‘m’b 0) LCZJ

log 372 iy
= P (Cij)
(10.7)
The result above is according to expectation as one cannot estimate
transparency/visibility in absence of a source m.

10.3.2 Update equation for g (C;j|m; = 1)
Plugging Equation 10.3 in Equation 10.2 one finds

q(Cijlm; = 1) = argmax
q(Cijlm;=1)

> q(Mo;j)q (si) , q (milsi) q (Cijlms)

84,M,Mo45,C5
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P(vamoijzsivmi,cij)
108 St (s a(miTs:)a(Cog )
= argmax  », q(Mmo;j)q(Cij|lm;=1)
q(Cijlms=1) mo,;,C;
P(vamoij:mizlvsi:]-ycij)
log a(CyyTmi=1)
= argmax Y. q(moiy)q (Cijlmi=1) (10.8)

q(Cij|lm;=1) mo;;,Cij

q(Cijlm;=1
logP Xj\moij,mizl,Cij IOg%

P(Cij|mi:1)(P(Xj|moij=07mi=1,Cij))q(m0ij:O>

_ZC,M P(C'ij|mi:1)(P(Xj|m0ij=0,mi=1,cqj))q(mow':o)

In the last line terms involving ¢ m,;; = 1 can be omitted as they
do not lead to differentiation for the different values of Cj;. The result can
be understood as a Bayesian inference where the amount of observation is
determined by ¢ me;; = 0 .

10.3.3 Update equation for g (m|s = 1)
Plugging Equation 10.3 in Equation 10.2 one finds

q(mils; = 1)
= max > q Moij q(8i)q(mls:) q(Cijlm;)
q(mi|si:1)jvsiami’moijzcij
P(X‘ymoi’ysiymi,cz")
1 J J J
qu(moij)q(si)q(mi|si)q(cij|mi)
= anax >4 Moy q(milsi=1)q(Cij|lms)
4(milsi=1) jm;m,,;,Ci;
P(vamivcij|moij73i:1)

lo
& abrfo:=D)a(Cis )
_ (Cislms) a(Cijlmi)a(mosj;)
. Jimoij,Cij P(ml‘sl_l) q(C‘”\Tn (X |m17Cz77mn17)
Cyjlm’; , a(Cijlm’;)a(moi;)
Limty simoig.oy DMV ilsi=1) ((c T )) (X51m/3.Cijmos; )

vy a(Cislme) a(moiy=0
P(m;|s;=1) o P(Cij1mi) (P(Xj‘migcijamoij))( =)

3Cij  a(Cyzlmy)
p(ogimry) 1(Cilmi)
ij (c ilm’ ;)

S, Pilsi=1) o (P(X;Im5,Cigimany ) 009 =0)
(10.9)
The result above contains terms that originate from complexity

P (Cyjlmi) [ q (Cijlm).
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10.3.4 Update equation for g (s)
Plugging Equation 10.3 in Equation 10.2 one finds

q (s;) =argmax q moij q(s:)q(milsi)q Cijlm;

a(sq) . c
JyS8i,Mi,Moj,Ci4

P Xj,moij,5;, m;, Cyj
q Moij q(si)q(milsi)q Cijlm;
P (s;)

Jymi,mo ij ,Cij

log

P Xjlmoij,mi, Ciy P moyj P (my|s;) P Cyjlmy

q moij q(milsi)q Cijlm;

:| q(moz)a(milsi)q(Cizlm.)

ocP (si) P XjImo;j=0,m;, Cij=1 a(moi;=0)a(milsi)a(Cig=1lm:)
mi,J
) q(Cijlm;)
P (myls;) 1) P Cijlmi ’
— X —_— . (10.10)
q (mgls;) o \ @ Cijlm;
J

10.4 Conclusions and Discussion

In this article, a probabilistic model is developed for localising motion in
a wireless IoT network. A hidden Markov model is employed to propagate
presence states over time using a transition matrix, forming a new prior
for presence at the next time instant. At each time instant, a variational
Bayesian approach was utilised to translate sensor data (RSSI values) into
posterior presence and motion states, accounting for potential crosstalk. A
first preliminary result is given in Figure 10.5.

The derived equations do not need to be applied to states in a particular
order as each order will improve the lower bound evidence. This enables a
distributed approach in which nodes apply asynchronous updates by taking
information from their neighboring nodes. However, the iterations do increase
network traffic, and it remains to be seen whether the network can handle the
increase in communication.

The number of iterations needed for convergence will generally depend
on how sensitive RSSI fluctuations of node pairs are to motion in the vicinity
as the probabilistic model handles nonlocal effects via iterations involving
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Figure 10.5 First results for two areas being named 99 and 97. The model parameters were
chosen such that area 99 is a corridor while area 97 is a meeting room. In the figure one can
see that isolated sensor events of 97 before 15:49 do not lead to presence in area 97 as it is
more likely they originated from area 99. After probablity for presence is high in area 97 then
isolated sensor events of 97 at 15:50:15 do lead to an increase in presence in area 97. <

local updates. Future experimental studies are necessary to test the model for
convergence and to quantify the improvements in motion localisation.

Centralized or distributed, the number of iterations needed for conver-
gence may be reduced when considering techniques such as gradient descent.
Using gradient descent one updates a group of states by a small amount.
Iteratively updating (see also Kuusela [11]) may lead to faster convergence
compared to iteratively updating each state.

Although the use of variational Bayesian techniques led to simple update
equations, a problem with the approach is that the obtained posteriors are
often narrower than what would be justified. This is an effect of mini-
mizing the reversed KL-divergence. Obtaining over-confident posteriors is
especially problematic for crosstalk parameters Cj; as it highly influences
future updates. Therefore, it is recommended to use the whole time-series
when updating model parameters with variational Bayes. As an alternative
one may consider in future studies expectation propagation as proposed by
Minka [12] in which sequential updates should be feasible. Similarly, it would
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be of interest to benchmark the obtained iterative algorithm with message
passing algorithms such as RxInfer [13].
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Abstract

In modern computer vision tasks, the ability to identify and track objects
across different scenes and environments has become important for numerous
applications, especially in transportation. Inspired by this need, we propose
a method that leverages a multi-step process focused on extracting and using
object features for object re-identification.The proposed pipeline includes
the following steps: detecting an object, converting its features into a vector
embedding, storing this embedding in a vector database, and then querying
the database to find the same or similar objects based on their feature
embeddings. This approach enables us to identify the same object across
different images or cameras, even in varying locations. This is essential in
scenarios like Vehicle Re-Identification. For such scenario, implementing this
process on edge devices is crucial. Therefore, ways to tailor the pipeline and
its outputs for edge devices are outlined. The paper details the pipeline’s
structure along with the experimental setup demonstrating its application,
particularly in vehicle re-identification. The pipeline achieves 70-80% re-
identification precision when dealing with vehicle images from our network
cameras and above 70% Rank-1 accuracy when dealing with a CityFlow
video track scenario.

Keywords: vehicle re-identification, feature extraction, re-identification
pipeline, computer vision, traffic monitoring.
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11.1 Introduction

Object recognition in photos and videos has long been a key area of research,
with significant advancement driven by computer vision [1]. Initially, image
classification addressed the question, “What is in the image?” followed by
object detection answering, “Where and what are the objects?”’—Ilargely
thanks to Convolutional Neural Networks (CNNSs) and their variants [2][3].
This paper focuses on object re-identification, which is a sub-problem of
image retrieval. Object re-identification aims to distinguish instances of the
same class, such as vehicles and persons (as illustrated in Figure 11.1), across
different scenes despite changes in conditions like scene, lighting , or object
pose [4][5]. However, truly impactful re-identification research in 2024 must
support edge computing.

Because of the increase in processing latency and big data, edge com-
puting is becoming essential for real-time re-identification, especially in
applications like traffic monitoring, where network cameras should transmit
only processed results [6][7]. The volume of available video footage, and the
influx of sensory data have made the large-scale accumulation of big data
inevitable [8]. This is why fully automated systems are needed for processing
data and re-identifying objects in smart cities. Manual processing by humans
is not feasible, especially when real-time decisions are required. We propose
a pipeline to handle these tasks of efficiently processing live video feeds and
identifying objects across multiple scenes. The novelty of this research lies
in the integration of state-of-the-art methods into a unified pipeline, tested on
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Figure 11.1 Re-identifiable classes in smart city environments. <
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real-world vehicle re-identification scenarios that fit into smart city initiatives
and traffic management using edge computing solutions.

11.2 Related work and state of the art
11.2.1 Object detection

CNNs have been incredibly useful in computer vision tasks, including object
detection. YOLO - the “You Only Look Once” model is one of the best
performing and regularly updated choices. The latest YOLO v8 version has
shown significant improvements in accuracy and speed [9], which is crucial
for real-time applications like ours.

11.2.2 Object feature extraction

Feature extraction maps an image from its colour space to a higher-
dimensional feature space [10]. Before feature extraction, multiple pre-
processing stages are usually employed: normalization, thresholding, bina-
rization, resizing and others. We can expect a model to extract colour, texture,
shape, motion and localization features. A model learns intra-class variations
as features when training a model on objects of one class like face features in
the case of facial recognition.

As of 2024, CNNs became the predominant choice in object feature
extraction thanks to their strong representation power and their ability to learn
deep invariant embeddings [11].

11.2.3 Vehicle re-identification

There are multiple benchmarks for Vehicle Re-ID. MBR4B-LAI model [12]
tops the VeRi-776 benchmark, “A strong baseline” model [13] tops the
CityFlow benchmark and the VehicleNet model [14] is best at the VeRi
benchmark. We pay particular interest to [14] by Zheng et al. because of the
baseline model that is applicable to all types of object re-identification and
feature extraction. In [15] the same author first introduces us to their baseline
model and its architecture and demonstrates its capabilities specifically in
pedestrian re-identification. In further papers, however, Zheng et al. demon-
strate tailoring of this baseline to vehicle re-identification [16] and person
re-identification [11]. We underline this baseline models usefulness by the
versatility of its use in publications, its open code base and customizability
and its entry into most benchmarks. The model is successful in Rankl
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precision, according to the benchmark results on Papers with Code [17]. The
model is implemented in Pytorch and is based on ResNet50 pre-trained on
ImageNet, although this backbone is customizable. We use the surrounding
project code for this model available on [18]. The author has provisioned
tools to train, finetune, test and visualize the results of the inference process.
We further refer to this model as “baseline model”.

11.2.4 Available datasets

The VehicleID introduced in [19] has each image associated with a vehicle
ID. It is the dataset with one of the biggest unique ID collections and features
pictures with different resolutions and quality of visibility as well as vehicles
in motion state. Vehicles are mostly seen, however, from the front and the
back only. The VeRi-776 was introduced in [20]. Each image is attached with
vehicle ID, bounding box, type, colour, brand. The dataset has a smaller set
of unique id’s compared to the VehicleID, but has better quality pictures,
better visibility and vehicles from all angles not just back and front. The
CityFlow dataset introduced in [21] is a traffic camera dataset consisting of
synchronized HD videos from 40 cameras. The quality of images is high, and
vehicles can be seen from many angles. The difference between this and the
previous two widely used datasets can be seen in Figure 11.2.

Figure 11.2 The difference between the distribution of vehicles for the (from the left)
VehicleID, VeRi and CityFlow datasets. <1
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The VehicleX synthetic data can supplement these three datasets. It con-
tains generated images with domain adaptation from VehicleID, VeRi-776
and CityFlow [22].

11.2.5 Edge implementation

Requirements for a real-time system include implementing a network that
follows the edge-computing paradigm. The edge-computing paradigm means
that the video analytics run directly on the device and only the processed
results and analytics are transmitted. [6] have developed a pilot project
where they use mobility trackers using live CCTV feeds, with twenty sensors
deployed over the city with the objective of citywide traffic monitoring in
real-time. The devices had the ability to transmit the outputs either over
Ethernet or LoRaWAN networks and had two main components: 1.) an
NVIDIA Jetson TX2 high performance and power efficient embedded com-
puting device with special units for accelerating neural network computations
used for image processing and running Ubuntu 16.04 LTS and 2.) a Pycom
LoPy 4 module handling the LoRaWAN communications.

11.3 Proposed methodology

We propose a sequence of processes for object re-identification in the context
of a smart city environment. It takes in video frames from camera x, detects
the vehicles in the frames, crops images of the vehicles and saves them, turns
the images into feature embeddings and saves them in a vector database. The
same process is repeated for a different camera y ... z, so that vehicles can be
re-identified from camera x to y ... z or vice versa. This has been illustrated in
Figure 11.3.

Scene/Camera 1. Scene/Camera 2.

Figure 11.3 The proposed structure of the re-identification pipeline. <
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During development, we split the pipeline into two parts — Vehicle
counting and tracking and Vehicle Re-Identification.

11.3.1 Vehicle detection, tracking and counting

First step in the larger pipeline is object detection. We receive the videos
from a network camera, detect the vehicles, get their bounding boxes and start
tracking them. We use the YOLO v8 model for detection and the ByteTrack
tracking package [23] to assign IDs to vehicles and track them through
consecutive frames.

Further we establish counting criteria for incoming and outgoing cars (for
example entries and exits in an intersection). This can be done with the built-
in functions of ByteTrack, for example, drawLine - counting when a car drives
past a drawn line as seen in Figure 11.4. The count, entry and exit times of
cars should be continuously logged.

Before testing re-identification, verifying the accuracy of the vehicle
counting step is essential. However, as this falls outside the paper’s scope,
we have intentionally excluded these sections.

Figure 11.4 The implementation of the counting lines and ByteTrack in cameras (from the
left, upper row) 1.,3. and (lower row) 2. I

11.3.2 Vehicle feature extraction and storage

Consequently vehicles should be cropped out of the frame. Then the re-
identification model will turn the object features into n-dimensional vectors
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that consist of natural, real or complex numbers, where one number represents
a feature or a part of a feature [24].

We require a Vector database, so vectors can be stored and queried
efficiently [25]. The database must contain cosine similarity search comple-
mented by metadata filters. The cosine similarity function is widely used and
requires an input of at least two unit-length normalized vector inputs to output
a vector distance [24]. We aim to store data in the form of

Key:Value = Objectld:ObjectFeaturesVector

while more fields should be easy to add.

For this we have chosen LanceDB — an opensource database for vector
search, built for efficiency in handling vector data and integration with Python
[26]. It is flexible in saving and querying data.

We also introduce the following points of action:

11.3.2.1 Datasets

We create our own “real-world” dataset for testing from footage we have
gathered from our network cameras. In our custom dataset we aim to collect
images of as many vehicles as the limited service-road traffic flow allows
us to. We also aim to have a similar number of images per vehicle (i.e. 4-6
images, not more or less). These shots should be evenly distributed between
far, medium and close distance and low, medium and high-resolution images
respectively.

We will also use the three widely used and public datasets that we’ve
discussed in 2.4, to see which fits best for our real-world data and then
combine the best performing standalone dataset with the Vehicle X synthetic
data.

11.3.2.2 Training hyper-parameters

The training parameters and their default values are found in [27], including
Backbone, Learning rate, Warm epochs, Batch size, and Erasing probability.
To further explore the model’s performance, we conducted experiments by
varying additional hyperparameters, specifically:

* Colour jitter: enabled or disabled;

* Size of the last linear layer: 256, 512, or 1024;
* Cosine learning rate: enabled or disabled,;

e Stride: 1, 2, or 3.
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These variations were designed to evaluate the potential impact of these
hyperparameters on training outcomes.

11.3.3 Edge device considerations

While the pipeline has been tested on a desktop computer with an 8GB
GPU, this setup provides a rough estimate of the computational load and
performance we might expect on edge devices like the NVIDIA Jetson series
[28]. Current work suggests that despite differences in power consumption
and architecture, the constraints with desktop testing can offer insights for
edge deployment that we wish to implement in the future.

11.4 Experimental settings

11.4.1 Receiving video from a Network camera

Figure 11.5 The same car visible in our network cameras (from the left) 1., 2. and 3.,
respectively. I

To record “real-world” footage for the dataset we’ve envisioned in section
3.2.1, we will use 3 AXIS P1427-LE Network cameras [29] that record
footage from the same service road and a parking lot. We are receiving the
video in 1280x960 resolution with ~ 2 fps. The view from the cameras
illustrated in Figure 11.5. are summarized in Table 11.1.

When a vehicle is at the gates, camera 1 and 2 will see the car from the
opposite sides (front and rear). Camera 3 is located deeper into the territory
and generally sees the path of a vehicle driving down the service road with
the gate in a far distance.
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Table 11.1 The 3 network cameras used <!

# Altitude Optimal Focal zone Direction Sides of car seen
(Above (Position, distance from
ground) cam.)
1. ~ 3m centre of the frame, 4m — Front, Back, Sides and
roof (for lower cars)
2. ~3m further up the road from cen- < More from the front and
tre, 5-6 m the back, but skewed sides
and roof are visible
3. 6-8 m Wider area around centre, 6-8 — front/back and roof of the
m car visible well, sides in
poor quality

11.4.2 Vehicle re-identification

11.4.2.1 Testing and data annotation
We have chosen the following datasets to conduct our experiments on.

* Benchmark datasets. By using the three benchmark datasets we dis-
cussed in section 2.4, we can access reliable test data, standardize our
test metrics and evaluate the re-identification model itself.

* CityFlow test track video. We test the whole re-identification part of
the pipeline and simulate an intersection scenario where we are re-
identifying vehicles with CityFlow test tracks. We will be using the
scenario Nr. 1 (intersection SO1) in this dataset, to re-identify vehicles
from camera 1 to camera 4 [21]. There are around 2000 frames in each
video and 91 unique vehicles seen. Both cameras point to the same
intersection but from vastly different locations.

* Custom test data. We have recorded footage from 3 of our cameras.
All of them cover overlapping sections of a service road inside a closed
territory. The vehicles were cropped from these videos and saved into 3
folders, each for its own camera. This dataset contains 70-100 images
from each camera, with ~ 25 unique vehicle identities. We will use this
data to, first and foremost, test the generalisation of our trained models
to the actual data that we will use this pipeline on.

11.4.2.2 Saving the feature extractions

We will experiment with four methods (See their comparison in Table 11.2)
for dealing with cropping vehicles from the frame and saving them into the
database:
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1. Basic Frame-by-Frame Saving: In this method, a feature extraction of
a vehicle is saved in every frame a vehicle is detected. These vectors are
saved separately under the same vehicle ID in the database. Hence, there
are multiple feature embeddings for the same vehicle.

2. Vector Summing: Instead of storing every feature vector separately, we
maintain a single vector per vehicle. Each new embedding for a vehicle
is summed with the existing vector, and the result is divided by the total
number of updates, averaging the embeddings over time. This process
keeps track of how many times the vector has been updated by adding
an additional field in the database.

3. Zone-Based Saving: The frame is divided into zones using a grid, and
a vehicle’s feature embedding is saved once per zone it passes through.
The zones can be seen illustrated blue in Figure 11.6. Typically, this
results in 4-6 saved vectors per vehicle, depending on its trajectory as
opposed to many more vectors when saving in each frame. Each instance
of feature extraction is stored as a separate vector under the same vehicle
ID.

4. Zone-Based with Vector Summing: Similar to the previous method,
but here we apply vector summing. The vehicle’s vector is summed for
every frame in which a vehicle has changed zones.

Figure 11.6 The implementation of the saving zones (drawn as blue rectangles) as seen on
the CityFlow test track video.
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Table 11.2  Vehicle Cropping and Saving Strategies <1

Method Number of saved Saving Embedding management
vectors strategy
Basic Multiple (all Per Frame New vector for each detection
frame-by-frame frames)
saving
Vector Summing 1 Per Vehicle Sum and average of all
vectors
Zone-Based 4-6 (based on Per Zone New vector for each detection
Saving zones) in new zone
Zone-Based with 1 Per Vehicle Sum and average for each
Vector Summing detection in new zone

11.5 Results

This section discusses the results of the experiments.

11.5.1 Performance metrics

* Rank-1, Rank-X Accuracy: Measures the proportion of examples for
which the predicted label matches the single target label (Rank-1) or any
of the top X predictions match the label (Rank-X) [30].

 mAP (Mean Average Precision): Average precision (AP) is the average
of accuracy values at all rankings where relevant objects are retrieved,
and mAP - the average of all APs provided [31].

* Micro Precision and Micro Recall: Calculated by aggregating true pos-

itives, false positives, and false negatives across every query (instance)

and doesn’t consider possible class over/under representation [32].

Macro Precision and Macro Recall: Precision and recall calculated

separately for each class and then averaged, giving equal weight to all

classes regardless of their size [32].

Validation Loss: A measure of how well a model is learning during

validation step of training. For training we use Cross Entropy Loss and

Triplet Margin Loss together (summed).

11.5.2 Dataset generalization

We aim to find the benchmark dataset, that makes the baseline model gener-
alize best on our own recorded data. For this we will use the Rank-1 accuracy
metric as described in section 5.1, that has been averaged from 3 tests on our
custom dataset.
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Table 11.3 Testing on our custom dataset
Training dataset Veri Vehicle-ID CityFlow
Averaged Rank-1 accuracy, % 65.81 44.85 65.44

Loss over Epochs

—o— Train Loss
—&— Val Loss

4.0 1

3.5

3.0 1

2.54

2.04

Loss

1.5

1.0

0.5 |

0.0 1 S~

Epoch

Figure 11.7 Model loss values during training on the VeRi dataset. We find values plateauing
after 20 epochs. <

We use the assumed default training parameters as seen in [27].

Table 11.1 indicates that training the baseline model on the Veri dataset
provides the best result (we compare values at epoch 19. to reduce training
times as depicted in Figure 11.7). Even if the difference between VeRi and
Cityflow datasets is insignificant, visually the vehicles seen in the Veri dataset
resembles our collected data more.

11.5.3 Hyper-parameters

We have trained the model on all combinations of the hyperparameters that
we have outlined in section 3.2.2 over 15 epochs and recorded their loss
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Table 11.4 Validation results during training <[

Cosine learning

Nr. Loss Stride Lin. Num. Color jitter rate Epoch
1 0.0082 1 256 1 0 15.
2 0.0083 1 256 1 1 15.
3 0.0084 2 256 0 0 15.
4 0.0084 3 256 1 1 15.
5 0.0086 3 256 0 0 15.
6 0.009 1 256 0 0 13.
7 0.0092 1 256 0 0 15.
8 0.0092 1 256 1 1 13.
9 0.0092 1 512 1 0 11.
10 0.0093 1 256 1 0 11.

values. Training the model for 36 times in total, consisting of 540 epochs.
The rest of the training parameters have been left with the default values. The
10 entries with the lowest validation loss value we showcase in Table 11.4.

The parameters that appear to have the greatest impact are Stride, Linear
Layer Size, and Colour Jitter. Colour Jitter was enabled in 6 out of the 10 best
results, Stride was set to 1 in 7 of the top results, and the Linear Layer Size
was set to 256 in 9 out of the top 10 results. This highlights the significance
of these parameters in achieving best performance.We will further train the
model with a stride of 1, number of linear layers of 256 and color jitter
enabled.

11.5.4 Performance on the VeRi-776 benchmark

We use the VeRi-776 dataset as a benchmark. We compare the results of our
improvements to the unmodified baseline model.

In our experiments, we initially trained the baseline model using the VeRi
dataset. As shown in Table 11.5 we used the default training hyper-parameters
and evaluated the model’s performance over 20 and 50 epochs. The model
trained on 50 epochs outperforms the one with 20.

Training the model with the updated parameters of stride, linear number
and color jitter (see Section 5.3) demonstrates further improvement on the
benchmark.
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Table 11.5 VeRi Trained Model comparisons on the VeRi-776 benchmark

Model Rank-1 Rank-5 Rank-10 mAP
Baseline trained on Veri, 19°® epoch 93.80 97.61 98.74 68.96
Baseline trained on Veri, 49" epoch 94.04 97.49 98.80 69.4
Model with updated parameters 95.47 97.62 98.51 71.70
trained on Veri, 49" epoch

Model with updated parameters 95.83 98.09 98.87 73.64
trained on Veri and VehicleX, 49*®

epoch

Lastly, we conducted additional training by incorporating the VehicleX
synthetic data into the training process.

All together our efforts have increased mAP by 4.24% and Rank-1 by
1.79% from “Model trained on Veri, 49th epoch” to “Model trained on Veri
and VehicleX, 49th epoch with updated parameters”.

11.5.5 Re-identification testing on test data from our cameras

In this section we test the model performance on the test data gathered from
our network cameras.

11.5.5.1 Camera to camera re-identification

Table 11.4 contains the Micro and Macro precision values and table 5.5
contains the Micro and Macro recall values (see the description of these
metrics in section 5.1), when re-identifying from a query camera x (rows)
to gallery camera y (columns).

> True Positives

Micro Precision = 11.1
> True Positives + ) False Positives (LD
. N True v Positives ;
Macro Precision = — . - P
N i1 True Positives ; + False Positives ; .
(11.2)
True Positives
Micro Recall = Z e mad ; (11.3)
> True Positives + ) False Negatives
N Positives ;
T i
Macro Recall = — — e - Nt
N i1 True Positives ; + False Negatives ;"

(11.4)
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Table 11.6 Precision when re-identifying from a query camera to a gallery camera

Micro Macro Camera 1 Camera 2 Camera 3
pr. pr-

Camera 1

Camera 2 66.13 57.58

Camera 3

Table 11.7 Recall when re-identifying from a query camera to a gallery camera <

Micro Macro
I. I.

Camera 1 Camera 2 Camera 3

Camera 1

Camera 2 66.13 46.22

Camera 3

Where: N is the total number of classes,

True positives; are the number of correct predictions for class i,

False negatives; are the incorrect predictions for class i.

Judging by the precision and recall values we can establish the following
conclusions:

* The model generalizes reasonably well to our custom testing data

* The percentages and differences in micro/macro values suggest the
model may be overfitting to certain well-represented vehicle identities in
camera 2 and hints at difficulty in recognizing rare vehicles elsewhere.

* Overall, it seems the model can generalise camera 3. feature extractions
the best against all scenes but has trouble generalising camera 1. and 2.
feature extractions against each other.
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Table 11.8 Macro, micro precision and recall when re-identifying from a query camera to a
gallery of two cameras <]

Cameras Micro Precision, Macro Micro Recall, Macro
% Precision, % ) Recall, %
1—-23 73.39 80.63 73.39 74.96
2—-+13 75.81 67.09 75.81 59.38
321 85.71 89.21 85.71 88.17

11.5.5.2 Sets of cameras

We can even out the results of the different cameras if a car has passed through
at least two cameras, which has allowed us to gather more data in the database
of any given car. Let’s use a test, where we query vehicles of one camera from
a gallery of two cameras. The cameras column specifies the camera x (query),
who’s images are queried in the camera y,z (gallery) images.

Table 11.8 shows that re-identification for vehicles that have passed
through at least two cameras is more reliable. Camera 3 shows the highest
performance with both micro and macro values exceeding 85%, indicating
strong generalization across vehicle identities. In contrast, re-identifying from
camera 2 to cameras 1 and 3 results in the lowest macro recall (59.38%),
suggesting difficulty in retrieving true matches for less represented vehicle
identities. Overall, the model performs well, but the noticeable drop in macro
values for camera 2 queries points to possible need to ease class imbalance in
the future.

In practice the results may indicate that cameras that have a slightly
zoomed out or aerial view of the roads or intersections (Camera 3) can
produce feature extractions that generalize better than cameras that see the
vehicles up close. It can also be observed that camera 2 had a 100% re-
identification precision when querying against camera 3, which could be
explained by the fact that both cameras 2 and 3 had similar angles with only
height varying. What is harder to conclude is why the same was not true
for camera 3 querying against camera 2. Similarly, it can be observed that
cameras 1 and 2 have opposite viewpoints, so that even if the car went back
and forth through both cameras, each camera would only have a flipped image
of what the other camera has. This explains the poorer performance between
camera 1 and 2.

11.5.6 Testing the whole re-identification part of the pipeline

We test our model on the CityFlow video tracks - re-identifying vehicles
from (intersection) SO1 traffic camera 4 to camera 1 To make the process
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Table 11.9 Testing methods of the re-identification pipeline on CityFlow video tracks

Test scenario Basic Vector Zone-Based Zone-Based with
Frame-by-Frame Summing Saving Vector
Saving: Summing:

Rank-1 65.52 62.78 72.90 74.13

accuracy in
%

Test 1107.80 1085.30 330.12 328.90

duration in
seconds

as close to real world as possible we will use the Rank-1 accuracy to measure
the accuracy of the pipeline, since in a scenario like this we simply care for
whether the vehicle has been re-identified correctly or not. As mentioned in
section 4.2.2 , we test the 4 approaches of capturing the feature embeddings
and saving them into a database.

Overall, the tests on CityFlow video tracks show that capturing vehicles
in distinct zones improves both accuracy and efficiency, as clearly illustrated
in Table 11.7.

11.6 Future research

Although this paper proposes a complete pipeline for object re-identification
on edge devices, multiple areas remain for future research. First, optimizing
the pipeline for specific edge devices like the Nvidia Jetson by profiling
performance and applying techniques such as model pruning, quantization,
or TensorRT for efficient inference. Additionally, fine-tuning models trained
on public datasets with our in-house data could reduce distribution shifts and
improve real-world performance. Finally, a more in-depth analysis of feature
vectors is needed to better understand which components are relevant for
re-identification accuracy and which are redundant.

11.7 Conclusion

In this paper, we presented a multi-step pipeline for object re-identification,
focusing on real-time applications using edge devices. The pipeline handles
object detection, feature extraction, and matching through a vector database,
demonstrating reliable vehicle re-identification across various scenes. Per-
formance dynamics were evaluated by comparing different datasets, models,
pipeline processes. The authors observed the position and angle of cameras
significantly influencing the accuracy of vehicle re-identification, with higher
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or wider vantage points producing better feature extractions for generalization
across scenes.

The findings demonstrate that while we successfully constructed an
object re-identification pipeline by combining state-of-the-art methods, its
effectiveness and constraints are highly dependent on the specific applica-
tion scenario. Re-identification performance is influenced by factors such
as the suitability of training data for real-world generalization, the model
training approach, and the careful tuning of hyperparameters. For vehicle
re-identification, it is crucial to consider where and when the vehicles are
detected, the characteristics of the road or intersection, and the specific
features of the camera recording the footage. From this, we can conclude
that achieving high performance in vehicle re-identification requires not only
advanced methodologies but also scenario-specific adaptations in data prepa-
ration, model optimization, and detection configuration. We also conclude
that obtaining multiple embeddings of the same object in different poses and
locations help re-identifying it later.
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Abstract

As devices become smarter, embedding intelligence in microcontrollers and
constrained environments is critical. Optimising machine learning models
for these tiny devices requires balancing software efficiency, such as accu-
racy, with hardware constraints like memory and power. We introduce a
TinyMLOps-based framework for optimising models across the cloud-to-
device continuum. In our approach, cloud resources handle heavy tasks like
data labelling and model training, while microcontrollers gather real-time
metrics on efficiency and hardware utilisation. Then, some repositories man-
age models and metadata identified during the optimisation phase, including
performance metrics collected directly from the target devices, thus ensuring
an accurate exploration of the model space in real-world conditions. Using
tools such as MicroPython and MLFlow, our framework enables seamless Al
deployment on resource-constrained devices, providing a scalable solution
for the future of edge Al

Keywords: MLOps, edge Al, edge computing, model deployment, Al
workflow, real-time metrics.

12.1 Introduction

Artificial intelligence (Al) is becoming an invaluable companion in everyday
life, present in wearables, smartphones, cars, and homes. We use Al to
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write, compose music, and edit pictures, making access almost effortless.
However, this can obscure the real challenges of deploying Al models,
especially on devices at the edge of the network [1]. These devices include
single-board computers (e.g., Raspberry Pi, Coral Dev Kit, NVIDIA Jetson
boards), which support full-fledged operating systems (OS) like Linux but
are costly and energy-intensive. In contrast, microcontrollers (MCUs) offer
lower computational power but are significantly cheaper and less demanding
regarding energy and hardware resources. MCUs are ideal for specialised,
real-time tasks in IoT environments but require adapted methodologies for
their management [2]. The absence of a full-fledged OS and the con-
strained computational environment demand adjustments in orchestrating Al
workflows on such devices.

In this context, the TinyMLOps methodology presented in [3] can be
fundamental in designing, deploying, and monitoring Al capabilities on
constrained devices. From an operational standpoint, US-based companies
like Roboflow [4], Edge Impulse [5], and Neuton.ai [6] provide platforms
for designing, optimising, deploying, and executing Al pipelines at the net-
work edge. While Roboflow focuses on computer vision problems, primarily
supporting single-board computers, Edge Impulse specialises in creating and
deploying machine learning models on resource-constrained devices like
MCUs, making it ideal for IoT applications. However, it requires hardcod-
ing models into firmware, updated via Over-the-Air (OTA) updates, which
reduces flexibility in real-time scenarios. Similarly, the Neuton TinyML
platform, provided by Neuton.ai, leverages a no-code approach to gener-
ate ultra-compact neural networks, optimising resource use for constrained
devices. Its patented framework incrementally builds neural networks neuron
by neuron, resulting in models significantly smaller than those from other
frameworks. It enables deployment on devices with as little as 8-bit capacity,
making it highly suitable for diverse IoT applications.

This paper presents a TinyMLOps framework architecture designed to
streamline Al workflows on MCUs, enabling seamless model deployment
without embedding the model in the firmware. We describe the frame-
work’s components, their role in supporting the methodology, and the various
actors involved, from data labelling to model design, optimisation, firmware
engineering, and operations. Furthermore, we provide a set of candidate state-
of-the-art technologies that can be adopted to implement the framework and
demonstrate its real-world feasibility.

The rest of the paper is structured as follows. Section 12.2 gives an
overview of the TinyMLOps methodology, then Section 12.3 presents the
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framework architecture by describing all the components. Section 12.4 pro-
vides a technological landscape for the framework. Finally, Section 12.5
concludes the paper.

12.2 TinyMLOps methodology

The TinyMLOps methodology [3] evolves the MLOps methodology [7] to
bring Al workflows and models to the edge and far edge of the network.

RELEASE
(Loading)

éh &

Ops Engincers
Data Scientists P ®

Figure 12.1 The TinyMLOps Loop [3]. ]

TinyMLOps particularly tackles the adaptation, deployment, and moni-
toring of models even on low-end MCUs (e.g., Raspberry Pi Pico, ESP32,
Arduino, and STM32 families).

The TinyMLOps approach is illustrated as a simple loop, as depicted in
Figure 12.1.

In more detail, the TinyMLOps loop starts with the TinyML circle
(on the left side, highlighted in blue, Figure 12.1). It proceeds through a
series of iterative steps involving collaboration between data scientists and
operations engineers (on the right side highlighted in green in the Figure 12.1)
to optimise and deploy AI models on edge devices. The steps are briefly
introduced as follows.

* Plan: data exploration and feature engineering to prepare and optimise
data for model development;

* Create: model training and feature adaptation tailored to the problem
space;

* Adapt & Optimize: the trained model is adapted and optimised for
the target computing platform, typically through techniques such as
quantisation and pruning;
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* Verify: ensures model compatibility and executability on the target
platform, confirming that all operations are supported;

» Package: the model is compiled or converted into a deployable format
(e.g., TFLite) suitable for execution on edge devices;

* Release: the model is deployed into the device memory, making it ready
for inference;

* Configure: run-time parameters may be adjusted based on platform- and
application-specific requirements (e.g., detection threshold);

* Monitor: ongoing real-time surveillance of the model’s performance
and health, ensuring its reliability post-deployment. If the model behaves
unexpectedly, it triggers a new iteration of the entire loop.

This closed-loop process facilitates seamless adaptation, deployment, and
monitoring of TinyML models, ensuring efficient execution on resource-
constrained edge devices.

12.3 A TinyMLOps framework architecture

As discussed above, the TinyMLOps methodology encompasses multiple
abstract phases to deliver an efficient pipeline for deploying and maintaining
machine learning models on edge devices. To implement these phases in real-
world applications, we need to translate them into concrete components and
pipelines within a software framework architecture. Figure 12.2 illustrates
this architecture, which is divided into two sections corresponding to the two
circles of the TinyMLOps loop (Figure 12.1). The left side (in blue) represents
the components required for handling the TinyML-specific tasks, while the
right side (in green) focuses on the components involved in the methodology’s
operations phase.

(Tiny) Machine Learning Operations
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&
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Figure 12.2 TinyMLOps Framework Architecture. <
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Starting from the TinyML part, we can distinguish three main pipelines:
the firmware engineering pipeline, the data engineering pipeline, and the data
science pipeline, which are introduced as follows:

* firmware engineering pipeline: managed by firmware engineers, pro-
duces the various firmware versions for the edge devices supported by
our framework. These firmware binaries are organised and stored in the
Firmware Repository, ready for deployment. For example, one firmware
might be based on MicroPython!, compiled for ESP32 and equipped
with libraries tailored to the target application.

* data engineering pipeline: managed by data engineers, provides a
UI through the Labelling Platform for labelling data and storing the
information (e.g., labels, metadata) in the Data Repository. This repos-
itory plays a crucial role, as it is accessed during model training and
validation.

* data science pipeline: managed by data scientists, which offers the
possibility to design, develop, and test models, as detailed below.

Models are initially created using a Notebook environment (e.g., Jupyter
Notebooks, VSCode) where scientists can define the computing pipeline, the
model architecture, and the relevant hyperparameters ranges based on the tar-
get metrics they aim to optimise (e.g., model size vs. accuracy). Additionally,
they can specify the desired hardware platform for deployment, ensuring the
model aligns with the constraints and capabilities of the chosen edge device.

At this stage, the Optimization Engine generates and manages various
parameter combinations to explore and optimise the search space. In our case,
this process is handled through a metaheuristic approach, ensuring effective
exploration and solution space optimisation. This includes not only the hyper-
parameters of the models but also factors such as hardware configurations,
allowing for an optimal balance between performance metrics (e.g., model
size, accuracy, latency) and resource constraints.

The combination of parameters and the model definition (e.g., code) is
passed to the Model Trainer component, which trains the model using data
fetched from the Data Repository. However, the trained model may not yet be
fully compatible with the target hardware platform. To address this, the model
is further processed by the Model Conversion component, which applies
various techniques such as quantisation, pruning, and other optimisations to
ensure the model is adapted for efficient execution on the specific hardware
platform.

! https://micropython.org/
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At this stage, it is essential to evaluate the model’s performance. To effi-
ciently manage the artefacts (i.e., model binary files), along with associated
parameters (e.g., data used to train and model hyperparameters) and metrics,
we rely on the Experiment Tracker to handle the storage of data and metadata
in dedicated internal repositories, accessible via APIs.

Based on the metrics we aim to measure and the target hardware platform,
the model can be deployed in the appropriate computing environment: a
cloud-based Test Sandbox for software metrics (e.g., accuracy) and physical
Test Devices for hardware-specific metrics (e.g., latency, memory usage).
This approach ensures a clear understanding of the model’s performance in
real-world environments, as testing is carried out on actual computing units.
This provides insights into software and hardware efficiency, allowing for
more accurate metrics assessments.

The collected metrics are then returned to the Optimizer Engine, where
they are used to further refine the hyperparameters, model configuration, and
hardware selection by triggering new iterations.

This continuous feedback loop allows the system to iteratively improve
the model, ensuring optimal performance and deployment on the target
edge devices. All tested models, along with their associated parameters
and metrics, are stored in the Experiment Tracker. This comprehensive
tracking provides valuable insights into how models can be further opti-
mised for the specific application and platform. This is beneficial as it
allows for easy access, tracking, and comparison of different model iter-
ations, ensuring that the most effective model can be quickly identified
and deployed. Additionally, this centralised storage facilitates collaboration
between teams, improves reproducibility, and supports ongoing optimisation
efforts by making historical data readily available for analysis.

Once the best model is identified, fully optimised, and validated, it is
promoted from the Model Repository inside the Experiment Tracker to the
Production Model Repository, making it ready for deployment on production
devices. This transition marks the shift from development and testing to the
operational phase, managed by Operations Engineers. From the Production
Model Repository, the model is deployed to Production Devices, typically
(far-)edge devices operating in a live environment. Operations Engineers
oversee this deployment, ensuring the model performs reliably and efficiently
in real-world conditions.

Throughout the Operations phase, continuous monitoring is crucial.
Operations Engineers may continue to observe the model’s performance,
gathering insights such as real-time metrics, latency, and memory usage using
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the Monitoring component. If any issues arise or further optimisations are
needed, the model can be updated or refined through subsequent iterations,
with performance feedback potentially being routed back into the develop-
ment process to trigger new rounds of optimisation and improvements via
the Experiment Tracker. This ongoing cycle ensures that the model remains
efficient and effective as it operates on resource-constrained edge devices,
seamlessly fulfilling the principles of the TinyMLOps methodology.

12.4 Technology Overview for TinyMLOps Adoption

Adopting the TinyMLOps methodology into real-world scenarios requires
integrating a wide range of cutting-edge technologies that allow us to tackle
the different challenges of deploying machine learning models on resource-
constrained devices in the edge and far-edge of the network. The current
landscape, driven by open-source innovation, encompasses platforms and
tools that ease data management and versioning, model design, development,
optimisation, and monitoring in environments where computational power
and storage are limited.

Starting with the firmware engineering pipeline, several tools are avail-
able to support the early-stage development and production deployment of
machine learning models on hardware-constrained devices. On the hard-
ware side, embedded platforms such as Arduino, ESP32, Raspberry Pi
Pico, ARM, and STM32 are widely adopted. These platforms are typically
paired with development environments like Mbed OS, PlatformlO, ESP-IDF,
and STM32Cube, which aid in firmware development, sensor integration,
and more. For software, frameworks like TensorFlow Lite for Microcon-
trollers [8] and pure C/C++ code (e.g., code generated by STM32Cube.Al),
along with a Real-Time Operating System (e.g., FreeRTOS), simplify model
deployment on embedded devices. However, since the model is embedded
within the device’s firmware, updating it typically requires a complete flash.
On the same side, MicroPython offers an alternative solution by enabling
the creation of firmware that exposes a Python interpreter running on the
constrained device, effectively functioning as a Hardware Abstraction Layer
(HAL)[9]. This approach decouples the machine learning model from the
underlying hardware and dependency libraries, allowing for the deployment
of only a Python script and associated binary files without the need for a
full firmware flash. The device can initiate updates through a simple HTTP
request, significantly streamlining the process and making it more flexible
and efficient.
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For the data engineering pipeline, tools like Label Studio, Universal
Data Tool, or Computer Vision Annotation Tool (CVAT) are critical for
labelling and annotating complex datasets, ranging from images to time-
series sensor data. These labelled datasets are managed using tools like
Pachyderm, which combines scalable data storage with version control, mak-
ing it ideal for tracking large volumes of data throughout different iterations
of the machine-learning pipeline. Object storage solutions such as MinlO or
AWS S3 are often employed to store these datasets, ensuring scalability and
accessibility during model development with a simple and standardised APL.
Alternatively, it is possible to integrate, via APIs, existing platforms like Edge
Impulse or Roboflow to exploit their data labelling functionalities. Based on
cost constraints, privacy, and use-case requirements, it is possible to choose
one solution or the other.

Lastly, the data science pipeline relies massively on cloud-based tools
to design, develop, evaluate, and optimise machine learning models. Kube-
flow, a powerful open-source framework, is crucial in orchestrating machine
learning workflows, from data preprocessing to model training. By leverag-
ing Kubernetes for scalable and efficient workload management, Kubeflow
standardises the MLOps process, streamlining the entire model development
lifecycle. It natively integrates with platforms such as Jupyter Notebooks and
VSCode, providing collaborative environments for interactive model devel-
opment and pipeline processing. A core feature of Kubeflow is its Pipelines
component, which automates end-to-end workflows by structuring them as
Directed Acyclic Graphs (DAGs). Each pipeline component is encapsulated
in a Docker container, ensuring modularity and enabling integration with
various tools and libraries. These pipeline steps can include tasks such as
data preprocessing, model training, and evaluation.

A key step often incorporated is hyperparameter optimisation, which
determines the best hyperparameter configuration for a given model. Katib, a
component of Kubeflow, streamlines this process by supporting both standard
and advanced search techniques, ensuring optimal performance for the model
and hardware platform. This approach allows for co-design between software
and hardware, optimising both simultaneously to target the deployment envi-
ronment. This stage also often involves conversion tools to export models in
TensorFlow Lite and ONNX (Open Neural Network Exchange) formats to
enable optimised evaluations for edge devices. Such models can be stored in
an Experiment Tracker, like the MLFlow Tracking, along with their metadata
to study and supervise the optimisation process properly.
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Before the deployment in production environments, models are evalu-
ated in Test Sandboxes using Docker-based technologies like Seldon Core,
KServe, or BentoML. For tests on Test Devices, models can be deployed
using OTA updates by replacing the firmware or using MLFlow Tracking
APIs by downloading models into device flash memory. Performance metrics
are logged in the Experiment Tracker (MLFlow Tracking), enabling a feed-
back loop for subsequent iterations of the model optimisation. MLFlow also
offers the Model Registry, a repository for models that have reached maturity
for production deployment. Using some internal labels, it is possible to tag
models for the target device or deployment scenario. Then, the model can be
deployed via OTA updates or via the MLFlow APIs.

Finally, tools like Prometheus and Grafana enable real-time monitoring
of the production devices, providing detailed insights into hardware (latency,
memory usage, and CPU load) and software performance metrics (errors,
crashes, anomalies). Prometheus collects and stores time-series data from
the devices, while Grafana visualises this information through customisable
dashboards by also enabling webhooks to trigger new optimisation iterations
automatically.

This integration allows operations teams to proactively track the health of
models and devices, ensuring that any performance issues can be addressed
promptly to maintain optimal efficiency and reliability in the deployed
system.

12.5 Conclusions

The ubiquitous presence of Al in everyday aspects of our lives is deeply
transforming how we approach the lifecycle of models. From the initial
model design to the deployment on production devices, multiple steps must
be completed, many of which are often taken for granted. Every phase (e.g.,
data collection, data labelling, model training, model optimisation) involves
complex processes that need to be carefully orchestrated to ensure optimal
model performance in real-world scenarios.

In these settings, the TinyMLOps methodology clearly defines the high-
level steps that must be tackled. Building on this foundation, we propose
a software framework architecture streamlining these processes along the
cloud-to-thing continuum. Our framework enables the design, development,
and deployment of machine learning models while managing hardware
constraints effectively. By integrating real-world tools like MicroPython
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for lightweight and simple HAL and MLFlow for experiment tracking
and deployment, the framework addresses key challenges in scaling Al
applications to tiny devices, such as resource management and deployment
complexity. Additionally, it enhances adaptability and scalability across
diverse platforms, ensuring that models perform efficiently even in the most
constrained environments.
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Transfer and Self-learning in Probabilistic
Models
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Abstract

Transfer learning and self-learning are well known techniques that can sep-
arately improve probabilistic models. In this article it is investigated how to
combine both methods in a single approach enabling transfer learning over
different environments in which self-learning models are deployed. It is found
that such learnings can be enabled through prior optimisation.

Keywords: probabilistic models, Bayesian, online learning, self-learning,
prior optimisation, transfer learning.

13.1 Motivation

Probabilistic models are of interest for constructing classifiers or estimating
parameters (see e.g. Murphy [1]). Examples of such applications are image
classification in cameras and noise level estimation in radar sensors. These
sensors are often deployed in diverse environments. This means that the
underlying model could benefit from self-learning. Baye’s rule offers such
a method

P(0] X) = 2GR, (13.1)

where 6 are the model parameters, X are the observations, and P() is the
prior distribution. Note that the observations X may also contain feedback

267
DOI: 10.1201/9788743808862-13


https://dx.doi.org/10.1201/9788743808862-13

268 Transfer and Self-learning in Probabilistic Models

PO e Y (POXD e BOEIGY e RIS
' v e i ' =ik =
_________ : @s RN V= 2 A N7/ N % 5

A e W A i )
:'Pfﬁ‘uf; = B f :F'(t?ixz WE TR i i
PN ® g P A s x
1 3 A Vs
B 1N £ R AEY |
- i

!
I
I
I
I
|
i
i
.
|
|
i
i
i
|
|
i
\
\T
]
&
=

..................

Figure 13.1 On the left-hand side a prior was sent to various diverse environments where
in each environment a posterior was estimated. On the right-hand side the question is how to
choose the prior for a new unknown environment when sensor events from other environments
are known. <J

and interactions from users. A self-learning example is a motion sensor that
self-learns its false positive rate.

The prior distribution is our initial expectation on the parameters prior to
the observation of new data. When no historical data is available, an expert
choice should be made for the prior. However, in some situations data may
be available from other diverse environments. The question here is how to
choose a prior for a new unseen environment when data is available from
other diverse environments. This problem is illustrated in Figure 13.1.

In our motion sensor example, it may be believed that sensors in some
applications have a false positive rate of once per week while in other
applications the false positive rate is once per month. Note that for a new
sensor deployment one cannot simply take an average of the posteriors from
different environments as each posterior represents a different deployment:
some posteriors may be very concentrated around a particular value which
may slow down adaptation to a new environment and posteriors for different
environments may have seen different amount of data (how to average that?).
Moreover, averaging different posteriors is fundamentally wrong; similarly,
one cannot take the average of an apple and an orange.

To solve this problem Xuan [2] discusses a graphical model containing
common and custom nodes. A challenge with such an approach is that the
graph itself will also change as more data becomes available. Similarly, Suder
[3] splits up the parameter space into common and custom parameters. A
challenge with this approach is how to decide which parameters are common
or which ones are not. Pautrat [4] discusses the grouping of similar environ-
ments, each having their own prior. A challenge with such an approach is
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how to decide on the number of groups and when to decide on forming a new
group when a new environment is substantially deviating.

Although the posteriors are fundamentally different for different environ-
ments, knowledge from different environments is still useful for determining
an optimal prior for a new environment. Although the environments may be
substantially different there is one aspect that they share in common which
is the prior from which the probabilistic model could have started. This
commonality offers an opportunity for transfer learning and it will be studied
in this article.

13.2 Prior Optimisation

A choice for prior is similar to a choice for model. When having a set of
models M; then the probability for a model to hold given the data is given
by (see e.g. Murphy [1])
P(X|M;) P(M;
P (M| X) =20 20, (13.2)
If a prior is parametrized through a hyperparameter p then the best
hyperparameter can be selected through

argmax, P (X|u) P (u). (13.3)

In some cases, there may be no direct expectations for P (u) as given
in Equation 1.3 but there may be prior expectation for parameter 6. In those
cases, an effective prior on p can be derived. Prior to the knowledge on the
prior P (0) we take P (1) to be uniform (first line equation below right-hand-
side). The probabilities for observing a distribution P (6) from p is simply the
product of P (0; | 1) weighted by the amount P (6;) Af (second line involves
a product integral)

P(p | PO]) oc P(PIO] | 1)

— P (0; | )P 00N
Aim Z (0 | )

= exp/dHP(G) log P(0 | 1), (13.4)

where in the last step the Geometric integral relation from Volterra was used.
Note that the same result can be obtained by using variational Bayesian
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approximation. A variational approximation of a posterior is given by

P(p|X)~ argmax, () [ dpq(p) <logP (X | p) — 10g% ) '
(13.5)
Using the prior P (6) for updating our knowledge on P () gives

P(u| Plo]) ~ ar;g(il)ax / dpq(pe) / dOP(0)log P( | 1) — log ;f,((’; ))

x exp/d@P(H) log P(0 | ), (13.6)

where in the last line we assumed the initial prior P (u) to be flat. Equation
1.4 gives for the effective prior P ()

_ exp [dOP(0)log P(0 | p)
Jdu’ exp [ d9P(0)log P (0 | 1)

In Equation 1.3, X contains all of the available data. It will be assumed
that captured diversity in environments is representative for the underlying
population of environments. The known environments are allowed to have
different amounts of observations. As the known environments are assumed
to be representative, an optimal prior for known environments will be an
optimal prior for a new unknown environment.

Taking the logarithm of Equation 1.3 and labelling data from environment
7 by X; one finds

P(u | P6))

13.7)

p=argmax,, [>; logP (Xi|u) +logP (1)] . (13.8)
Using
logP (X) = [df q(0) logP (X | 0) —log"x) (13.9)
with
[d6q(e) =1, (13.10)
one finds

[ Rargmax /dGZP (0; | Xi,p) { log P (X; | 6;)
# i

— 1
TP [ )

} +log P(u) . (13.11)
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In case the posterior for an environment cannot be exactly determined one
can approximate by (see Attias [5], Morey [6], and Tran [7])

q(0;)
Aargmax max df;q (0;) logP(X;|6;)—lo
p argmax may i (0;) log P (X;|0;) S B @)
+log P(y) (13.12)

Note that ¢ (6;) approximates the posterior for each environment i in
terms of the reversed KL-divergence. The reversed KL-divergence may lead
to modes in ¢ (6;) introducing errors. For this reason the posterior ¢ (6;)
should have sufficient freedom to describe all typical groups of customers.

It is of interest to study the optimal prior in case of a single deployment
(or in the limit that all deployments have the same environment) and for P (1)
being constant. If one has conjugate priors then one can iteratively solve
Equation 1.11 by choosing at each iteration the prior P (6;|u) to be equal to
the posterior from the previous iteration P (6;|X;, ). In the limit of conver-
gence, the logarithm containing ratio of posterior over prior will vanish and
the posterior P (0;|X, ;1) will strongly peak around p= argmaxy P (X|0;).
In other words, in absence of any prior belief then the best prior for a new
environment that is the same as the existing environment is a strongly peaked
function around the most likely parameters (as expected).

Note that strongly concentrated priors delay learnings from new data.
Peaking of priors is reduced when a belief for P (u) is included and when
known environments are diverse.

13.3 Example Categorical Distribution

For categorical distributions the conjugate prior is a Dirichlet distribution
of which its hyperparameter is often denoted by o instead of p that was
used in this paper upto now. Given applications ¢ some observed categories j
and assuming a flat prior such that the last term logP (x) in Equation 1.11
disappears one obtains

(Zj O‘j) j I(oj+ni;)

(>, tniz) 5 T(ay) (13.13)

r
a = argmax,, » ; log—

Consider the following example. In a first application one encounters
1000 items of category O and 2 items of category 1 while in a second
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application one encounters 10 items of category 0 and 2 items of category
1. Using the equation above one finds the optimal prior to be a Dirichlet
distribution with a= (5.8, 0.41). If the previous two applications are random
draws from an underlying population of applications, then the obtained
Dirichlet distribution would be optimal for a new application. The ratio of
the hyperparameters indicates the expected ratio of classes, the sum of the
hyperparameters is an indicator for the knowledge strength.

Consider now another example in which one encounters in the first
application 50 items of category 0 and 3 items of category 1, and in the
second application 5 items of category 0 and 20 items of category 1. In
this example the optimal hyperparameters for the Dirichlet distribution are
a=(0.87,0.60). The low numbers indicate a lack of knowledge which
is expected given the large differences in observations between the two
applications.

13.4 Conclusions and Discussion

Self-learning probabilistic models are useful for learning context and thereby
self-learning increases performance in diverse environments. Similarly, trans-
fer learning can help to use learned knowledge from one environment for
another environment. In this article these two aspects are integrated into a
single approach by optimising the prior.

It was found that an optimal prior can be obtained by maximising a
sum of evidences over environments. The amount of data per environment
is allowed to vary. In order to optimise the prior, observations from different
environments need to be shared. For cameras this means sharing of images,
for radar sensors it means sharing of radar signals. Sharing of sensor events
may involve privacy aspects.

Although the approach leads to the best (or most optimal) prior one does
need to realize that this approach carries the risk of overfitting. The situation
is similar to variational Bayesian methods that yield the "best approximated"
posterior which in reality may be far away from the true posterior.
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Abstract

Using convolutional neural networks (CNN) to discover sensor data pat-
terns help predict upcoming failures in industrial machines. Traditionally,
this pipeline is deployed on the cloud as deep neural networks have high
computational requirements. Alternatively, an on-device deployment to make
decisions locally for this pipeline could lower the energy requirements by
not sending the sensor data back and forth to the cloud. However, this is
challenging from an edge deployment perspective due to the limited com-
putational resources and energy budget. To approach this issue, we propose a
hierarchical architecture that leverages multiple smaller networks dividing the
bigger problem into smaller sub-problems in a divide and conquer approach.
With this architecture, we achieve a 9x reduction in energy consumption
going from 0.045J per inference for a non-hierarchical CNN classifier to
0.005J. At the same time, our approach delivers low latency with comparable
accuracy to the baseline, while running completely at the edge.

Keywords: convolutional neural networks (CNNs), convolutional neural net-
works (HiCNNs), Case Western Reserve University (CWRU), multiplication
addition computations (MAC), neural network architecture search (NAS).
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14.1 Introduction and Background

With the advancement of Industry 4.0, leveraging data-driven methodologies
like machine learning to discover faults in industrial machine sensor data has
gained rapid momentum. In this regard, fault classification using machine
sensor data can be interpreted as a multifaceted task including feature extrac-
tion, detection, and classification of the specific fault type. The fundamental
structure of these approaches typically involves acquiring signals in the form
of sensor data from the machinery under monitoring followed by data explo-
ration, which means that the acquired data is analysed to identify potential
anomalies or deviations concerning data conformity.

This genre of manual feature extraction involves mathematical techniques
like Fourier transform to extract relevant information from the sensor data for
effective fault detection [3]. These methods compose features by exploiting
randomness and dynamic changes in time-series signals, capturing informa-
tion related to the frequency domain [8]. Later the machine learning classifier
is selected and trained on this feature set to distinguish between different
fault types finally. Conventionally, this entire pipeline would be deployed
on energy-hungry cloud services, and the inference results are received back
at sensor nodes [10]. Traditional rolling-bearing fault classification methods
rely not only on manual feature extraction but are also time-consuming due
to the sending and receiving of data. Deploying machine learning models
directly on sensor devices enhances security by restricting the need for data
transfer. Unlike the power-intensive cloud alternative (Figure 14.1), it reduces
inference overhead and contributes to model efficiency [7].

Model efficiency bridges the gap between machine learning research
and practical applications. This is particularly important for ultra-low-power
wireless sensors, where maximizing battery life is critical to deploy them
in remote areas without direct access to power. However, the challenge lies
in developing energy-efficient algorithms that maintain accuracy. Increasing
the energy efficiency of an algorithm, in general, impacts the performance
aspect of the algorithm due to a trade-off between performance and energy
efficiency [9].

In this work, we contribute a novel meta-structure to CNNs we call
Hierarchical CNN (HiCNN) that splits the classification into multiple sub-
decisions. This process aims to reduce computational requirements per
decision while achieving on-par classification performance in comparison to
standard non-hierarchical classifier (flat). HICNN utilizes training of CNN
architectures to reduce feedforward computations during on-device inference
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and solve classification tasks. Feeding extracted features to subsequent clas-
sifiers helps reduce error propagation from higher to lower class hierarchies
and removes the need for more convolutional and dense layers in lower
classifiers. The primary goal of HiCNN is to capitalize on the real-time
accurate results offered by CNNs while simultaneously reducing storage
requirements and computations while running inference on-edge devices.
Due to HiCNN’s low computational requirements, it holds potential util-
ity for deployment in remote environments constrained by limited power
resources (e.g., undeveloped regions, forest locations, or geographically
isolated industrial machinery).

14.2 State of the Art

In the following, we discuss related fields, starting with introducing the
dataset used in this work, followed by further approaches to solving the clas-
sification problem behind it. We then discuss other approaches to reducing
energy consumption and different hierarchical approaches.

14.2.1 Experimental setup

Our target application area is condition monitoring, so we are using the well-
studied Case Western Reserve University (CWRU) Bearing dataset [8]. The
bearing dataset is acquired by the electrical engineering laboratory of CWRU
and recorded using a 2HP motor connected to a dynamometer via a torque
transducer/encoder. It has 4 operating modes of machines based on different
operating powers, 4 fault classes, and 3 severity classes. The bearings used
in this test support the motor shaft and have been artificially damaged at
different locations with fault depths ranging from 0.007” to 0.021”. The
vibration data included in the CWRU dataset is collected using single-axis
accelerometers with a sampling rate of 12kS/s (fan-end).

14.2.2 Related work

From an industrial condition monitoring perspective, [8] highlights a key lim-
itation: mode partitions designed for multi-mode processes often exhibit high
specificity to a particular process and dataset. Therefore, achieving model
generalization becomes imperative. In a similar attempt [1] used Autoen-
coders to generate compressed feature representations from raw data utilizing
the encoder-decoder arrangement and eliminating manual feature engineering
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Figure 14.1 HiCNN distributed architecture with a divide and conquer approach of solving
the classification task, with DO node refering to no-fault class and S1,S2 and S3 nodes refers
to the end of classification. I

to classify fault classes in the CWRU dataset. However, this approach’s com-
putational demands present a significant challenge for energy-constrained
edge device deployment. This is because architectures of autoencoders are
potentially like CNNs including many stacked conv layers [4]. Similarly,
in [11], the authors devised a 3-step classification system using three Deep
neural network stacks of Auto Encoders to feed relevant features to the
classes.

The first DNN stack facilitates mode partition for the different types of
modes in the CWRU (Case Western Reserve) dataset. In contrast, the second
DNN stack pursues feature extraction, and the third stack is proposed for
severity classification. However, all these hierarchical approaches focus only
on getting a good prediction accuracy of the fault classification results and
lack an optimized energy-efficient approach.
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Decreasing energy consumption of feedforward neural networks during
inference is an active research direction, and key techniques to achieve
this include pruning the architecture, Network Architecture Search (NAS),
and quantization. Pruning aims to reduce energy consumption by removing
unnecessary neurons before deployment. This is done by assigning scores
to each neuron removing the ones with the lowest scores and subsequently
fine-tuning the architecture. Depending on the type of scores, different prun-
ing methods are realized ranging from e.g. relevance-based to unstructured.
Expanding on the concept of reducing computations caused by redundancy
in neural network architecture [5] performed redundant kernel removal in
filters of CNN layers using unsupervised clustering by leveraging the mean
instead of individual weights of created centroids to decrease total MACs.
However, it is important to remember that different clustering algorithms lead
to different assumptions when creating clusters [7].

Alternatively, NAS a vital field in TinyML ([8]) research, offers diverse
approaches for selecting classifiers. In general, NAS searches for an optimal
network architecture. For this certain metrics are used based on metrics like
relevance, accuracy, or confidence scores, but mostly it is just the accuracy
score. For efficient architectures multi-objective optimization is used, opti-
mizing for accuracy and energy consumption simultaneously. In this case,
surrogate metrics like inference time, memory consumption, or model size are
used. NAS also utilizes evolutionary algorithms and reinforcement learning
to explore and identify efficient neural architectures.

Meanwhile, employing quantization to reduce neural network weight
and activation representations from 32-bit floating-point to 8-bit integers (or
lower) yields a notable decrease in model size and increased computational
efficiency. ([2]) utilized entropy constraints calculated for clusters of param-
eters by balancing the compression rate and resulting model performance in
a relatively smooth and error-tolerant landscape by quantizing weights based
on their distance from clusters. However, this technique requires a careful
induction of heuristics to balance the performance of the model and the
magnitude of quantization in the architecture.

[10] proposed a hierarchical taxonomy of mixed classifiers to address
the limitations of single-classifier systems. The approach dynamically selects
classical machine-learning classifiers based on performance metrics such
as accuracy and energy efficiency. However, this method exhibits potential
drawbacks: 1) Reliance on Feature Engineering: The effectiveness of the
methodology is dependent on feature engineering tailored to specific clas-
sifier types. 2) Feature Set Selection which is meticulous and often requires
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domain expertise and empirical evaluation. Therefore, we are interested in
CNN-based architecture that can deliver good accuracy with less energy
consumption.

14.3 Hicnn Approach

HiCNN framework introduces training in a staged architecture featuring
anomaly detection as the parent classification task, instilling a top-down clas-
sification approach. The training process leverages a hierarchical approach,
where each deeper hierarchy classifier is trained on the features forwarded
from the mode partition classifier. The methodology is summarized and
divided into three parts in the following sub-sections.

14.3.1 HiCNN training

Notably, despite potentially having more parameters than the benchmarked
baseline CNN approach, HICNN achieves significant energy savings during
inference on edge devices by selectively activating only the relevant CNN
networks based on the detected anomalies and fault type. This allows for
further optimization of overall architectures for task-specific computational
complexity. This happens because task-specific training of the CNN networks
enables us to deactivate redundant parameters/parts of the network that are
not required to achieve the desired inference result. Generally, the depth
of CNN strengthens the CNN architectures ([6]), making them capable of
finding intricated patterns in input data. At the same time, the width aspect of
a layer would increase the capability to detect and extract features from input
data. This increases the computational demand as the size of the architecture
increases. By introducing HiCNN, we introduced a distributed approach to
solving the task without the direct need to eliminate the parameters. The
trade-off between the size of architecture and energy efficiency is tackled
using a one-classifier per node approach. This helps scale down the network
size without eliminating parameters just by training the network. As part of
the black-box approach, HICNN is trained so that its inherent structure only
activates the necessary sub-classifier.

In hierarchical sensor data, obtained from different operating modes of
industrial machines errors from early classification stages can propagate
and be amplified through the network, resulting in unreliable overall accu-
racy. Hence, we devised an automatic feature forwarding to overcome this
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problem which eventually also contributes to reducing energy consumption.
HiCNN improves adaptability to varying machine conditions and eliminates
reliance on manual feature engineering. This is achieved by defining and
training three individual CNN architectures node-wise within a hierarchical
tree structure. During the training, learned features from the classifiers in
the initial hierarchy are forwarded to the lower classifiers. This approach
ensures that the relevant feature vector is forwarded to the appropriate fault
mode, thus preserving overall classification accuracy/performance. The CNN
architectures of HICNN are trained on raw data, and the deeper architectures
are trained on features produced by CNN architectures lying in the earlier part
of the hierarchy (Figure 14.1). As part of our empirical findings, a filter size of
5 in the initial conv layer of classifier C2 (Figure 14.2) ensures the availability
of enough samples to train the classifiers located lower in the hierarchy. This
type of feature for- warding of HICNN helps us lower the total computations
required by HiCNN during classification as we eliminate the need for more
conv layers as classification progresses to a deeper hierarchy.

14.3.2 Feature forwarding

As part of the HICNN approach, anomaly detection functions as an event trig-
ger within the HICNN framework, prioritizing energy efficiency throughout
its hierarchical structure by initiating classifications solely upon successful
fault identification. The anomaly node architecture consists of four layers:
one Convld (Convolutional 1-dimensional) layer, one max pooling layer,
one batch normalization layer, and one full-connected layer. However, due
to simpler task complexity, a classifier with one Conv1D layer is sufficient
to perform the classification. This Convld layer consists of only one filter
and a kernel size of 80. HiCNN architecture prioritizes anomaly detection
by placing it as the parent classifier at the top of the hierarchical struc-
ture. This prioritization stems from data-dependent task complexity. [11].
Consequently, the HICNN architecture employs a simple, single-layer CNN
classifier for anomaly detection. This classifier acts as a gatekeeper, triggering
further classifications only when an anomaly is identified. This approach is
crucial for optimizing computational efficiency. By identifying anomalies
early on, the HICNN architecture avoids redundant computations in the
lower levels of the hierarchy. In contrast, the baseline classifier continuously
performs computations even in the state of no anomaly. This approach leads
to unnecessary calculations and inefficient use of resources. This helps us
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activate only a leg of the HICNN architecture (Figure 14.2) ultimately helping
to avoid using all the weights of trained architecture during inference as is the
case with baseline CNN architecture.

14.3.3 Baseline CNN and Hierarchical CNN

This subsection differentiates Baseline and HiCNN algorithms. A flat clas-
sification approach is represented by a single complex multilabel classifier
responsible for classifying all classes at once. We constructed a baseline
convolutional neural network (CNN) with a flat classification structure.
This model is iteratively fine-tuned to achieve robust performance, yielding
approximately 97 % accuracy on the test dataset. Subsequently, this base-
line classifier serves as a benchmark for comparison against a hierarchical
classification approach.

The baseline model (Figure 14.2) requires a computationally inten-
sive architecture to accommodate the one-hot encoded representation of 28
classes. This single architecture incorporates six convolutional layers and five
dense layers, independently managing the classification task while demon-
strating noteworthy performance. However, the baseline approach does not
optimize for computational efficiency.
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Figure 14.2 Baseline Architecture vs HICNN architecture, indicating towards flexible archi-
tectures and number of layers used. The HICNN architectures are used with different filter size
and filter numbers.

On the other hand, as illustrated in Figure 14.1, if the initial mode
corresponds to M1, only classifier M1 would be activated. Subsequent sever-
ity class determinations follow the same principle. This inherent flexibility
enables the hierarchical model to manage complex classification problems
by using specialized classifiers at each node. The training process within
the HiCNN follows a node-wise approach, beginning with the Anomaly
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node (Figure 14.1). This hierarchical strategy involves the fine-tuning of
classifiers at each level of the HICNN architecture after each training epoch.
Employing specialized architectures for each classification task, every com-
ponent is individually trained and fine-tuned. The initial architecture focuses
on fault detection, followed by mode partitioning, fault classification, and
severity classification. HICNN promotes energy efficiency while preserving
flexibility by adjusting layer- specific hyper-parameters, such as filter count
and dimension.

By controlling these parameters, we can regulate the volume of data
propagated to the severity node, thus influencing the overall computational
complexity of the HiICNN model. [13] To propagate relevant features to
deeper nodes (i.e., severity classification), the mode partition CNN classifier
at hierarchy level two is designed with two outputs. During training, a custom
loss function outputting zero is employed for the first convolutional layer
of mode classifiers (Figure 14.1) responsible for feature output. The overall
accuracy of the HICNN model is heavily influenced

by the quantity of data samples provided to the Mode partition node.
For training, individual architectures are connected in a distributed, tree-
like structure (Figure 14.1) using conditional logic (if-else) and then used to
perform final inference on the test dataset. Beginning with the first instance of
the test dataset, HICNN dynamically selects the subsequent classifier based
on predictions from the preceding stage. This process continues until a leaf
node is reached, signaling the termination of the classification process. Edge
devices offer limited memory space and the size of trained tensorflow models
is large enough not to be able to be deployed on them. Tensorflow-Lite (TF-
Lite) is a library offered by tensorflow to downscale the model’s optimum
to be deployed on edge devices. Therefore, to perform inference on edge
using HiCNN, initial thirty-one classifiers were converted to TF-Lite format
to downscale. Conditional logic (if-else) is again utilized to run hierarchical
inference on the edge device.

14.4 Evaluation

In this section, contents are divided into two following sub-sections to discuss
experimental setup and measurement.

14.4.1 Experimental setup

As part of the data pre-processing pipeline, a custom data generator class is
created to partition the dataset into 60:20:20 ratios for training, validation, and
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testing. Before evaluation, input features were scaled to have zero mean and
unit variance. A 512-sample window for training the HICNN is determined
to be optimal for balancing classification accuracy and latency, an important
hyper-parameter for balancing energy efficiency and performance within the
HiCNN architecture.

Table 14.1 Comparison between Baseline and HICNN 4

Algorithm Accuracy Current drawn(mA)
Baseline 98% 368.8
HiCNN 95% 50.8

The window size used to train the HiCNN is critical for model per-
formance optimization, as an inappropriate window size could adversely
affect the generalization capabilities of classifiers in HICNN due to the
smaller number of data samples available for model learning leading to
underfitting. Notably, while reducing the window size to 256 samples does
impact HICNN’s classification accuracy (approximately 70 % performance),
its energy efficiency remains the same. The smaller size of input samples
to the initial architecture means the input fed to the following architectures
would be scaled down proportionally due to the smaller kernel size of feature
forwarding conv output layers, leading to a proportional reduction in perfor-
mance due to underfitting in deeper models of hierarchy but no change in
energy consumption while running inference.

14.4.2 Measurement

All the classifiers of HICNN are trained utilizing TensorFlow 2 libraries.
Subsequently, the trained models are deployed to a Raspberry Pi using the
Tensor-Flow lite library [12] for inference. A dedicated hardware setup
is employed for precise energy consumption measurements, incorporat-
ing a data-logging multimeter. This configuration allowed for the ongoing
measurement of electrical current consumption during the classification pro-
cess recorded at 100 millisecond intervals. To account for the influence
of background processes and sensors, the baseline power consumption of
Raspberry Pi-2b is established during idle operation. This baseline power
is then subtracted from the power consumption recorded during inference,
yielding energy in Joules per inference, expressed in Joules. The Raspberry
Pi is powered by a 5V DC power supply, with the multimeter interfaced
for data acquisition (Figure 14.3). LabVIEW orchestrated the triggering of
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Figure 14.3 Energy measurements setup using Raspberry pi connected to multimeter. <

classifications while simultaneously capturing current readings (in amperes)
and corresponding timestamps (in milliseconds). The hyper-parameter win-
dow size 512 in HiCNN further guarantees HiCNN'’s energy efficiency
regardless of the model’s generalization capability. This could be beneficial
for transfer learning applications. As a result, energy consumption stays
constant with these variations. This occurs because the baseline algorithm
performs unnecessary computations for non-anomaly cases, unlike HICNN.

The HiCNN architecture achieves a test accuracy of approximately 95%,
slightly lower than the baseline model’s 98 %. However, HICNN exhibits
significant efficiency gains. TensorFlow Lite conversion and evaluation on
desktop and Raspberry Pi reveal considerably faster inference times for
HiCNN (380 microseconds vs. 1980 microseconds). Additionally, HICNN
demonstrates lower current draw (0.38 amperes vs. 0.46 amperes), (Fig-
ure 14.4 and Table 14.1) and reduced inference time (12 seconds vs. 86
seconds) for the classification task, consuming 197.8 Joules with baseline
algorithm vs 22.8 Joules for HiCNN. This, along with lower energy per
decision (0.002 joules vs. 0.0455 joules), translates to lower current draw
and latency for HICNN during every inference.
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Figure 14.4 Current consumption during inference for Baseline algorithm vs Hierarchical
algorithm indicating towards low latency inference by HICNN.

14.5 Conclusion and Future work

The HiCNN framework demonstrates promising results in attaining energy
efficiency. It achieves up to 80% reduction in computational overhead
compared to the baseline classifier according to per-decision energy con-
sumption. This efficiency gain is attributed to controlled computations,
ensuring decreased energy consumption with architectures devised per task
complexity.

These results emphasize the potential of algorithmically optimized
approaches for embedded systems, enabling near-real-time monitoring with
improvement in response latency. HICNN is more suited to hierarchical
datasets and even though HiCNN requires more memory, the reduced matrix
operations could be accredited to the selective portions of the HICNN net-
work active during inference. A potential limitation arises when low data
volume is propagated to lower hierarchical levels. This can lead to insufficient
training data for severity classification, increasing the risk of model overfit-
ting or underfitting in subsequent models due to inherent model complexity.
Whereas HiCNN energy efficiency is completely independent of sample
size, the energy consumption of the baseline model is independent of the
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window size till a threshold. The Baseline algorithm’s performance remains
relatively stable despite changes in the number of input neurons unless it
drops significantly below a threshold, such as 64 neurons. Future research
directions should include a comparison with manual feature engineering.
Investigating the performance of HICNN against methods employing manual
feature extraction could provide insights into error propagation trade-offs.
Another strategy could be hybrid cloud/edge deployment, which could help
explore the potential benefits of partial algorithm/architecture deployment
across cloud and on-device environments.
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Abstract

The paper aims to present an Al-based Automated Optical Inspection (AOI)
software for both digital and wooden industries developed within the Edge Al
project. Current approaches rely on centralized solutions, where the compu-
tation is performed inside the inspection machine itself. Instead, we present
algorithms that work at the edge to give rise to competitive solutions to
existing ones. In particular, we experiment with two different tasks of defect
identification: detecting the defect position within a wooden panel by using
YOLO, in which a 96% accuracy is reached. Secondly, concerning the digital
industry, we perform a two-step classification between defective and non-
defective microchips and then between four possible defect classes in their
surface exploiting a ResNet network and obtaining a 97% accuracy. We also
exploit explainability tools to understand which parts of the images caused the
model’s decision. After developing the Al models we port them to two less
power-consuming edge devices, Nvidia Orin Nano, and Nvidia Orin AGX,
observing unchanged performance.
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15.1 Introduction

The paper aims to present an Al-based AOI software developed within the
EdgeAl project for defect detection of the PCBAs used in the digital industry
to be implemented at the edge with the main expected outcome of being
a viable and cost-effective solution for the inspection of many industrial
products, not only digital boards. In particular, these algorithms are at the
core of the AOI solution shown in Figure 15.1 where visual testing is done
at the edge and learning in the cloud. This solution, as illustrated in [1], can
reduce purchase and power consumption costs without increasing latency.
Indeed, in this architecture, learning is done on the cloud but several tests
suitable for highlighting groups of defects can be performed in parallel by
competing boards thus decreasing latency.

A solution similar to the one adopted in the EdgeAl project has been
proposed by Advantech where the NVIDIA board is replaced by the MIC-72
but without discussing the algorithms used in practice for defect detection.
On the contrary, several algorithms have been proposed in the literature to
manage the abovementioned problems using GPUs. From the literature, we
found that these are mainly optimized versions of the DL-powered YOLO
algorithm [2]. The mAP (mean Average Precision) of the latest proposed
algorithms goes beyond 99%, i.e. 99.17% in [3], 99.5% in [4] , and 99.71%

Image
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m / \- NAS
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NVIDIA — ':
Jetson

PCB Board | o i Multi GPU

m Testing SERVER
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Conveyor belt and Classification

Learning

Figure 15.1 An AOI solution consisting of an edge board for testing and a GPU server for
learning. <1
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in [5]. However, this comparison is only indicative since the mentioned
precision values were not achieved using the same data set. Also, it is not
shown the performance degradation passing from a solution implemented on
GPUs to real testing done using edge devices.

The feasibility of implementing YOLO-based algorithms for edge tests
has been recently shown in literature, for example, in the YOLO implemen-
tation on NVIDIA Jetson TX2 illustrated in [6] which is characterized by
satisfactory precision performance, that is, mAP0.5 = 98%. This is a relevant
starting point for our implementations aiming at solving two open problems:

* To what extent very accurate algorithms can be implemented for edge
tests using more performant NVIDIA boards, such as JETSON ORIN,
for the quality control of PCBAs to be used in applications where the
constraint of near-zero defects is required

* How to implement such algorithms on less expensive boards such as
STM32

We decided to conduct experiments on wood and digital industries prod-
ucts which are also cases of study in the context of EdgeAl project. We
start by performing wood defect detection on a publicly available dataset.
Secondly, considering the absence of a significant dataset on defective PCBAs
(which are the main focus of the project), we conducted preliminary experi-
ments on advanced packaging microchips. Finally, we export the models into
edge devices comparing the performance of the ported models in terms of
latency, power consumption, and accuracy.

15.2 Related Works

Wood Defect Detection

The idea of an Al-based detection of wood superficial imperfections was
introduced several years ago. For example, [7] tried to catch the presence of a
defect in Pinus lumber. The dataset was small and composed of 400 training
images and 100 test images, two different learning approaches were used:
Neural Networks and Support Vector Machines. Even if these algorithms are
pretty simple, interesting results were achieved, with a 97% accuracy. In [8]
this problem was faced by using a cascade of Adaboost classifiers. First, he
tried to detect the presence of blue stain, then of decay, and finally of cracks.
The experiment was conducted on a limited collection of about 100 images,
which presented 300 examples of defects and the best result obtained was a
12% error rate. Subsequently, [9] decided to exploit a VGG16 model for this
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task, obtaining really high performance on a 6 common defects dataset. They
also performed data augmentation on the original 1200 available pictures and
trained a Mix-FCN model that achieved a 91% pixel accuracy.

A direct application of the above-mentioned YOLO architecture was
instead done by [10], who aimed to distinguish among 4 different typologies
of defects, obtaining an 88% mAP. Furthermore, [11] proposed a modified
version of YOLOv7 for wood floor small defect detection which reaches
a 94% mAP. Similarly, [12] showed that a backbone-modified version of
YOLOV7 reached an mAP of 81% on our same public dataset.

In summary, wood defect detection is a big challenge considering the
various shapes, positions, and possible combinations of the existing industrial
defects, which could worsen the performance of a model trained to catch only
a part of them. Hence our goal is to exploit state-of-the-art error detection
methods in order to increase the amount of defects that our model is able to
spot, without penalizing reliability and above all inference time, which is a
crucial parameter in industrial world applications.

Chip Surface Defect Detection

The detection of surface defects in chips is crucial for ensuring high-quality
production in the semiconductor industry. Historically, methods for detecting
these defects relied on image processing techniques. For example,

[13] used a combination of grayscale transformation, mathematical mor-
phology, and pattern recognition to detect defects on printed circuit boards,
achieving high detection speed. Similarly, [14] employed filtering methods
with Support Vector Machines to classify defects. These methods are fast but
often struggle with generalization across different defect types due to their
reliance on manually set parameters.

Deep learning has become increasingly popular in recent years and to
address this limitation its advancement has introduced more robust methods
for defect detection. Most modern techniques are divided into three cate-
gories: classification, segmentation, and object detection. For instance, [15]
utilized an improved Spatial Pyramid Pooling Network (SPPNet) for defect
classification, while [16] applied a 3D convolutional neural network (CNN)
to classify defects on wafers. Object detection networks, such as Faster R-
CNN and YOLO, are increasingly favored due to their speed and accuracy.
For example, [17] used Faster R-CNN to detect multiple types of defects in
steel and concrete structures, while [18] enhanced YOLOv3 with a Group
Pyramid Pooling module for rapid detection of PCB surface defects.
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Moreover, other deep learning-based techniques such as the SSD (Single
Shot MultiBox Detector) and its variants have been explored for defect
detection. [19] proposed an SSD-based method that utilized shallow features
to detect smaller defects, although it faced challenges in detecting finer
details. Later improvements such as DSSD [20] (Deconvolutional Single Shot
Detector) achieved better detection accuracy by incorporating deconvolution
layers to add more contextual information, although at the cost of increased
processing time.

To tackle the problem of small object detection, [21] proposed using
YOLOvV3 with multi-scale feature maps, but it showed limited effectiveness
for small defects due to insufficient deep feature extraction. An improvement
came with the introduction of YOLOv4, which balanced speed and accuracy
better than previous models. However, small object detection remained a
challenge. In response, [22] developed SO-YOLO, a modified version of
YOLOv4, aimed at detecting small-scale chip defects by improving shallow
feature fusion. This approach achieved superior performance with an 86%
mAP, surpassing YOLOv4 and even YOLOVS.

The continuous evolution of deep learning methods has also seen the
integration of attention mechanisms to improve defect detection. For exam-
ple, [23] proposed a weakly supervised detection framework to predict the
location and probability of defects using a small dataset, achieving 99.5%
accuracy.

These approaches underscore the ongoing challenges in defect detection,
particularly for small objects, and highlight the importance of balancing
accuracy with inference speed in real-world industrial environments.

Deployment of Al Models at the Edge

Deploying Al models at the edge has become an increasingly popular solution
due to its ability to bring computation closer to data sources, reducing latency
and reliance on centralized infrastructure.

In edge computing, Al models are deployed on local, resource-
constrained devices, such as edge boards or embedded systems like Nvidia
Orin Nano or Orin AGX. These devices are capable of executing complex
deep learning models directly at the point of data collection, enabling faster
response times and reducing the load on cloud services. This approach is
especially beneficial in industrial settings where real-time defect detection is
crucial, such as quality control in manufacturing, where any delay in detecting
defects can result in significant costs.
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One of the key challenges in deploying Al models at the edge is the
limitation of computational power and energy resources. Models need to be
optimized to balance inference accuracy with speed while keeping resource
consumption in check. Techniques such as model quantization, pruning, and
using more efficient architectures like YOLO for object detection and ResNet
for classification have proven effective in ensuring that edge devices maintain
high performance without compromising on precision. The deployment of
these models allows for effective parallel testing of multiple samples, leading
to decreased latency compared to centralized processing, where communica-
tion delays and network reliability can introduce bottlenecks. Moreover, edge
deployment supports data privacy and security by processing data locally,
which is often a requirement in industrial settings.

15.3 Spotting Defects in Wood Industry Products
15.3.1 Defect Detection Dataset

First, we try to identify the exact position of a defect within an image of a
wooden panel. To do so, we exploit a publically available dataset containing
a total of 20275 images: 1992 images of sawn timbers without any defects
and 18283 timber images with one or more surface defects. On average, there
are 2.2 defects per image, while only 6.7% of images contain more than three
defects. The highest occurrence of defects is 16 defects per image. The dataset
includes the following wood defects:

1. Live Knot: A portion of a tree branch incorporated into the trunk,
appearing as a circular or oval area of darker wood. Live knots are solid
and firmly attached but may cause irregular grain patterns.

2. Dead Knot: Similar to a live knot, but from a non-living tree. Dead knots
result from a branch that died and fell off, leaving a void filled with resin
or bark, often differing in color or texture from the surrounding wood.

3. Knot Missing: The absence of a knot where one would typically be
expected, leads to a more uniform wood appearance.

4. Knot With Crack: A knot that contains a crack or split within it.

5. Crack: A separation or break in the fiber structure of the wood.

6. Quartzity: The presence of quartz or silica deposits in the wood,
appearing as small, translucent or whitish mineral inclusions.

7. Resin: The presence of sticky or resinous substances, occurring natu-
rally or due to injury or stress, often appearing as pockets or streaks of
amber-colored substance.
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Figure 15.2 Visual representation of wood defects and their distribution. <

8. Marrow: Soft, spongy tissue found in the central portion of the tree
trunk, lighter in color and softer than the surrounding wood.
9. Blue Stain: A bluish discoloration caused by fungal or bacterial growth,
leaving pigments that produce a blue or grayish tint in the wood.
10. Overgrown: Abnormal growth of wood fibers, resulting in irregular or
distorted patterns, often due to hormonal imbalances or stress on the
tree.

Some examples of the defects are shown in Figure 15.2 a while their
distribution can be observed in Figure 15.2 b. It’s important to underline the
considerable unbalance between the classes, where the first two are dominant
with respect to the other eight. Considering that our main concern is to spot
defective elements rather than understanding their nature and that this class
imbalance, together with the innate similarity between defects, makes it hard
to distinguish among all of them, we decide to combine all of them under a
general Defect’ class.

15.3.2 Experiments and Results

The object detection model we decided to exploit is YOLO[24]. This model,
whose name stands for You Only Look Once, was revolutionary in the field
of object detection since it was able (starting from its first release) to output
both ROIs (Regions of Interests) and their classification after just one forward
pass of the input image through the network. In our case, we finetuned one of
the last available releases of YOLO, which is YOLOVS, in its medium version
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(around 26 million parameters). In general YOLO architecture (fully shown
in Figure 15.3)is made up of three main blocks:

* Backbone — This is a CNN whose main role is feature extraction. It
is composed of several stages which progressively reduce the spatial
resolution while increasing the number of channels. Each of them relies
on the so-called C2f block, which is in turn based on the Darknet
Bottleneck, made up of 2 convolution blocks and a skip connection.

* Neck — This block aggregates information from different stages in order
to improve the capacity of the model to recognize objects of different
sizes. It is also based on the C2f block.

* Head — This component processes the aggregated features coming from
the neck passing them through convolution blocks responsible for the
final predictions of both bounding box and classes

We trained the model for 100 epochs and in terms of results, a 95%

precision and a 94% recall are obtained, while the mAPsy reached a 96%
value. Some of the predictions on the validation set are shown in Figure 15.4
while the progress of the abovementioned metrics during the training, as well
as the loss functions on train and validation, is shown in Figure 15.5
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15.4 Spotting Defects in Digital Industry Products

In this section, we focus on the identification and classification of chip surface
defects. Given the challenges associated with acquiring a comprehensive
dataset, we employed the one introduced by Wang et al. [25], which, despite
its modest size, provides valuable insights into the defect detection process.
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15.4.1 Defect Detection and Classification Dataset

The selected dataset includes a total of 2763 images of chip surfaces, where
2000 images do not contain any defects, and 763 images present one among
four possible defects. We implemented a two-step classification approach,
aimed to streamline the industrial process and enhance the efficiency of
quality control. The initial phase involves a binary classifier designed to
quickly and accurately filter out defect-free chips. This step serves as a
critical screening process, ensuring that only chips identified as non-defective
continue through the subsequent stages of the industrial process. By doing
so, we effectively reduce the computational load and focus further inspection
efforts only on potentially problematic chips. This approach is particularly
valuable in high-throughput manufacturing environments, where minimizing
delays and optimizing resource allocation are crucial. For the chips flagged
as defective in the first step, a more granular analysis is then conducted in the
second step. This phase involves classifying the specific type of defect present
on the chip surface. The detailed classification not only aids in determining
the exact nature of the defect but also provides essential insights that can be
used for root cause analysis. In particular, the dataset contains the following
defect classes:

* NO_DIE (6b) represents a unique defect scenario where the actual error
lies in the absence of the soldered chip: the chip is missing on the sub-
strate. The absence of a chip can be attributed to manufacturing faults,
such as misalignment during the chip placement process or incorrect
soldering. These errors can occur due to equipment malfunction, human
error, or process inconsistencies.

* DIE_INK (6¢) includes chips with internal ink stains: these defects
can arise from ink deposition errors or contamination during the man-
ufacturing process. Detecting and classifying these internal defects
is essential for ensuring the integrity and reliability of the chip’s
functionality.

* DIE_BROKEN (6d) involves chips with visible breaks or fractures along
their edges. These breaks can occur during the manufacturing process
or as a result of external factors. Detecting and accurately localizing
these broken edges is crucial for quality control and identifying potential
manufacturing issues.
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(a) DEFECT_FREE (b) NO_DIE (c) DIE_INK (d) DIE_ BROKEN (e) DIE_CRACK
Figure 15.6 Defect-free chip and four common chip surface defects

Table 15.1 Distribution of the dataset
DEFECT_FREE NO_DIE DIE_INK DIE_BROKEN DIE_CRACK
2000 100 135 42 486

* DIE_CRACK (6e) represents chips with cracks occurring internally
within the chip structure. These cracks can stem from stress during fabri-
cation, handling, or environmental factors. Detecting and characterizing
these cracks aids in identifying structural weaknesses and preventing
potential chip failures.

The distribution of the different classes in the dataset is the following (1):

15.4.2 Experiments and Results

The model we used to perform classification is ResNet [26], in particular
the version 18 layers deep (namely ResNet-18). It introduced the innovative
concept of “skip connection", which connects the activations of a given layer
to further layers by skipping some intermediate layer, thus alleviating the
issue of vanishing gradient. The binary classifier was trained for 70 epochs
and obtained a 94.5% accuracy and 94% recall, precision, and F1 score. The
progress of accuracy and loss function on train and validation is shown in
Figure 15.7 a

As regards the second phase classifier, it was trained for 80 epochs
obtaining 97% accuracy, 87% recall, and 89% F1 score, as shown in
Figure 15.8 a
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15.4.3 XAl Analysis: insigths into ResNet-18 using Grad-CAM

Explainable Al methods, often referred as XAlI, are essential for enhancing
the transparency and interpretability of deep learning models by provid-
ing insights into their decision-making processes. Grad-CAM (Gradient-
weighted Class Activation Mapping) [27] visualizes the regions of an input
image that most influence the model’s predictions by highlighting the gra-
dients flowing into the convolutional layers, thus allowing us to identify the
specific areas of the chip surface on which the model focuses. Below, we
provide examples of the Grad-CAM results for each defect class:

* NO_DIE: The activation maps effectively highlight the missing chip
region, providing a clear indication of the defect (Figure 15.9 a).
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(2) NO_DIE (b) DIE_INK (c) DIE_BROKEN (d) DIE_CRACK
Figure 15.9 Grad-CAM activation maps for different chip surface defect classes. 1

* DIE_INK: The maps emphasize the areas surrounding ink stains,
accurately identifying the relevant regions for defect classification
(Figure 15.9 b).

* DIE_BROKEN: It’s the least represented class and in fact the maps show
some uncertainty in pinpointing the exact broken regions, reflecting
challenges observed in the confusion matrix and indicating potential
areas for model improvement (Figure 15.9 c).

* DIE_CRACK: The activation maps clearly outline the crack, demon-
strating the model’s proficiency in localizing and detecting this defect
(Figure 15.9 d).

15.5 Porting of the Models on Edge Devices

Porting Al models to edge devices is a critical step in realizing efficient, real-
time solutions, especially in industrial settings. The edge devices used in this
study include Nvidia Orin Nano and Nvidia Orin AGX, which are specifically
chosen for their balance between computational power and energy efficiency.
The process of porting models, such as YOLO for defect detection and
ResNet for classification, involved converting the models to ONNX (Open
Neural Network Exchange) format to ensure they could run efficiently on
these resource-constrained devices while maintaining high accuracy. ONNX
provides a unified format that allows models to be optimized for different
hardware platforms, making them more portable and reducing dependency
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on specific frameworks. By converting to ONNX, we were able to leverage
hardware acceleration features available on our tested edge devices, in which
we observed improved inference speed and reduced latency.

The deployment tests demonstrated that both devices could perform real-
time inference, with the Orin AGX showing a higher throughput due to
its superior GPU capabilities. However, the Orin Nano, being more cost-
effective and energy-efficient, also provided satisfactory performance for
applications where slightly lower throughput was acceptable. The deploy-
ment experiments showed that the models could achieve near-identical
accuracy compared to their performance in a centralized server environment,
proving the viability of using edge devices for industrial defect detection.

In addition, an important aspect of edge deployment is ensuring low
latency and robustness under varying conditions. The edge devices managed
to maintain high accuracy with inference times well within the acceptable
range for real-time operations, demonstrating their suitability for on-site,
autonomous quality inspection. By processing data locally, the system also
ensures data privacy, which is crucial in industries dealing with sensitive
information, such as PCB industries that deal with pre-production boards.

Overall, porting the models to edge devices proved successful, providing
a viable solution for decentralized, real-time defect detection in industrial
applications. The performance metrics, as shown in Tables 15.2 and 15.3,
highlight the trade-off between inference speed and power consumption for
each device. The Orin AGX, with its higher power consumption, offers
better inference times, while the Orin Nano provides a more energy-efficient
alternative suitable for less demanding applications. The use of powerful yet
efficient edge devices like the Orin Nano and Orin AGX resulted in a system
capable of high performance under the constraints typical of edge computing
environments.

Table 15.2 Performance of Nvidia Orin Nano for model deployment <

Model Inference Time (ms) Power Consumption (W)
Chip Defect/No Defect 25.1 11.2
Chip Defect Classification 64.5 13.4
Wood Defect Classification 72.3 14.2

Table 15.3 Performance of Nvidia Orin AGX for model deployment <[

Model Inference Time (ms) Power Consumption (W)
Chip Defect/No Defect 22.0 15.6
Chip Defect Classification 44.4 21.5

Wood Defect Classification 50.4 22.5




15.6 Conclusions and Future Works 303

15.6 Conclusions and Future Works

In this paper, we presented an Al-based Automated Optical Inspection solu-
tion designed for both the digital and wood industries, focusing on defect
detection at the edge. Through a series of experiments, we explored the
application of YOLOv8 for wood defect detection and ResNet for chip
surface defect classification. The results demonstrated that our proposed
approach achieved high accuracy, precision, and recall, proving the effec-
tiveness of deep learning models in industrial defect detection tasks. We also
presented an explainability analysis of the ResNet prediction, which can help
in understanding the region of the image that led to the model’s decision.

Moreover, by porting the models to edge devices such as the Nvidia Orin
Nano and Orin AGX, we successfully validated the feasibility of running
these complex models in a resource-constrained environment without com-
promising performance, enabling real-time defect detection. We showed that
the edge deployment maintains unvaried the accuracy of the models while
reducing latency and power consumption, which are critical aspects in the
industrial setup.

Future works will focus on several aspects to enhance our solution, for
example:

* The next step involves integrating our solution into a real-time indus-
trial setup. This will involve testing the models in environments where
objects move on conveyor belts, and high-speed cameras capture images
of products for defect detection. Such real-world trials will help assess
the models’ ability to handle real-time constraints, such as varying
lighting conditions, motion blur, and differences in defect types and
positions. By doing so, we aim to further optimize the system for
seamless operation in an actual production line.

* While our models achieved high accuracy, future efforts will focus on
enhancing the quality of training data. This involves not only increas-
ing the quantity of data but also ensuring that it represents a wide
range of defects across different types of products and environments.
High-quality, diverse data is critical for improving the generalization
capabilities of the models, reducing false positives and negatives, and
adapting to unseen defect types. In particular, augmenting the dataset
with hard-to-detect defects and edge cases will be crucial for improving
the system’s robustness.

* Facing directly the PCB issue by generating a dataset suitable for
detecting defects in these boards, either real or synthetic. Successively,
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testing both the one-stage and the two-stage solution presented in the
paper. In particular, in the second case, we imagine a first model able
to detect each PCB internal component (i.e. resistors, capacitors...) and
then several “expert" classifiers that will be able to decide whether a
component is correctly mounted or not.

We aim to explore multi-task learning approaches where the models
can detect and classify defects from multiple industries simultaneously,
improving the efficiency and flexibility of the AOI system.
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Abstract

This work-in-progress paper explores the integration of human cognition
and interaction models into industrial automation systems. We begin by
examining how human cognitive patterns can be applied to the development
of conscious agents within these systems. From an interaction standpoint, we
analyse the dual role of humans as both users and workers within automated
environments. The convergence of these perspectives enables the creation of
intelligent, multi-agent systems where humans function as equal agents. Such
systems are characterised by true flexibility, as each component can inde-
pendently assess its capabilities and collaboratively plan actions to achieve
both collective (external) and individual (internal) goals. We present two case
studies to illustrate these concepts: The first case study examines a distributed
vertical farm, where modules must coordinate their energy consumption,
demonstrating steps towards cognitive reasoning in machines. The second
involves the automation of a cruise ship’s HVAC system, where agents (cabin
units) negotiate a temperature setpoint based on human behaviour (user-
focused scenario).

Keywords: multiagent systems, human-computer interaction, computational
rationality, reconfigurable manufacturing systems.
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16.1 Introduction

Flexibility and reconfigurability are essential for driving automation pro-
cesses based on demand. These characteristics are applicable across a range
of domains, including building automation (e.g., HVAC systems, lighting
control), pharmaceutical production, smart factories, and other manufacturing
systems.

Reconfigurability is also critical in situations such as changing energy
consumption targets, emergency scenarios, equipment upgrades, or the intro-
duction of new workers who need time to reach full capacity while produc-
tion targets remain unchanged. Similarly, adapting to external factors, such
as increased HVAC demands—ensures that system goals are met without
compromising productivity, even when resources are limited.

The dynamic requirements in these contexts arise from both internal
and external factors. The internal ones are related to business processes and
goals, liveness, and safety properties of the systems concerning with respect
to their momentary conditions. External, in turn, are often influenced by
general economic and environmental conditions. These requirements can be
introduced during runtime or can be pre-defined.

Internal and external requirements can conflict, even if initially they
appear aligned. For example, a predefined internal goal of meeting the
minimal production output might contradict a dynamic external demand to
reduce energy consumption. One solution would be to set priorities among
requirements, while another approach involves optimising the performance
of the system to balance competing needs.

Pre-programming for such optimisation is possible, but as systems grow
in complexity, maintaining them becomes increasingly effort-intensive. A
more scalable solution involves creating multi-agent systems (MAS), where
each agent “knows” its capabilities, can “perceive” and adapt to changing
goals.

In this paper, we propose a MAS framework based on self-conscious
intelligent agents motivated by human cognition and capable of perceiving
humans as equals.

16.2 Related Research

The concept of multi-agent systems (MAS) is not new, nor is the idea of
conscious machines (both can be found in research and sci-fi novels). MAS is
a system that involves multiple intelligent agents that interact with each other
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and solve a set of problems. In this paper we consider the industrial applica-
tion of MAS, meaning that our agents are control programs for processes and
devices in an industrial automation setting. Thus, for example, [1] discusses
the use of agent technology in smart grid automation using the standards
IEC 61499 and IEC 61850, [2] develops the idea of intelligent mechatronic
components, and [3] uses an agent-based approach to model the dynamics of
liquid goods logistics and energy efficient sensors usage.

While we refer the reader to [4] for the introduction of MAS, the works
on the second concept we discuss here in more detail.

One way to bring consciousness to machines is to implement a belief-
desire- intention (BDI) model [5]. In the BDI model, intentions are primarily
perceived as elements of partial plans of action (although it is argued that BDI
models do not include a built-in capacity for “lookahead” type of planning
[6]). It reflects how humans reason and form intentions based on their goals
and the information they have. In this model, belief represents the agent’s
perception of the environment, desire refers to the goals the agent wants to
achieve (which can be organised hierarchically, although this is not always
necessary), and intention is the agent’s commitment to a specific course of
action based on a plan.

The BDI model has its limitations, and a series of works tackles them. For
example,

[7] complements the reasoning of BDI agents about time with reasoning
in time, making the model suitable for dynamic environments. Then, the
BDI model does not describe the communication between agents within the
context of MAS, which is partially dealt with in [8] where LORA (the logic of
Rational Agents) allows reasoning about interaction and incorporates action
logic. An important extension of the BDI model is [9]. The author integrates
a decision-theoretic planning framework into BDI and proposes the concept
of bounded rationality. In this approach, the agent’s decision-making is based
on utility maximisation while also considering cognitive and environmental
constraints, making it a more realistic model of rational behaviour under
limitations.

Computational rationality [10] is based on the core ideas of bounded
rationality. In addition to the mentioned constraints (cognitive, environmen-
tal, etc.), it considers the computational cost of the decision-making process.
A solution to a computation rationality problem is optimal with respect to
the trade-offs between the quality of decisions and the cost of computation.
In [10], the authors highlight that in many cognitive science frameworks,
decision-making is often modelled with two distinct levels, i.e., the higher
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rational level which defines goals and strategies, and the lower mechanistic
level which focuses on the implementation or on how the agent uses its
cognitive mechanisms (e.g., perception, memory) to approximate or achieve
these goals in practice. Computational rationality, in turn, treats information-
processing limitations (finite memory, time, or computational resources) as
integral parts of the model of rational behaviour. Unlike traditional models
of rationality, which assume agents have unlimited cognitive capacity, com-
putational rationality integrates computational and information-processing
constraints directly into the definition of rational behaviour.

The framework offers a structured way to explore how behaviours arise
from cognitive mechanisms that are tailored not just to the environment,
but also to the cognitive structure of the mind. Within this system, optimal
behaviour is understood as the result of executing the best possible program
suited to a given environment. This behaviour represents the machine’s upper
limit of performance under the given conditions.

The primary focus of [10] is how individual agents make decisions, so,
although in the context of MAS, other agents can be viewed as the envi-
ronment of individual agents they perceive, there is no specific focus on the
interaction between agents, including scenarios where a human is perceived
as an agent. In [12], the authors, in turn, lay the concept of computational
rationality as a foundation for a theory of interaction within the domain of
human-computer interaction (HCI).

While modelling the interaction between a computer and a human (e.g.,
through a graphical user interface or other means), the modeller must guess
human reactions and encode them into a set of rules. This is a nontrivial task
as users often deviate from the standard behaviour, which requires machines
to be flexible in their replies.

In the industrial automation world, the problem is especially acute as
the mental states of both human workers and human users are subject to
change. Depending on the length of the collaborative production scenario, it
can further alter and require a rapid, safe, and performance-optimal response
from the machine. While [12] does not tackle industrial automation scenarios
per se, it argues that computationally rational agents can successfully interact
with humans.

The core idea is that interactive behaviour results from a control policy
that is optimally adapted to users’ preferences and constraints. These con-
straints arise both from the internal environment (cognitive limits) and the
external environment (the interaction context). Interaction, therefore, is seen
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as the rational outcome of these bounded choices. By utilising approximate
optimization techniques like reinforcement learning (RL), hypotheses about
user goals and processing limits can be generated, allowing for adaptable
strategies. The theory also allows the machines to generate explanations of
human actions, i.e., answer “why?” and “what if?”” questions, which allows
them to be more adaptive. The need for adaptiveness is also motivated by
the fact that individuals often distribute cognitive processing across their
environment to optimise the use of their mental and cognitive resources, this
is known as the adaptive distribution of cognition [13].

The works discussed provide a foundation for exploring computational
rationality as a framework for agent interaction. Notably, we do not differ-
entiate between human and machine agents in our approach. This leads us
to our central question: “If we develop intelligent agents that approximate
human cognition, can we integrate humans into the system as equal agents?”
Our research objective is to create a multi-agent system (MAS) interaction
framework that allows agents to be dynamically added or removed while
pursuing both individual and collective system goals. This framework should
have adaptable communication strategies to prevent using inefficient meth-
ods of problem-solving (e.g., becoming trapped in local optima [13]) when
evidence suggests a better approach exists.

The central point in the agent architecture we envision is a self-awareness
layer (or if we follow terminology from [12], the internal environment).
Suppose we aim to avoid hard-coding production recipes or human-machine
interaction. In that case, the control program should be able to “reflect” on
itself and “decide” how its capabilities and limitations fit into the current
set of system goals. For instance, consider an agent which is a program that
controls a robotic arm. It can make the arm move and perform grip physically,
but if it lacks awareness of these capabilities and is asked to retrieve a book
from a shelf, the agent might respond that it cannot perform the task. One
might argue that a self-awareness layer can be easily generated since an agent
is a control program with the code often known.

Surely, if the agent is a white box and the control program is deterministic,
one can very well predict its future behaviour knowing, for example, its
execution traces. However, this luck is rare, and agents can be represented
by a neural network or other machine learning models.

The next point is that to achieve the full coverage of the environment
relevant to the agent, it needs to learn not only its own capabilities but also
how they fit into the whole system and, hence, what other agents do. Thus,
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they need to observe the behaviour of other agents, assume what they could
do with respect to the current goals, and derive their behaviour based on this
knowledge and their goals. The assume-derive model is shown in Figure 16.1.

16.3 Interaction Framework

In this section, we outline the framework within which we can achieve the
integration of human cognition principles into the MAS system in a way that
a human is treated as an equal agent. It consists of four layers: automation,
self- awareness, high-level agent communication, and the highest level where
the user specifies the system goals. Each layer at any time must ensure safe
operation and pass formal checks when necessary. For each of the layers, in
addition to their description, we also name the major problems to be solved.

16.3.1 Layer 1: Automation

We work with industrial automation systems; thus, our first layer is the layer
of pure automation control programs. We can operate out of the idea that
our low-level control programs are smart and can rewrite their sequence of
actions, and such work is being carried out. However, at this stage, we assume
that they operate with a set of atomic operations that can be activated in any
order by a scheduler from the higher level (e.g., using OPC UA). An atomic
operation has a common definition and different specifics depending on the
implementation of the automation system. Commonly, an atomic operation
is a single action performed by a machine that starts in the safe state of the
system and leaves the system in a safe state ready for next allowed actions.
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Figure 16.2 Interaction framework.

Consider having a drilling machine with a rotating table. Atomic operation
“perform drilling” in addition to lowering the drill machine and turning it on
for a defined amount of time, will also include checking if there is a workpiece
underneath it. The same suffices with any other process constraints; for
example, if there is a constraint on the maximum water temperature in the
tank, the operation “heat” will not turn on the heater if the temperature has
reached its maximum level.

An automation system can be represented as PLC control code with
a human-machine interface (HMI) and in this case, we must interface the
automation program directly, e.g., by sending data and events to function
blocks, in case it is implemented in IEC 61499. Another option is to send the
sequences of actions to the manufacturing execution system (MES), which
has the set of possible actions defined. Thus, this level directly executes the
commands from the upper layer and reports on the results of the operations
performed back to the top. The PLC code can also be organised in a way that
supports the MAS paradigm on this level to ease the debugging process.
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16.3.2 Layer 2: Self-awareness

Self-awareness is one of the core layers of the framework, where the concept
of an agent is introduced. As highlighted in Figure 16.2, the automation layer
only implements control and equipment-specific safety constraints. The self-
awareness layer, in turn, defines which automation operations can be grouped
into a wholesome entity together with environmental observations specific
to the operations. The grouping can be obvious, e.g., a conveyor belt or a
robot arm can be self-sufficient agents. On the other hand, if the robot arm
is installed on AGV, a composite agent can represent the whole assembly.
Another way to define agents is by following the control loops of the system.
Thus, having a vertical farming module with lighting and watering systems,
the lighting agent would be capable of adjusting the light according to
the lighting schedule and, for example, the PAR (Photosynthetically Active
Radiation) sensor. The watering agent then is responsible for the regulation
of the water flow depending on the watering schedule and a water flow sensor
that detects clogs in the pipes.

The self-awareness layer can be developed through RL methods. For
example, using data from factory processes, an offline RL method can learn
the system’s dynamics and generate an optimal control policy based on past
experiences. In this approach, agents are trained to become aware of their
capacities through iterative learning and feedback [14].

If a digital twin or a simulation model of the process is available, such
development can be supported by a closed-loop system, comprising two
main components: a modelling toolbox and a controlling toolbox. In [15],
the modelling toolbox allows the creation of a plant model that simulates
various system components or the entire system, which, in our case, would
transform into a simulation of the controller actions and environmental
response. Meanwhile, the controlling toolbox, originally, is a collection of
autonomous agents that interact with the plant model using reinforcement
learning algorithms, which would be replaced by the “consciousness” of the
agents being trained.

The main function of this layer is to provide specific to the request
available abilities and skills of the agent to the upper layer with the data
needed for scheduling and planning and to translate these results into a
sequence of atomic operations. The definition of appropriate reward functions
for training the self-awareness layer to choose suitable capabilities is then
necessary to keep the agents from “overthinking”.
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One interesting challenge in self-awareness is the possibility of discov-
ering skills that were not demonstrated in the self-learning process. Assume,
we have a conveyor belt, which is controlled by the motors and set to move
workpieces with some fixed speed. Can the speed be changed to achieve
production or energy consumption system goals? Whether the agent can
discover new skills safely during the runtime is one of the research questions
related to this layer.

Another challenge, stemming from the fact that the self-awareness of our
agents is remote from their physical abilities, is how the self-awareness layer
can adjust to the change of equipment executing approximately the same
skills and actions. The advantage of our framework is that the upper layers
do not have to be aware of such changes, while the self-awareness layer will
have to perform self-discovery.

16.3.3 Layer 3: High-level communication and coordination

In this layer, agents communicate and coordinate the completion of tasks
to achieve the goals passed down from the upper layer, thus we outline the
following main functions of the level:

Goal selection. On the top level, the goals can be determined for the whole
system (e.g., total energy consumption must be X) or for the subsystems
(e.g., the human in the packaging unit should be protected from burning out).
Agents must be able to select which goals are theirs to complete and which
are for the other agents. Goals can also be adopted from other agents when
they determine that assistance is needed.

Agents’ collaboration. Agents should be able to group (or “team up”) to
collaboratively achieve the goals if needed. For example, for a human not to
get a burn-out in the packaging unit, probably, a conveyor belt should work
slower after lunch and an AGV should pick the packed products faster to
keep the workspace of the human clean. For this, agents (1) must assume the
goals of other agents, as precisely as they can, (2) assume their common and
individual goals, and (3) derive their action based on the requirement inferred
using this information. We call these two phases the “Assume” phase and the
“Derive” phase (Figure 16.1). Reasoning can help with the Assume phase,
where an agent can analyse the trace of decisions of other agents and find
their motivation (for example, in [16]). This will allow agents to plan their
actions in the context of plans of other agents.
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Dynamic optimal policy determination. Some agents might have several
goals to satisfy, which, in turn, can be contradictory and belong to different
groups of agents. An agent must be able to find an optimal course of action.
A crucial part of this decision-making process is evaluating utility [12]. The
utility of an action is not limited to the immediate reward it brings but
also depends on the future rewards that can be expected when the same
policy is followed over time. By considering both short-term and long-term
outcomes, agents can make decisions that optimise their overall performance
in achieving individual and system-wide objectives.

External environment update handling. Agents can be sprouted and
destroyed dynamically, depending on the momentary requirements, which
they should be able to communicate and, thus, perceive when they are notified
about the same events from the other agents. The reconfiguration in this case
must happen automatically with as little downtime or human intervention as
possible.

Communication with humans. Agents that interact with humans should
have the mechanisms to assert the same aspects of the human internal
environment as they do when communicating with nonhuman agents.

In the implementation of the framework for this layer, we also consider a
time aspect of the decision-making. If finding an optimal action plan takes a
significant number of resources (time, computational power, etc.), the heuris-
tics are to be used. Also, here, we solve the problem of the cost of changing
the plan if a new better option is found. For instance, if midway through the
plan execution, the resources are already spent, this layer estimates whether
replanning is beneficial.

16.3.4 Layer 4: System goals

Mainly the goals sprout from the requirements for the system, about which we
talked in Section I. Different formulation languages are possible, for example,
various temporal logics, diagrams, or natural language, which is becoming
more possible with the development of LLMs. This layer is also the place for
enlarging the vocabulary of the system, for example, if the goal is “to keep
power consumption at 80% from maximum consumption during the nearest
month”, the system should at least know what power consumption is. LLMs
and users play a key role in vocabulary and semantics enrichment.

The requirements the system should satisfy may have a time interval,
for example, different production scenarios of the island-based factory might
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follow different production recipes, however, the general liveness and safety
requirements for the production may remain. One important note is that we
do not differentiate here goals for machines and goals for humans within the
production. Human workers or users participate in goal distribution on the
same level as nonhuman agents do. The difference shows only in the way the
goals are communicated to a human as special interfaces are required for the

purpose.

16.4 Case Study

As a leitmotif for the framework trials, we chose the topic of energy con-
sumption, since, in large productions, being able to reduce it even for a
small fraction of the total leads to a significant impact on sustainability and
production costs. Our case studies explore different parts of the framework
implementation starting from communication between the control loops of
the assembly, where each of them can straightaway decide on energy con-
sumption to indirect interaction with humans and agents that influence the
energy consumption of the main consumers but not decide on it straight away.

16.4.1 Vertical farming module

Our first case study is on the optimisation of the energy consumption of a ver-
tical farming module. Figure 16.3 shows the prototype module implemented
at the Aalto Factory of the Future and its overall architecture. Our automation
code runs on two M251 PLCs to which both digital and analogue sensors and
actuators connect. This layer connects to the business logic via OPC UA. The
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business logic layer is placed on the industrial PC, while it is also possible to
develop it in the cloud.

Our high-level logic employs the MAS concept. Each agent here is
responsible for calculating the consumption of a single control loop, where
a control loop is composed of an actuator and the environmental response
on the action of the actuator, for example, pump—water level. The whole
module itself can also be an agent in case there is more than one. In this
case, it becomes a composed agent, incorporating a set of agents—control
loops. Agents communicate with each other to converge on the best individual
power consumption values, given the total target power consumption of the
system.

In this example, we explicitly specified the self-conscious layer by
inputting the characteristics of the actuators controlled during the exper-
iments, namely LED lights of the vertical farming module. We have
also experimented with setting up communication between different agents
through distributed optimisation methods (for details, see [16]).

16.4.2 HVAC system of a cruise ship

Another case study we have in progress is the energy consumption of a cruise
ship. Here, several cabins connect to one Air Handling Unit (AHU) and
several AHUs connect to a diesel engine. In HVAC, the parts that consume
the most energy are the fans that drive the air inside the main ducts and
the chiller that cools it down to a set temperature. The only way we can
influence the energy consumption decision is by adjusting the temperature
set points in the cabins. Thus, lowering the cabin temperature would mean
that the corresponding valve for fresh air intake should open more, which
decreases the pressure in the main air duct, making the main fan increase
power consumption to stabilise the pressure, which also makes the chillers
cool down a larger air volume.

Since the solution should be flexible (extendable to various actuator types)
and scalable (more cabins can be connected to air ducts/more AHUs, diesel
engines in the system), we define each cabin, each AHU, and each diesel as
an agent. This relieves us from the need to explicitly encode the physics of
the process (unlike in the first case study) and AHU “learns” its dynamics
of power consumption based on the traces of the simulation model using RL
methods. One of the research questions here is how to dynamically generate
not only the agents but also the correct way of communication between them.
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Another angle of this study is incorporating users’ patience into the
system. The energy reserves are restricted on the cruise ship. Suppose that
a lot of people set the desired temperature below some minimum. In that
case, there is a chance that the diesel engines will not be able (within
safety boundaries) to provide enough energy for the ship infrastructure and
the HVAC system. This means that the temperature set point should be
adjusted automatically; however, this works up to a point where people do
not massively complain.

16.5 Discussion and Conclusion

While extensive research has been conducted on isolated issues in MAS and
HCI, little attention has been paid to the design of intelligent systems as
a whole, especially, from the industrial automation perspective. This paper
outlines the foundational problems and research questions aimed at shaping
machine consciousness, enabling agents to understand one another as well as
communicate effectively with humans.

We hypothesise that the implementation of such an architecture leads to
emergent behaviours akin to needs and motivations for the system itself. As
individual agents become more aware and coordinated, the factory’s oper-
ations could form a collective consciousness, transforming the production
process into something that responds naturally to the environment rather than
following pre-set instructions. This represents the basis of a truly reconfig-
urable and flexible factory—one where manufacturing as a service becomes
an inherent response to the factory’s needs, rather than an artificially imposed
command structure.

Future work will involve a deeper analysis of the solutions proposed
for each layer of the system, with special emphasis on the communication
aspects, both within the machine agents and between agents and human
workers, which involves exploring how intelligent agents can effectively
communicate and collaborate with humans.

Furthermore, experiments will be conducted in environments with
static and dynamic actuators, including mobile workstations, AGVs, and
reconfigurable factories. This framework will also have applications in
energy communities, where negotiation and flexibility with human input
is vital, especially for systems without plug-and-play capabilities, like
HVAC.
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Abstract

The exponential growth of IoT networks necessitates a paradigm shift
towards architectures that offer high flexibility and learning capabilities
while maintaining low energy consumption, minimal communication over-
head, and low latency. Traditional IoT systems, particularly when integrated
with machine learning approaches, often suffer from high communication
overhead and significant energy consumption.

This work addresses these challenges by proposing a neuromorphic
architecture inspired by biological systems. To illustrate the practical appli-
cation of our proposed architecture, we present a case study focusing on
water management in the Carinthian community of Neuhaus. Preliminary
results regarding water consumption prediction and anomaly detection in
this community are presented. We also introduce a novel neuromorphic
IoT architecture that integrates biological principles into the design of IoT
systems. This architecture is specifically tailored for edge computing sce-
narios, where low power and high efficiency are crucial. Our approach
leverages the inherent advantages of neuromorphic computing, such as
asynchronous processing and event-driven communication, to create an loT
framework that is both energy-efficient and responsive. Moreover, we show
that not only is the architecture neuromorphically inspired, but it can also
be partially realized, especially at the edge, by neuromorphic hardware.
This case study demonstrates how the neuromorphic IoT architecture can
be deployed in a real-world scenario, highlighting its benefits in terms of
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energy savings, reduced communication overhead, and improved system
responsiveness.

Keywords: 10T, edge computing, neuromorphic computing, deep learning,
machine learning.

17.1 Introduction and Background

The exponential growth of the Internet of Things (IoT) networks necessi-
tates a paradigm shift in how these systems are designed and deployed.
Traditional 10T systems, especially those integrated with machine learning
techniques, often face significant challenges, including high communication
overhead, increased energy consumption, and latency issues [1]. As IoT
devices become more prevalent, particularly in edge computing scenarios, the
need for architectures that balance flexibility, learning capability, and energy
efficiency becomes critical. These issues are exacerbated when machine
learning models are employed, as they typically require substantial compu-
tational resources. The challenge lies in creating an IoT architecture that can
efficiently process data at the edge, with minimal energy consumption and
latency, while still providing the flexibility and learning capabilities necessary
for complex tasks such as anomaly detection and prediction.

This paper addresses these challenges by proposing a neuromorphic IoT
architecture inspired by biological systems, specifically tailored for scenarios
where low power consumption and high efficiency are essential. Neuro-
morphic computing is an innovative approach in computer engineering that
designs computational systems inspired by the architecture and functionality
of the human brain and nervous system [2—4]. This brain-inspired computing
method offers significant advantages, including [5], [6]:

* Energy Efficiency: Traditional deep learning models may require up to
20 MW of power, while the human brain operates on just about 20 W,
highlighting the potential for substantial energy savings.

* Latency: Neuromorphic systems excel in parallel processing, allowing
for faster computations and reduced latency.

» Safety & Security: These systems enhance reliability by using redun-
dant and analog components, mimicking the robustness of biological
neural networks.

* Reduced Costs and Waste: By leveraging materials that mimic biolog-
ical processes, neuromorphic computing can lower production costs and
minimize environmental impact.
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These benefits point towards a new computing paradigm that could
revolutionize how we approach computational tasks. The primary objective
of this study is to propose a neuromorphic IoT architecture that integrates
principles from biological systems into the design of IoT systems. This
architecture is intended to offer significant improvements in energy efficiency,
communication overhead, and system responsiveness. Additionally, we aim
to validate the effectiveness of this architecture through a case study on water
management in the small city Neuhaus, Austria, demonstrating its practical
application and potential benefits.

17.2 Neuromorphic loT Architecture
17.2.1 Design principles

The proposed neuromorphic IoT architecture is inspired by the efficiency of
biological systems, particularly human nervous system, which have evolved
to process information with minimal energy consumption and high respon-
siveness [6]. The key features of this architecture include: distributed control
and learning, prediction instead of commands and reservoir computing.

17.2.2 Hierarchical distributed control and learning

Control and learning in an IoT network are distributed across various nodes,
allowing the system to leverage locally available information for decision-
making where it is most effective. This architecture is tailored for edge
computing environments, prioritizing low power consumption and high effi-
ciency. By processing data at the edge, the system can make real-time
decisions without the need for constant communication with centralized
servers.

In practice, different machine learning models are deployed across var-
ious layers of the IoT architecture: the device, or edge layer, fog layer, and
cloud layer. At the edge layer, rapid decisions are made, such as automatically
shutting off a water pipe in case of damage. The fog layer allows for more
sophisticated decisions by integrating data from nearby devices to improve
local water management. At the cloud layer, data from IoT devices and the
internet is aggregated to manage overall water resources and address disaster
scenarios.

We propose that higher architectural levels use predictions instead of
commands, similar to the human visual [7] and motor systems [8]. In fog
and cloud, models of water predictions on regional and global scales are built.
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The model predictions are sent to lower levels, while error corrections are sent
from lower to upper layers. Unlike federated learning [9], which relies on a
single global model for all devices, this approach utilizes local machine learn-
ing models to make decisions based on locally available information. This
strategy reduces communication overhead, latency, and energy consumption.

Neuromorphic Reservoir Computing is particularly well-suited for
edge implementation due to its low computational overhead, which results
in reduced energy consumption, and its ability to harness underlying physical
processes for computation. Neuromorphic reservoir computing is a computa-
tional framework inspired by the brain’s neural networks, particularly suited
for processing time-series data and performing complex pattern recognition
tasks [10—12]. This approach is based on the concept of a “reservoir,” which is
a recurrent neural network with fixed, randomly initialized connections. The
key idea is that the reservoir can transform temporal input data into a higher-
dimensional space, where the information is easier to analyse and predict. The
advantage of this method lies in its simplicity: only the output layer is trained,
while the reservoir itself remains unchanged. This reduces the computational
burden associated with training deep neural networks.

In Figure 17.1 the analogy between human nervous system and the
proposed IoT architecture is depicted.
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Figure 17.1 Analogies between human nervous system and the proposed IoT architecture.
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Figure 17.2 depicts the black-box view of the overall system. The IoT
network receives inputs from the environment (such as sensor signals like
water consumption measurements, weather data, and other internet-sourced
data) and executes commands on the environment (e.g., opening/closing
pipes, issuing alarms, etc.).

Issue Alarm

Open/close pipe

IoT Network Environment
Weather Data

Measurements

Figure 17.2 Black-Box view of the IoT network and the environment. <

Using hierarchical distributed control and learning with predic-
tion/correction feedback loops, we can minimize communication overhead
and energy consumption. Information is primarily processed where it is avail-
able; only predictions and corrections are communicated, not commands. A
mathematical framework for this approach is provided by Friston’s active
inference and free energy principle [13], [14].

17.3 Free Energy Principle

Friston’s free energy principle [13], [14] is a theoretical framework from
neuroscience, which posits that the brain minimizes a quantity called free
energy to maintain a stable internal state and make sense of the world. This
principle is derived from thermodynamics and statistical mechanics, and it
explains how biological systems (like the brain) resist disorder (entropy) by
maintaining an internal model of the environment. In our case, each level of
the IoT hierarchy has its own world model that is updated based on inputs
from the next lower level. Active inference has also been applied to IoT
in [15].

The free energy principle can also be broken down into terms involving
surprise and approximation errors.

F =DKL(q(s) p(s | 0))—log p(o) a7.1)
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Where:

DK L(q(s) p(s|o)) is the Kullback-Leibler (KL) divergence between the
recognition density ¢(s) and the posterior distribution p(s|o), which measures
how different the brain’s internal model is from the real posterior probability
of hidden states s given observations o. The hidden state, s, is a vector
representing the state of the environment in each IoT layer. The observations
o are vectors of measurements (over time) from the environment and signals
from the lower layers.

log p(0) is the log-evidence or surprise associated with the sensory input
0. The brain aims to minimize surprise (unexpected sensory states).

To reduce free energy, the brain does two things:

Perception: Adjusting its internal model (recognition density ¢(s)) to match
sensory input better. This helps reduce the Kullback-Leibler divergence
(KLD), which improves the accuracy of its beliefs about hidden states.

Action: Taking actions to influence the environment in a way that makes
sensory input more predictable, thus reducing surprise log p(0).

In our setup, each hierarchy level of an IoT network creates its own
internal model of the environment, updates the model according to sensor
inputs from lower layers, and performs actions on the lower layers to reduce
discrepancies between the model and the environment.

The free energy principle enables more autonomy for each layer, as it
places fewer constraints on the internal model of each layer compared to, for
example, reinforcement learning (RL), which assumes that agents maximize
expected rewards. Furthermore, it also requires less communication over-
head, since information is signaled to other layers only when the differences
between predictions and actual measurements exceed a certain threshold.

17.4 Asynchronous Processing and Event-driven
Communication

Unlike traditional computing systems, which rely on a global clock, the
proposed architecture processes information asynchronously. This allows
for more efficient use of resources, as computation only occurs when
necessary.

In biological systems, communication between neurons occurs only when
a certain threshold is reached, triggering a spike of activity. This principle is
applied in the proposed architecture to reduce unnecessary communication,
thereby lowering energy consumption and latency.
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17.5 The Role of Thresholds in Hierarchical loT Model

In hierarchical models, each layer generates predictions based on the lower
layer’s output, with higher layers handling more abstract representations.
Thresholds, in this context, can refer to parameters that decide:

* Uncertainty bounds: Determining when prediction errors (discrepan-
cies between predicted and observed states) should trigger adjustments
in the model or action.

 Signal passing thresholds: Deciding when sufficient confidence is
achieved in a layer to propagate the information upward or downward.

In active inference framework agents (IoT layers) continuously minimize
their variational free energy (a measure of surprise or uncertainty about
sensory inputs) by updating beliefs or performing actions. Key to this process
is minimizing prediction errors through updating the generative model
(beliefs about the world) or by acting to bring sensory inputs in line with
predictions.

* Perception: Update internal states to minimize prediction error.
* Action: Perform actions to reduce the discrepancy between expected
and actual sensory inputs.

17.5.1 Setting adaptive thresholds using prediction errors

In active inference, prediction error (the difference between the predicted
input and actual sensory input) drives updates to beliefs or actions. To adap-
tively set thresholds at different hierarchical layers, you can allow thresholds
to be modulated by the magnitude of prediction error and the precision
(inverse uncertainty) associated with each layer’s predictions.

1. Prediction Error Calculation: At each layer L;, prediction error is
computed as:
€; = input; — prediction; (17.2)

where ¢; is the prediction error at layer i, and input, is the input to the
layer (could be sensory data for the bottom layer or output from the
previous layer).

2. Precision-Weighted Prediction Error: To adaptively set thresholds,
weight the prediction error based on the layer’s precision 1Ii which
represents the inverse of uncertainty:
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Here, ¢; is the precision-weighted prediction error.

3. Adaptive Threshold Adjustment: Let the threshold at layer L; denoted
7; be adjusted based on the running average or variance of predic-
tion errors at that layer. For example, using an exponentially weighted
moving average (EWMA):

Tit+1) =a -17(t)+ (1 —a)-|&] (17.4)

where « is a smoothing factor, controlling how quickly the threshold
adapts to changes in prediction error magnitude.

4. Hierarchical Precision Tuning: Active inference frameworks often
adjust precision at each layer based on uncertainty in the environment.
If a lower-level layer exhibits high variability (uncertainty), precision
at higher levels may be reduced (lower confidence in predictions),
increasing tolerance for prediction errors.
We can compute adaptive precision [; at each layer based on past errors:

1
o2+

where o2 is the variance of prediction errors at layer L;, and 3 is a small
constant to avoid division by zero.

5. Threshold Propagation Through Layers: In a hierarchical model, the
adaptive thresholds 7; can also be influenced by errors at neighboring
layers. For instance:

)

(17.5)

7 = f(€i-1,€i+1) (17.6)
where 7; is set adaptively based on errors in both the layer above and
the layer below, helping each layer balance local and global model
adjustments.

17.5.2 Incorporating actions into threshold setting

Active inference involves both belief updates and action selection. Thresh-
olds can be adapted based on both the perceptual prediction errors (used to
update internal beliefs) and the action outcomes (used to reduce discrepancy
between predicted and actual sensory inputs).

For example:

* If actions reduce prediction error, thresholds may decrease, indicating
higher precision in predictions.

* If actions increase prediction error, thresholds may increase to allow
more flexibility in updating the generative model.
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17.5.3 Optimizing thresholds using free energy minimization

In active inference, the agent seeks to minimize free energy, which com-

bines prediction error and model uncertainty. Thus, thresholds 7; can be

adaptively set by minimizing the total free energy at each hierarchical level.
The free energy at each layer i can be expressed as:

1
F = ieix2 + H(IL) (17.7)

where H (II;) represents the entropy or uncertainty in the precision at that
layer. Minimizing F; can help set optimal thresholds at each layer by
balancing prediction accuracy and uncertainty.

17.5.4 Threshold setting summary
To adaptively set thresholds in hierarchical layers using active inference:

1. Monitor prediction errors at each layer.

2. Adjust thresholds based on the precision-weighted errors.

3. Tune precision and thresholds across layers by minimizing free energy
and propagating uncertainty estimates.

4. Use feedback from action to refine thresholds.

This approach aligns with the active inference principle of reducing
prediction errors while accounting for uncertainty in a dynamic environment.

17.6 Implementation

To implement the proposed architecture, we developed a neuromorphic IoT
framework that integrates neuromorphic devices for data processing. These
devices are deployed on edge devices, which are responsible for collecting
data, processing it locally, and making decisions in real-time. The framework
is designed to be modular, allowing for easy integration with existing IoT
systems and flexibility in terms of the types of sensors and devices used.

Auto Regressive Integrated Moving Average (ARIMA) is a classical
model used for time-series forecasting, which combines autoregression,
differencing, and moving average components. Both moving average with
threshold comparison, as required in each layer of our IoT architecture, and
ARIMA can be realized using neuromorphic computing. Moving average and
threshold comparison can be implemented in following way [16], [17] (see
Figure 17.3):
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Figure 17.3 Memristor implementation of moving average and threshold comparison. I

The implementation consists of the following components:
1. Memristor Array for Moving Average:

* The inputs are weighted by the conductance of each memristor.

* By applying voltages (input signals) across memristors with differ-
ent conductances, a weighted sum of the inputs can be computed.
Since the conductance (inverse of resistance) of the memristor
changes based on the applied voltage, it represents the weight
of each input in the moving average. The total output current
represents the weighted sum (i.e., the moving average).

2. Threshold Comparator:

* A reference memristor holds the threshold value.
* The output current from the memristor array (moving average) is
compared to the current through the threshold memristor.

3. Output Decision:
The difference in the currents between the input memristor and the
threshold memristor can be calculated using a current subtractor cir-
cuit or a differential amplifier. This will output a current (or volt-
age) proportional to the difference between the input signal and the
threshold.
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17.7 Case Study: Smart Village Water Management

17.7.1 Context and objectives

The municipality of Neuhaus in south-eastern Carinthia, Austria, on
the Slovenian border with 1015 inhabitants (as of 1 January 2024,
https://www.statistik.at) and an area of 36.34 kmsS offers a unique opportunity
to apply the proposed neuromorphic IoT architecture in a real-life scenario.
Like other similarly structured micro-communities, Neuhaus is facing the
typical problems of rural areas in Central Europe: declining population
figures combined with shrinking financial and human resources and new
challenges due to climate change. Water management is of crucial importance
in this region, as efficient utilization of water resources is essential for both
environmental sustainability and economic viability. In the last two years,
Neuhaus was confronted with a period of drought in the summer of 2023 and
enormous amounts of rain, flooding, and landslides in August 2024. Both
have a negative impact on financial resources and the quality of life in the
region.

In order to overcome these challenges and reduce the administrative
expenses, the municipality decided back in 2020 to replace all 377 water
meters in the municipality with smart meters. The water meters have to
be replaced every 4 years anyway for calibration reasons, so the one-off
additional costs were limited. A municipal LoORaWAN radio network was set
up for data transmission. LoRaWAN fulfils the required criteria for long range
in rural areas, low energy consumption of battery-operated smart meters,
and low installation and operating costs. The first automatic meter reading
took place in September 2021. In addition to the water meters, the reservoirs
of the three separate water supply systems, in which the spring water is
collected, were equipped with solar-powered level and flow meters. A total
of around 560 LoRaWAN sensors are currently installed in the municipal
area. In addition to the water meters, these include weather stations, road
temperature sensors, snow depth gauges, and indoor CO; sensors, for. In
July 2022, the research cooperation between the municipality of Neuhaus
and the University of Applied Sciences FH Campus Wien was launched.
The aim of this cooperation is to do research on IoT solutions for small
municipalities. This gives us access to all measurement data of the LoORaWAN
sensor network. Instead of simulated laboratory data, we can work with real
data, coming from a lossy IoT network. The first project realized as part
of this collaboration was a water management system for real-time water
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balances tailored to small communities with their limited resources. It has
been in operation since July 2023 and is used by the municipality.

In the present case study, we extend this system to include predictions
and alerts. The problems we are facing are typical for IoT sensor networks.
We have limited edge devices (our battery-powered water meters) and an
unreliable network with very limited data rates. Typically, the transmission
of water meter data occurs once daily to save battery power. An immediate
message should only be sent in the event of an exceptional incident, e.g. a
burst pipe after the meter. So, the decision must be made locally at the edge
device. And, since these devices are battery-powered, they are also limited in
their processing power and memory. The objectives of this case study are to:

1. Predict water consumption patterns in the community.

2. Detect anomalies in water usage that may indicate leaks or other issues.

3. Demonstrate the effectiveness of the proposed architecture in reducing
energy consumption, communication overhead, and latency.

17.7.2 Data collection and preprocessing

Data on water consumption were collected from various sensors deployed
throughout the community. These data included hourly and daily water usage
statistics, from the smart meters, as well as information on environmental

Table 17.1 Input and output information available at each IoT layer. 1

IoT Input from layer Other Inputs Output to layer Time and
Layer above above space scale
Edge Local water Actual water Difference Seconds/Local
consumption consumption of between expected (household)
threshold each household average local
water consumption
and the threshold
Fog Regional water Regional water Difference Days/Regional
consumption supply, Regional ~ between expected
threshold water pipe average regional
connection map water
consumption and
the threshold
Cloud - Time, date and Output to human: ~ Months/Global
season, weather statistics,
information from predictions and
internet, water alarms over global

supply water consumption
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factors such as temperature and humidity, which may influence water con-
sumption patterns. The data were preprocessed to remove noise and fill in
missing values due to losses in the LoORaWAN network before being fed into
the neuromorphic IoT framework. The following table shows the input and
output information available at each IoT layer (see Table 17.1).

17.7.3 Prediction models and performance

To evaluate the effectiveness of the proposed architecture, we compared
the performance of several machine learning models in predicting water
consumption. The models used included a Multi-Layer Perceptron (MLP),
Long Short-Term Memory (LSTM) network, Auto Regressive Integrated
Moving Average (ARIMA) model, and Random Forest. The mean absolute
percentage error (MAPE) was calculated for each model to assess their
predictive accuracy.

n a7 .
Yi— Y% (17.8)

MAPE = l
n Yi

Where:

7,is predicted value for i*" data point

y; is actual value for i*” data point

N is the number of observations

The results (see Table 17.2) indicate that the Random Forest model
performed the best in terms of hourly prediction accuracy, with a MAPE of
26.05%. For daily predictions, the LSTM model achieved the lowest MAPE
of 4.87%.

Overall, the ARIMA model achieves quite good performance in both
hourly and daily water consumption prediction.

ARIMA (AutoRegressive Integrated Moving Average) is a classical
model used for time-series forecasting, which combines autoregression,
differencing, and moving average components.

Table 17.2 Hourly and daily prediction errors of different algorithms. <]

Algorithm Hourly Prediction MAPE [ %] Daily Prediction MAPE [%]
MLP 41.10 5.05
LSTM 33.51 4.87
ARIMA 30.06 5.18

Random Forest 26.05 5.40
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Reservoir computing can approximate ARIMA by leveraging its ability to
model nonlinear relationships and memory of past inputs, which are essential
components of ARIMA models. In particular, the recurrent nature of the
reservoir allows it to capture the autoregressive and moving average aspects
of the time series, while the nonlinear transformation within the reservoir
can approximate the differencing and other complex relationships present
in ARIMA models. The equivalence of reservoir computing to nonlinear
vector autoregression (NVAR) is rooted in the way both models handle
temporal data [16], [17]. NVAR is a statistical model that predicts future
values of a time series based on past values, accounting for possible nonlinear
relationships between variables. Reservoir computing, by transforming input
sequences into a dynamic state within the reservoir, effectively performs a
similar operation to NVAR. It creates a nonlinear mapping of past inputs,
which can then be used to predict future values. This equivalence is partic-
ularly useful because it shows that reservoir computing can be viewed as a
form of nonlinear autoregression, with the reservoir acting as the nonlinear
transformation that enables the prediction of future states based on past data.
This understanding opens up the possibility of using reservoir computing
as a powerful tool for time-series prediction, where traditional methods like
NVAR are used.

In summary, by exploiting the equivalence between reservoir computing
and nonlinear vector autoregression, reservoir computing can be effectively
used to approximate the behavior of ARIMA models, offering a powerful
alternative for time-series forecasting that is particularly well-suited to han-
dling nonlinear and complex patterns in the data. Neuromorphic reservoir
computing is particularly interesting for IoT networks due to its low computa-
tional overhead and wide range of possibilities for physical implementations.
In this way, not only is the IoT architecture neuromorphically inspired, but
it can also be partially realized, especially at the edge, by neuromorphic
hardware.

17.7.4 Anomaly detection

Anomaly detection is a critical aspect of water management, as it allows for
the identification of unusual patterns in water usage that may indicate leaks
or other issues. In this study, we applied both the mean + 3 sigma rule and an
LSTM-based anomaly detection method to the water consumption data. The
results showed that the mean + 3 sigma rule detected more anomalies than
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the LSTM model, suggesting that simple statistical methods may be more
effective for this type of application in certain contexts.

17.8 Discussion

17.8.1 Energy efficiency and communication overhead

One of the primary advantages of the proposed neuromorphic IoT architec-
ture is its energy efficiency. By processing data locally at the edge and using
event-driven communication, the system significantly reduces the need for
constant data transmission to centralized servers, thereby lowering energy
consumption and communication overhead. This is particularly important in
rural areas like Neuhaus, where energy resources may be limited.

17.8.2 System responsiveness and latency

The asynchronous processing and event-driven communication of the pro-
posed architecture also contribute to improved system responsiveness. In
real-time applications such as water management, where timely detection of
anomalies is crucial, the ability to process data and make decisions quickly
can prevent significant water loss and reduce the environmental impact.

17.8.3 Safety & security

Safety: For analog systems it is possible to use continuity properties when
pondering system behavior in different points of their state space. If a system
exhibits intended behavior in a state A and in a related state B, it can be argued
that it will show intended behavior also when C' = aA + (1 — a)B, where
O<ax<1. So if the system is tested in states A and B, then it can be assumed
that it will not change too much in the intermediate states C in between.
Security: It is more difficult to access and modify analog hardware like
memristors or reservoirs than to perform a security attack over the internet.

17.8.4 Practical implications

The case study demonstrates that the proposed neuromorphic IoT architecture
is not only theoretically sound but also practically viable. The deployment in
Neuhaus and preliminary results show that the architecture can handle the
complexities of a real-world environment while delivering tangible benefits
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in terms of energy savings, reduced communication overhead, and improved
system responsiveness.

17.9 Conclusion

The exponential growth of IoT networks demands a new approach to system
architecture, one that balances flexibility, learning capability, and energy
efficiency. This paper has proposed a neuromorphic IoT architecture inspired
by biological systems, designed to meet these challenges in edge computing
scenarios. Through a case study on water management in the Carinthian
community of Neuhaus, we have demonstrated the practical application and
benefits of this architecture. The results show that the proposed architecture
can deliver significant improvements in energy efficiency, communication
overhead, and system responsiveness, making it a promising solution for the
future of IoT networks.

17.10 Future Work

While the proposed architecture has shown promising results, further research
is needed to optimize the integration of neuromorphic computing with
existing IoT frameworks and to explore its application in other domains.
Additionally, the development of more sophisticated anomaly detection meth-
ods, potentially integrating neuromorphic principles, could further enhance
the system’s capabilities. As IoT networks continue to evolve, the princi-
ples outlined in this paper will be crucial in guiding the development of
next-generation systems that are both efficient and effective
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Abstract

Benchmarks are essential for balancing the benefits and risks of Al by
providing quantitative tools that guide responsible development. They offer
objective and consistent metrics for accuracy, speed, and efficiency, enabling
engineers to develop reliable products and services. Additionally, bench-
marks help researchers gain new insights that can drive future innovations.

Today, numerous cloud-based Al development services allow software
developers, even those without expertise in data science, to utilise Al mod-
els through APIs, SDKs, or applications. Benchmarking these models on
cloud infrastructure is a feature offered by these services. However, few of
these services are designed for edge deployment, where deep expertise in
embedded programming and system integration is necessary to optimize and
deploy AI models on specific embedded devices. Comparing benchmarking
results across different embedded boards becomes increasingly complex
when targeting devices from various providers.

The current project aims to design and implement a collaborative platform
that enables researchers and developers to conduct experiments and research
across various edge Al domains and edge Al devices. This will be achieved
by sharing resources on a distributed virtual laboratory (dAIEdge-VLab).
This platform will provide access to dedicated resources, tools, and services,
allowing end users without expertise in embedded programming to perform
live Al experiments, such as benchmarking, on remote embedded boards.
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18.1 Introduction and Novelty Aspect

Edge AI and cloud Al offer two distinct approaches to deploying artificial
intelligence, each with unique strengths and limitations depending on where
data processing takes place. Edge Al is ideal for applications requiring real-
time, on-site processing and enhanced data security, as computations happen
directly on local devices. In contrast, cloud Al excels in scenarios demanding
extensive computational power and large-scale data processing, leveraging
remote servers for more complex tasks. These approaches can also work
together, with edge devices handling initial data processing and sending more
demanding tasks to the cloud for deeper analysis.

Edge Al processes data locally on devices positioned at the network’s
edge, closer to the source of data generation. This approach minimizes
latency, allowing for quicker, real-time responses. Since data does not need
to be transmitted to the cloud, edge Al also improves privacy and security
while lowering bandwidth usage. Although edge devices generally have
less computational power compared to cloud Al, recent advancements in
hardware have significantly enhanced their ability to handle complex Al
tasks.

Two key challenges in the development of edge Al for industrial appli-
cations are the difficulty in reproducing results consistently across different
edge devices, and the complexity involved in configuring heterogeneous
platforms, which can lead to lengthy evaluation times. As a result, com-
paring benchmarking results between various embedded boards becomes
increasingly complicated, especially when targeting devices from different
manufacturers.

This work addresses the identified challenge by introducing a collabora-
tive platform, dAIEdge-VLab, which enables researchers and developers to
remotely conduct experiments and research across various edge Al domains
and devices. With dAIEdge-VLab, users without embedded programming
expertise can easily deploy edge Al models and applications on remotely
accessible embedded boards and retrieve the experimental results. The
dAIEdge-VLab’s architecture is designed for scalability, allowing owners
of Al-powered edge devices to seamlessly integrate their hardware into the
dAIEdge-VLab infrastructure.
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The structure of the paper is as follows: Section 1.2 compares our
dAIEdge-VLab solution with existing state-of-the-art methods for remote
deployment on board farms. Section 1.3 presents two architectures of the
dAIEdge-VLab, a centralized and a distributed version. Section 1.4 delves
into the implementation details of the dAIEdge-VLab. Finally, Section 1.5
concludes the paper and outlines directions for future work.

18.2 State-of-the-art

Al Benchmarking can be defined as the process of evaluating and comparing
the performance, efficiency, and capabilities of Al models, algorithms, or
systems against standardized metrics and tasks. Key performance indicators
can be classified into two main categories: (i) hardware-agnostic metrics,
which are independent of the target device and applied libraries, such as
accuracy, model size or number of parameters; and (ii) hardware-specific
metrics, which depend on the target device, such as inference speed, power
consumption, or memory usage. These metrics determine how well an Al
model or system performs in real-world edge environments.

Benchmarking typically involves running AI models on predefined
datasets or tasks, such as image recognition, natural language processing,
or autonomous decision-making, and measuring their effectiveness against
other models or industry standards. Since edge devices have limited compu-
tational resources compared to cloud servers, benchmarking helps identify
the most suitable Al models and optimizations for these resource-constrained
environments. The goal is to ensure that Al applications running on the edge
can meet the necessary requirements for real-time decision-making, energy
efficiency, and overall performance in diverse scenarios, such as autonomous
systems, 0T, and industrial automation.

While many popular edge Al frameworks (both vendor-agnostic and
proprietary) offer built-in benchmarking tools to extract key performance
metrics, they do not guarantee a standardized procedure for fair comparison.
To address this, initiatives like MLPerf Inference Edge [1] from the MLCom-
mons foundation [2] aim to provide a representative benchmarking suite
that fairly assesses edge ML system performance. However, even though all
participants follow the same procedure to publish their benchmarking results,
the tests are conducted at the edge device owner’s facilities, and there is no
remote control to ensure proper hardware setup.

In the scientific literature, various publications propose methodologies
for the fair comparison of hardware, algorithms, and optimization techniques
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within the embedded design space. QuTiBench [3] introduces a novel multi-
tier benchmarking framework that accommodates algorithmic optimizations,
such as quantization, to help system developers assess the strengths and
limitations of emerging compute architectures for specific neural networks.
The QuTiBench team encourages community contributions to cover the full
range of choices in Machine Learning system implementations. However,
contributions ceased in 2021, and the project appears to no longer be main-
tained. Subsequent works, including [4], have adopted a similar approach
to evaluate Machine Learning inference machines on Edge-class compute
platforms. This testbed features two hardware compute engines—Raspberry
Pi 4 (CPU-based) and Google Edge TPU accelerator—and two inference
frameworks: TensorFlow-Lite and Arm NN.

Building on two decades of experience in developing embedded bench-
marks, EEMBC has taken its first step into the Machine Learning space and
is committed to keeping pace with industry advancements. To this end, they
introduced the EEMBC MLMark® benchmark [5], specifically designed
to assess the performance and accuracy of embedded inference systems.
Unlike benchmarks that allow private optimizations, MLMark requires that
all implementations be made publicly available in its repository. Version 1.0
provides source code and libraries for a range of platforms, including Intel®
CPUs, GPUs, and neural compute sticks with OpenVINO®); NVIDIA®
GPUs with TensorRT; and Arm® Cortex®-A CPUs and Arm Mali™ GPUs
using Neon™ technology and OpenCL™, respectively.

To ensure fair comparison across different types of Al-powered edge
devices (such as MPUs, GPGPUs, MCUs, NPUs, and VPUs), a unified
benchmarking service offering remote access to this diverse range of embed-
ded boards is essential. An online benchmarking platform would greatly
facilitate this need by enabling consistent and equitable evaluation across
varied hardware.

Recently, several edge device providers, including STM, Qualcomm and
Intel, have introduced their initial solutions for online remote benchmarking.
STM ofters the "STM32Cube.Al Developer Cloud"[6], a free online plat-
form designed to help developers create, optimize, benchmark, and generate
Al solutions specifically for STM32 microcontrollers and microprocessors,
which are based on ARM Cortex processors. The platform also supports Al
hardware acceleration (NPU) when available on the target device.

Qualcomm@® AI Hub [7] simplifies the deployment of Al models for
vision, audio, and speech applications on edge devices by providing auto-
matic optimization and validation tools. It offers over 100 pre-optimized Al
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models and enables seamless integration with Snapdragon® and Qualcomm
platforms, with easy access to real devices for testing and profiling.

Similarly, Intel has launched the "Intel Tiber Developer Cloud" [8], which
promises unrestricted access to Intel’s latest edge computing hardware and
software platforms for developer.

In addition, other vendor-agnostic commercial solutions have recently
emerged, such as the Impulse Embedded Remote Benchmarking Service [9].
This platform enables developers to remotely test Al models on a wide range
of GPU hardware, from entry-level devices like the Jetson Nano to high-
performance systems such as the AGX Orin. Based on our understanding,
only GPGPU devices are currently available for remote benchmarking.

To the best of our knowledge, no vendor-agnostic, multi-platform, and
scalable solution for online remote benchmarking currently exists. This work
addresses that gap by introducing a versatile, vendor-neutral, and scalable
virtual laboratory designed to facilitate edge Al benchmarking experiments,
bridging the divide between data scientists and the embedded systems
domain.

18.3 dAlIEdge-VLab Architecture

The dAIEdge-VLab is designed to help users who lack expertise in embedded
programming or do not have direct access to specific hardware. It will enable
them to conduct real-time Al experiments on a remote farm of embedded
boards. These experiments could include AI model benchmarking (using
randomly generated data), Al application benchmarking (with pre-existing
test datasets), support for hardware-in-the-loop neural architecture search
(NAS), and even benchmarking for on-device training.

In terms of hardware compatibility, the dAIEdge-VLab is built to sup-
port a wide range of embedded boards, spanning from high-performance
MPUs and GPGPUs to energy-efficient MCUs and specialized NPUs. On
the software side, it accommodates both Linux-based and real-time operating
systems, as well as bare-metal solutions. Additionally, the platform will be
compatible with widely used vendor-agnostic inference runtimes along with
proprietary Al engines.

A virtual lab for online benchmarking of edge Al applications typically
consists of several architectural components designed to facilitate remote
experimentation, testing, and optimization of Al models across different edge
hardware platforms. Below is an outline of its overall structure together with
the main functionalities:
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Figure 18.1 Virtual Lab Layer Model.

1. User Interface (UI) Layer

* Web Interface/Dashboard: The virtual lab offers a user-friendly web-
based dashboard that allows data scientists and developers to interact
with the system. This includes uploading AI models, selecting tar-
get hardware platforms, configuring benchmarking parameters, and
monitoring results.

* CLI API: An API-based interface allows seamless integration with
custom Al pipelines.

* AI Application Management: Users can upload pre-trained Al models,
select from a model zoo, or choose a complete Al application. The
system also supports model versioning, enabling easy retrieval and
comparison of different versions.

2. Orchestration Layer

* Resource Management and Scheduling: This component handles
the orchestration of resources across multiple platforms, ensuring effi-
cient allocation of hardware for testing and benchmarking. It manages
queues, schedules jobs, and optimizes resource usage based on platform
availability.

* Virtualization and Containerization: Models and benchmarking tasks
are often containerized (e.g., using Docker) to ensure compatibility
across diverse hardware. This enables easy deployment across various
edge devices, regardless of their underlying operating system or archi-
tecture. This layer deals with the management of containers on edge
devices running general-purpose operating systems.
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* Benchmark Configuration: Users define test cases, including hardware
configurations, datasets, and performance metrics such as latency, power
consumption, and accuracy. The ultimate goal is to define the tech-
nical requirements to compare benchmarking results among different
configurations.

3. Edge Device Layer (Board farm)

* Multi-Platform Hardware Pool: The system integrates a variety of
edge devices, ranging from low-power loT devices (like STM32 MCUs,
RISC-V based platforms, etc.) to high-performance systems (such as
Raspberry Pi or Jetson Orin Nano or AGX). This diversity ensures
comprehensive testing across different edge environments.

* Remote Access & Control: The lab allows remote access to real,
physical hardware. Developers can deploy Al models directly to these
devices for testing under real-world conditions, avoiding the limitations
of simulated environments.

4. Data and Model Processing Layer

* Data Preprocessing and Inference: This layer handles the preprocess-
ing of input data and manages the inference execution on edge devices.
It ensures that the models are efficiently adapted to the target hardware’s
limitations, such as memory and computational power.

* Performance Metrics Collection: During benchmarking, this layer
monitors critical performance metrics like inference time, throughput,
power consumption, and memory usage, which are fed back into the
system for analysis.

5. Analytics & Reporting Layer

* Results Analysis & Visualization: The benchmarking results are pro-
cessed and presented through interactive dashboards, allowing users to
compare metrics across different hardware platforms. Detailed reports
include insights into energy efficiency, processing latency, accuracy, and
other relevant performance factors.

This virtual lab architecture is designed to bridge the gap between data
scientists and embedded systems by enabling seamless testing, monitoring,
and optimization of Al models on real edge hardware in a scalable, vendor-
agnostic manner.

The proposed dAIEdge-VLab platform features a modular architec-
ture that allows for easy integration of remote embedded boards. For the
implementation of the proposed dAIEdge-VLab, we have followed an agile
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four-step methodology: (i) classifying functional and non-functional require-
ments for the envisioned online Al benchmarking solution and identifying
gaps in existing solutions; (ii) designing a layer model for the dAIEdge-VLab;
(iii) developing an initial PoC of the dAIEdge-VLab based on a centralized
architecture managed by a central server where all registered embedded
boards are listed and orchestrated; and (iv) designing a distributed version
to enhance the flexibility, scalability, and security of the dAIEdge-VLab.

Figure 18.2 illustrates the overall architecture of the centralized dAIEdge-
VLab. The key components of this architecture are:

* Remote User: A user initiating an Al experiment on a remote node
submits a request via a web-based user interface. No manual installation
is required on the user’s side.

* dAIEdge-VLab Server: The dAIEdge-VLab Server receives the user
request and forwards it to the corresponding Remote Host that is
connected to the target Remote Node. All available Remote Nodes are
registered to the dAIEdge-VLab Server.

* Remote Host: Located at the facility of the Remote Node owner,
the Remote Host is responsible for executing node-specific scripts. It
compiles and deploys the Al application to the Remote Node, retrieves
the benchmarking results, and sends them back to the user through the
dAIEdge-VLab Server.

* Remote Node: This refers to the embedded board where the Al exper-
iments, such as model benchmarking, are executed. A single Remote
Host can manage multiple Remote Nodes at the owner’s site.
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Figure 18.2 Centralized dAIEdge-VLab Architecture. ]
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Figure 18.3 illustrates the architecture of the distributed dAIEdge-VLab,
which differs slightly from the centralized version due to the absence of
a dAIEdge-VLab server for managing the registered Remote Nodes. The
primary components are as follows:

* Remote User: A user wishing to launch an Al experiment on a Remote
Node submits their request through a web interface. Unlike the cen-
tralized version, a lightweight local installation of the web interface is
required on the user’s side to interact with the dAIEdge-VLab API.

* Peer-to-Peer Content Delivery Network: This open system manages
the exchange of data between nodes without the need for a centralized
server, enabling decentralized communication.

e Remote Host: Situated at the Remote Node owner’s location, the
Remote Host is responsible for running node-specific scripts, compiling
and deploying the AI application to the Remote Node, retrieving the
benchmarking results, and transmitting them back to the user via the
peer-to-peer content delivery network.

* Remote Node: This is the embedded board where Al experiments, such
as model benchmarking, are executed. Multiple Remote Nodes can be
managed by a single Remote Host within the owner’s facility.
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Figure 18.3 Decentralized dAIEdge-VLab Architecture. <l
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18.4 dAIEdge-VLab Implementation

To demonstrate the feasibility of the centralized dAIEdge-VLab, the initial
PoC implementation uses a GitLab server to run CI/CD pipelines on GitLab-
hosted runners. Each Remote Host must install and register a runner for
every Remote Node it manages. These runners execute node-specific tasks
triggered by the GitLab CI/CD pipeline. The process followed by the cen-
tralized dAIEdge-VLab to initiate a benchmarking experiment is outlined as
follows:

1. User Interface layer: A Remote User submits a benchmarking request
via the web interface, specifying the trained model, target Remote Node,
and Machine Learning Runtime (MLR) to be used from the available
options.

2. Orchestration layer: The dAIEdge-VLab GitLab Server processes the
request by triggering the GitLab CI/CD pipeline. A Docker container
with the required tools for the specific node is also deployed on the
Remote Host.

3. Data and Model Processing layer: The Remote Host executes the node-
specific scripts (Al-Support, Al-Build, Al-Deploy, Al-Manager) using
the tools within the Docker container, producing a binary tailored for
the target Remote Node. This binary is then deployed onto the Remote
Node.

4. Edge Device layer: Runs the inference/benchmarking process and sends
back the collected benchmarking metrics to the Remote Host.

5. Analytics and Reporting layer: The Remote Host retrieves the bench-
marking metrics from the Remote Node and returns them to the
dAIEdge-VLab GitLab Server via the GitLab artifacts. The server gen-
erates a benchmarking report, which is then sent back to the Remote
User for visualization through the web interface.

The distributed version of the dAIEdge-VLab differs from the centralized
one primarily in its implementation of the orchestration layer, specifically
the resource management and scheduling components. In this version, a
dAIEdge-VLab API on the Remote User side is responsible for requesting
access to the target Remote Node to run the benchmarking experiment. Once
access is granted based on node availability, a peer-to-peer content delivery
network, using IPFS [10], will transmit the request to the selected board via
the associated Remote Host.
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Managing the preprocessing of input data and inference execution on
the target edge device requires a structured approach for implementing the
node-specific scripts in the Data and Model Processing layer. This setup
includes four main scripts and a Docker image containing all the necessary
tools and packages for the specific node. These components are organized as
follows:

1. AI_Support:

* Provides documentation, dependencies, and installation support for
the Remote Node. For edge devices with OS support, an OS kernel
binary image along with system libraries will be provided for
flashing onto the target board.

* Includes scripts to initiate code generation for the benchmarking
application specific to the Remote Node, which will be saved in the
Al_Project folder.

2. AI_Project:

* Stores the generated benchmarking application that is optimized for
execution on the Remote Node.

3. AI_Build:

* Contains the build environment with toolchains required by the
inference framework to cross-compile the benchmarking applica-
tion.

* Provides scripts for cross-compiling the benchmarking application
on the Remote Host.

4. AI_Deploy:

* Includes tools for deploying the generated binary file onto the
Remote Node.

* Provides scripts to automate the deployment of the binary for the
benchmarking application onto the Remote Node.

5. AI_Manager:

* A management tool integrated with the inference framework to
control the target board and monitor the system’s status.

* Includes scripts to establish a connection with the Remote Node
and retrieve benchmarking metrics.
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This structure ensures seamless execution of remote benchmarking tasks
across various edge devices while maintaining consistency in deployment and
management.

A first PoC for the centralized dAIEdge-VLab is operational. Below are
screenshots showcasing the web interface dashboards for both input selection
(see Figure 18.4) and visualization of benchmarking results (see Figure 18.6).
A history of previously executed experiments is saved locally in the browser
cache (see Figure 18.5), allowing users to review and compare different
benchmarking experiments in the future.

* Device Select the device

* Inference engine

* Model Select your model

* Benchmarking's inputs ~ Randomly generate inputs

Launch the benchmark

Figure 18.4 User Input Selection through Web Interface. <
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The generated benchmark report is a JSON file that includes all the
relevant keys, even those not retrieved from the Remote Node. These keys
are organized into four main categories and used throughout the benchmark
report:

1. Hardware specific keys

* FLOPs (type: float): Floating-point operations per second.

* inference_latency (type: json): This key contains a JSON file
containing the latency measures (in seconds) of all performed
inferences (mean (type: float), std (type: float), min (type: float)
and max (type: float)).

* throughput (type: float): Throughput of the system in inferences per
second.

* latency_per_layers (type: list): This key contains a list of
json composed of all the layer’s latency measures (<element
list> (type: json), layer_name (type: str), mean (type: float),
std (type: float), min (type: float), and max (type: float)).
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* preprocess_time (type: json): Time in seconds for the pre-
processing (mean (type: float), std (type: float), min (type: float)
and max (type: float)).

* postprocess_time (type: json): Time in seconds for the post-
processing processing (mean (type: float), std (type: float), min
(type: float) and max (type: float)).

* ram_size (type: int): Size in bytes of the available RAM of the
system.

* ram_peak (type: float): Percentage of the peak RAM usage.

* flash_size (type int): Size in bytes of the available FLASH.

* flash_usage (type: float): Percentage of the FLASH usage. It might
not be relevant for Linux targets.

* load_cpu (type: float): Percentage of the CPU usage.

* load_accelerator (type: float): Percentage of the accelerator (GPU,
NPU, etc.) usage.

* temperature (type: float): Temperature of the board in °C.

» ambient_temperature (type: float): Room temperature in °C.

* power_consumption (type: float): Power consumption of the board
in Watt.

* energy_efficiency (type: float): Operations Per Watt (OPW).

2. Hardware agnostic keys

* model_size (type: int): Size in bytes of the trained model on the
embedded board (after any compression / optimisation performed
by the MLR).

* nb_parameters_model (type: int): Number of parameters of the
trained model.

* accuracy (type: float): Accuracy of the trained model.

At the conclusion of each benchmarking experiment, two log files,
user.log and error.log, are generated to help users track any issues. The
contents of these logs are displayed on the web interface for user review:

* user.log: This file provides general information or warnings related to
the benchmarking process.

* errorlog: This file logs any errors encountered during the process,
particularly in cases where the JSON benchmarking report could not
be generated (e.g., due to an unsupported model format or insufficient
memory on the target board).

These logs allow users to identify and troubleshoot potential problems in
the benchmarking process.
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A Continuous Testing (CT) strategy has been implemented to ensure
the dAIEdge-VLab platform’s stability. To achieve this, a suite of tests is
automatically triggered on a weekly basis, as well as after every push or
merge request. These pipelines are executed across all registered Remote
Nodes, supported Machine Learning Runtimes (MLRs), and models from the
internal model zoo.

Remote Node owners interested in adding their boards to the dAIEdge-
VLab can find the guidelines under [11]. An MPU/linux template as well
as an MCU/RTOS template are available to speed up the integration of new
Remote Nodes.

18.5 Conclusion

Evaluating machine learning inference on edge devices is an essential step
before selecting the optimal embedded board or optimizing the ML model to
suit the target hardware. However, accessing boards from various manufac-
turers and getting familiar with their unique programming environments is a
complex and often inaccessible task. To address this challenge and simplify
access to a diverse range of embedded boards, we propose in this paper
a solution for conducting ML benchmarking experiments on remote board
farms.

For the implementation of the proposed dAIEdge-VLab, we adopted
a five-layer model and followed a four-step methodology: (i) classifying
functional and non-functional requirements for an online Al benchmarking
solution on remote board farms and identifying gaps in existing solutions;
(ii) designing a layer model for the dAIEdge-VLab; (iii) developing an initial
PoC of the dAIEdge-VLab based on a centralized architecture managed by
a central server; and (iv) designing a distributed version to enhance the
flexibility, scalability, and security of the dAIEdge-VLab. This incremen-
tal approach has resulted in a scalable solution that is ready for release
and capable of integrating third-party embedded boards in a distributed
manner.

The current implementation of dAIEdge-VLab supports a wide range of
Linux-based MPUs, including Raspberry Pi 4B and Raspberry Pi 5, as well
as GPGPUs such as Nvidia Jetson Xavier and Nvidia Jetson Orin Nano. It
also accommodates MCU+NPU platforms like the STM32MP257, along with
bare-metal MCUs such as STM32L.4R9 and NXP LPC55569. Additionally,
it includes support for vendor-agnostic Machine Learning runtimes, such as
ONNZX Runtime, TensorFlow Lite, and TensorFlow Lite for microcontrollers,
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as well as vendor-specific Machine Learning runtimes like CUBE-AI and
TensorRT.

dAIEdge-VLab currently assists users who may not have expertise in
embedded programming or access to the target embedded board by enabling
real-time model benchmarking on a remote embedded board. In the future,
additional experiments will be introduced, including Al application bench-
marking, support for hardware-in-the-loop neural architecture search (NAS),
and the ability to launch on-device training directly on the target board.

In the near future, we aim to enhance the distributed version of the
dAIEdge-VLab by incorporating blockchain technology to share and manage
information about the registered embedded boards in a decentralized way.
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Abstract

Sustainability in water resource management is critical, given the necessity
to monitor and predict key indicators such as SDG 6.4.2: Water Stress. This
indicator, which measures the ratio of water resources abstracted relative
to their availability, is vital for assessing the pressure on water resources
and ensuring their long-term sustainability. The objective of this study is to
compare various neural network architectures utilizing different optimisers
to predict water stress. The analysis was based on a dataset sourced from
AQUASTAT, encompassing data from 28 European countries. Several neural
network architectures, with configurations ranging from two to four layers,
were implemented, and evaluated using optimisers including SGD, Adam,
RMSprop, and Adagrad. The findings revealed that a three-layer architecture
combined with the Adam optimiser delivered the best performance, achieving
an MSE of 0.02187 and a R? of 0.9745, indicating high predictive accuracy.
Nevertheless, a two-layer architecture with the SGD optimiser also exhib-
ited strong performance, highlighting its simplicity and effectiveness. These
results underscore the importance of meticulous selection of both architec-
ture and optimiser when predicting critical indicators such as water stress.
This study not only enhances the accuracy of water-related risk predictions
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but also supports informed decision-making for sustainable water resource
management in Europe.

Keywords: sustainability, water stress, artificial neural networks (ANN),
artificial intelligence (Al), optimizers.

19.1 Introduction and Background

For several decades, climate change has affected the hydrological cycle, mod-
ifying rainfall patterns, raising water temperature, and intensifying extreme
phenomena such as floods and droughts. These changes put pressure on water
resources, with potential adverse impacts on ecosystems and human health.
In addition, sea level rise may intensify the salinization of groundwater and
estuaries, decreasing the presence of freshwater in coastal areas. Furthermore,
climate variations in water volume and quality are expected to impact food
availability and access to water, particularly in arid areas, and impact water
infrastructure such as irrigation systems and hydropower [1]. In Europe,
climate change will accentuate the differences in water resources between
north and south. In the north, precipitation is expected to increase, improv-
ing water availability, but with risks of flooding and increased greenhouse
gas emissions from the decomposition of carbon in the soil. In the south,
especially in the Mediterranean regions, there will be a decrease in water
supply, increasing irrigation demand and agricultural vulnerability, as well as
problems of erosion, salinization and soil degradation. Changes in rivers and
more frequent droughts and floods will affect the carbon cycle, complicating
mitigation efforts [2].

Water stress occurs when the demand for water exceeds the quantity
available during a given period or when poor quality limits its use, result-
ing in the deterioration of freshwater resources in terms of quantity and
quality (https://www.eea.europa.eu/). Water stress, intensified by climate
change, population growth and economic development, affects both human
consumption and key sectors such as agriculture, energy and industry. This
phenomenon, aggravated by the degradation of ecosystems and the depletion
of water sources, calls for adaptive water management to ensure sustainability
and economic stability. Global warming is expected to significantly alter
water availability, with increased risks of droughts and floods. By 2030,
global water consumption is projected to exceed 160% of available supply,
exacerbating global water challenges [3].
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Water stress is closely related to Sustainable Development Goal (SDG) 6.
Modifications in the hydrological cycle, such as changes in precipitation and
water salinization, directly affect access to clean and safe water, especially
in coastal areas and arid regions. This underscores the need to implement
solutions that address not only the quantity of water available, but also its
quality, in line with SDG 6 targets. To address these global challenges, it is
crucial to improve the capacity to predict and manage water stress and other
indicators related to water availability. In this context, technologies such as
Artificial Intelligence (Al) and machine learning models play an increasingly
relevant role. These models provide advanced tools for the analysis and
prediction of complex water-related phenomena, such as water stress, by
processing large amounts of climatic, hydrological, and agricultural data
efficiently.

Early prediction of water stress is vital to mitigate impacts on agriculture,
energy and other sectors that are highly dependent on water. AI models
enable more accurate, real-time analysis of key indicators such as the water
stress index and other relevant parameters. These predictions help optimize
decision-making on water use, facilitating more effective adaptation strate-
gies in response to climate variations. Despite the growing interest in the
use of machine learning models for water resources management, there is a
lack of studies that systematically compare various neural network architec-
tures and optimizers specifically in the context of water stress prediction in
Europe. Many previous works have focused on general applications of neural
networks in water data modelling but have not performed a comprehensive
assessment of how different configurations affect predictive accuracy in a
specific regional context. Furthermore, the integration of AQUASTAT data,
which spans multiple European countries, provides a unique opportunity to
address this gap by facilitating the identification of patterns and trends that
may be critical for sustainable water management. This study seeks to close
this gap by providing a rigorous and contextualized comparison of machine
learning models applied to European water data, thus contributing to the
development of more effective decision-making tools for water resources
management.

The objective of this study is to compare different artificial neural network
architectures using different optimizers to predict water stress in 28 European
countries, using an AQUASTAT dataset. Through this comparison, we seek
to evaluate the performance of each architecture and optimizer in terms
of predictive accuracy. Identifying the most effective configuration will not
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only contribute to improve informed decision making for sustainable water
resources management in Europe but will also allow policy makers and water
managers to select analytical tools that optimize water use.

This article is structured as follows: first, we will present a state-of-
the-art review of the main papers on water stress prediction, analyzing the
methodologies and approaches used in previous research. Subsequently, the
use of different neural network architectures and optimizers in this context
will be discussed, highlighting their advantages and disadvantages. Next,
the methodology employed in this study will be described, including data
selection. Finally, the results obtained from the comparison between different
neural network architectures and optimizers will be presented and discussed,
as well as the implications of the findings for sustainable water resources
management in Europe, together with recommendations for future research.

19.2 State of the Art

Concern for water availability has gained relevance in a global context where
climate change and the growing demand for water resources are intertwined
with sustainability objectives. In this regard, the energy sector faces signif-
icant challenges, particularly in thermoelectric generation, which requires
large volumes of water for cooling. Recent studies have assessed how periods
of extreme heat impact electricity generation, highlighting the reduction in
production at 1,326 thermoelectric plants in the European Union. Despite
efforts to reduce water withdrawals, the number of watersheds experiencing
water stress is expected to increase, emphasizing the need to implement
integrated approaches to water and energy resource management [4].

On the other hand, the sensitivity of river basins to climate change has
been analyzed using advanced methodologies that combine climate mod-
elling and multi-model simulations. This approach has made it possible
to classify different basins according to their vulnerability, revealing that,
although the Nordic basins show high sensitivity, those of southern and
central Europe face greater challenges in overcoming low flow and water
stress thresholds [5]. This research underlines the importance of proactive
and adaptive management to cope with the adverse effects of climate change
on water availability.

In addition, the use of artificial intelligence techniques to characterize
and predict water stress has gained attention in several regions. A study
conducted in Hyderabad, India, demonstrates how models such as support
vector regression (SVR) outperform traditional approaches such as ARIMA
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in drought prediction. The results highlight the ability of artificial intelligence
to capture complex patterns in data, which can significantly contribute to
more efficient water resource management [6].

Finally, the application of thermography in agriculture has been shown
to be a valuable resource for detecting water stress in crops such as maize.
A study in Thailand suggests that continuous monitoring of the Crop Water
Stress Index (CWSI) can effectively predict yield losses under drought con-
ditions. This approach highlights the importance of integrating technology
into agricultural management to optimize water use [7]. Taken together,
these studies evidence the need to adopt holistic strategies that address
water stress from multiple perspectives, combining climate research, artificial
intelligence, and innovation in agricultural practices.

19.3 Material and Methods
19.3.1 Data

Our database includes 4 variables and 337 records, with information from
28 European countries related to SDG 6.4 indicators: Water Use Efficiency
and Water Stress, covering the period from 2010 to 2021. The Water Use
Efficiency indicator measures the economic value added generated by each
unit of water used (expressed in dollars per cubic meter). Its objective is to
evaluate how much economic value is produced with each cubic meter of
water withdrawn and used in the economy, considering the following sectors:

1. Agriculture, the largest consumer of water.
2. Industry, where water is essential for production processes.
3. Services, where its use can be more efficient.

The Water Stress Level indicator measures the percentage of renewable
freshwater withdrawal in a region or country, comparing water demand
with total availability. It is expressed as the percentage of renewable water
resources withdrawn in a year. A high value indicates higher water stress,
while a low value reflects more sustainable water use.

Indicator 6.4.2 is defined as the ratio of total freshwater withdrawal
(TFWW) in all major sectors to the difference between total renewable
freshwater resources (TRWR) and environmental flow requirements (EFR).
It is calculated using the following formula [12]:

o TEWW
~ TRWR - EFR

Water Stress (% 100. (19.1)
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Table 19.1 presents descriptive statistics on Water Use Efficiency and
Water Stress. Water use efficiency averages 134.95 $/m3, with a standard
deviation of 215.60 $/m?3, indicating considerable variability among Euro-
pean countries. The minimum value observed is $6.29/m? and the maximum
reaches $1,294.91/m?, suggesting large differences in water management.
The median is 80.41 $/m3, indicating that half of the observations are below
this value.

For water stress, the average is 20.74%, with a standard deviation of
19.13%, reflecting significant variations. The minimum value is 0.99%, show-
ing that some areas do not face water stress, while the maximum is 91.29%,
indicating a risk to sustainability in certain regions. The median of 17.24%
indicates that half of the areas analyzed have relatively low water stress.

Table 19.2 shows the descriptive statistics of water stress in European
countries from 2010 to 2021. In general, there is a large variability in water
stress levels between countries. Malta has the highest average level at 83.19%,
indicating chronic pressure on its water resources. Other countries with high
stress levels are Belgium (56.43%) and Bulgaria (41.19%), while Croatia
(1.45%) and Austria (9.08%) show considerably lower levels.

Comparing the average data with that of 2021, some countries, such as
Austria, Belgium and Czechia, have reduced their water stress in 2021 relative
to the averages of the 2010-2021 period. For example, Belgium decreases
from 56.43% to 51.88%. However, other countries, such as Cyprus and
Denmark, have seen an increase in their water stress levels in 2021, which
may reflect higher demand or lower water availability.

Although water stress in Malta decreased slightly in 2021 (78.28%), it is
still very high. This highlights the continued pressure on its water resources,
attributable to limited freshwater availability. In summary, the data highlight
both improvements in water management in certain countries and increases
in water stress in others, evidencing the various challenges Europe faces in
managing its water resources.

Table 19.1 Descriptive statistics for the two variables under study <J

Water Use Efﬁciency($/m3) Water Stress (%)
Mean 135,95 20,74
Std 215,60 19,13
Min 6,29 0,99
25% 34,99 6,01
50% 80,41 17,24
75% 143,09 29,8

Max 129491 91,29
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Table 19.2 Descriptive statistics for the level of water stress of the countries under study <!

Country Mean Std Min 50% Max 2021
Austria 9,079396  0,349331  8,67643 9,052531  9,643548  8,67643
Belgium 56,42826  7,228664  49,06634 5291819  73,13268  51,87961
Bulgaria 41,19484  2,675824 37,5194 41,01338  47,19492 37,5194
Croatia 1,44622 0,065285  1,289266  1,469994  1,518462  1,478435
Cyprus 30,09158  2,179796  27,46036  29,72936  34,89612  32,12138
Czechia 2490686  2,826334  20,51399 24,8236 29,66849  20,51399
Denmark 2478854  2,818227  19,69984  24,89713  29,90311  26,40427
Estonia 16,62548  3,929511  9,231085  18,13312  20,28139 10,8198
Finland 7,736582  1,909514 5454114  7,114062  11,51814  7,114062
France 23,72531 1,359882  21,59814  23,68161  26,39062  21,59814
Germany 39,52151 5377602  33,50192  37,46542 49,9216 35,35166
Greece 20,28583  0,252374  19,93815  20,28121 20,6838 20,6838
Hungary 8,098914  0,880236  6,775475  8,12532 9,274611  8,070121
Ireland 10,63118  7,986741  4,001176 5971554  22,20506  22,20506
Italy 29,79749  0,111825  29,64578  29,80592  29,94407  29,64578
Latvia 1,259613  0,351461  0,992929  1,074131  2,175015  1,067831
Lithuania 2,986097  1,668811 1,834102  2,399063  7,467916  1,834102
Luxembourg  3,866086  0,206621  3,573798  3,8267 4,328358  3,963516
Malta 83,18589  5,022172  75,44555  82,18479  91,28713  78,28007
Netherlands 17,59585  2,071677  15,02981 16,90208  20,75185  16,07566
Northern 13,86417  0,665184 1242114  14,22251 14,35465  14,35465
Ireland

Poland 35,61036  3,509251 30 35,88958  41,22534  32,07684
Portugal 15,3874 2,708669 12,31571 17,2372 17,97442  12,31571
Romania 6,26299 0,465228  5,822489  6,060762  7,362606  7,362606
Slovakia 2,501927  0,15682 2,388124  2,421629  2,862737  2,436631
Slovenia 6,420104  0,518243  5,749155 6,296146  7,813387  6,294794
Spain 43,9606 3,191685 39,8289 43,25404  50,10225  43,25404
Sweden 3,592352  0,135445 3427128  3,567388  3,880231  3,582973

A threshold of 25% has been established to evaluate water stress, where
values below are considered safe and values above represent an increasing
threat. This stress is classified into five categories: no stress (<25%), low (25-
50%), medium (50-75%), high (75-100%) and critical (>100%). Figure 19.1
illustrates the frequency of water stress values in different ranges, using a
colour palette ranging from green (low stress) to red (high stress). Most of
the observations are in the safe range, indicating that many regions do not
face significant pressure on their water resources, as reflected in the high
frequency of values between 0 and 25%. However, there are a notable number
of areas in the medium stress category (50-75%), with fewer areas in high
stress (75-100%). Although there are not many observations that exceed
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100% (critical category), the presence of some indicates that these regions
face serious water sustainability concerns.

19.3.2 Methodology

19.3.2.1 Data

The data were processed to select only the relevant column and then normal-
ized using a MinMax scaler, which ensures that all values were within the
range [0, 1]. Normalization is crucial to improve the stability and efficiency
of neural network training. Subsequently, temporal sequences were created
to capture the dependencies between the data over time. For each output
(target) value, the values of the previous 28 observations were used as input.
This process of creating sequences turns the problem into one of sequential
prediction.

The normalized data were divided into three subsets: training set (70%),
used to adjust the model weights, validation set (15%) to monitor model per-
formance during training and avoid overfitting, and test set (15%), reserved
for evaluating the final model performance on unseen data.

19.3.2.2 Neural network architecture
Different dense layer architectures with ReLU activations were evaluated for
each hidden layer. The following layer configurations were used:
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* Architecture (64, 32): This architecture, consisting of two layers with 64
and 32 neurons respectively, was used in the initial training phases. Its
purpose was to evaluate the behaviour of the model in the prediction
problem with a relatively simple structure. This allowed to obtain a
benchmark to compare more complex architectures.

* Architecture (128, 64, 32): By adding an intermediate layer and increas-
ing the number of neurons, this architecture increases the model’s
ability to learn more complex patterns in the data. This configuration is
expected to improve the generalization of the model by capturing deeper
relationships between input variables.

* Architecture (256, 128, 64, 32): This deeper architecture with larger
number of neurons is designed to address highly complex prediction
problems. The addition of more layers and neurons provides the model
with the ability to learn high-level feature representations, which can be
crucial for improving accuracy in water stress prediction.

In all architectures, optimization techniques, such as Adam, RMSProp
and SGD, were applied in order to minimize the loss function during training.
Each layer was regularized using the L2 penalty (regularization term) to avoid
overfitting. In addition, a Dropout layer with a rate of 30% was included
after each hidden layer to improve the robustness of the model and avoid
overdependence of some neurons.

19.3.2.3 Model optimization

SGD (Stochastic Gradient Descent) with a learning rate of 0.01 and a
momentum de 0.9

The Stochastic Gradient Descent (SGD) methodology, as presented by
LeCun et al. (2002), can be summarized in the following key steps in the
context of neural network training:

1. Definition of the optimization problem: The objective is to minimize a
cost function E(W), which measures the difference between the expected
value and the output predicted by the model. The most commonly used
cost function is the mean square error (MSE), which is defined as:

EW)==  Ep. (19.2)

Where Ep is the error associated with pattern p, W is the vector of model
parameters, and P is the size of the training set.
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2. Gradient calculation: At each iteration, the gradient of the cost function
with respect to the model parameters is calculated:

VwE(W). (19.3)

This gradient indicates the direction in which the W parameters should
be adjusted to reduce the error.

3. Parameter update: The model parameters are updated using the gradient
of the cost function computed in the previous step. In SGD, the update
is performed for each p training pattern stochastically, i.e., individual
samples are used instead of the entire data set:

w1 = Wy — NV Ep(w). (19.4)

Where 7 is the learning rate, a hyperparameter that controls the step size
taken at each iteration.

4. Repetition: The process of updating the parameters is repeated over
several epochs, going through all the samples in the training set sev-
eral times until the model converges or until a predefined number of
iterations is reached.

5. Improving generalization: In addition to minimizing the cost function,
the paper also addresses the importance of improving the generalization
capability of the model, i.e., the ability of the model to make correct
predictions on unseen data. The SGD method is combined with tech-
niques such as regularization to avoid overfitting and improve model
generalization.

Adam with a learning rate of 0.001

The Adam (Adaptive Moment Estimation) optimizer is used to update
the model parameters during training. Adam combines the advantages of
the AdaGrad and RMSProp algorithms, providing an adaptive learning rate
adjustment for each model parameter. Its implementation is straightforward,
requiring only first-order gradients, making it computationally efficient and
suitable for problems with nonstationary targets and noisy or sparse gradients.

The algorithm employs adaptive estimates of the first and second
moments of the gradients, automatically adjusting the step size during the
optimization process. The standard hyperparameters used were initial learn-
ing rate & = 0.001, 5 = 0.999, and £ = 10-8, which did not require additional
adjustments. During the training process, the initial biases of the moments
were corrected by a correction mechanism to ensure proper convergence.
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This setup ensures that the model parameters converge efficiently, main-
taining a balance between speed of convergence and numerical stability of
the training [9].

Key formulas of the Adam algorithm:

1. Moving average of the gradient (first moment):

my = B —my_1+ (1= B1) - gt (19.5)
2. Moving average of the squares of the gradient (second moment):
v =P —vi-1+ (1= Pa) - g7 (19.6)

3. Updating of parameters:

Q- Mg

Vit

O =0;1 — (19.7)

RMSprop with a learning rate of 0.0001

RMSProp (Root Mean Square Propagation) is an adaptive optimization
algorithm that adjusts the learning rate by dividing the gradient by a moving
average of the magnitudes of recent gradients. This technique is useful for
handling the oscillations problem in optimization and for improving conver-
gence in deep learning problems, especially in neural networks trained with
mini-batches [10].

1. Adaptive update: Unlike AdaGrad, which accumulates gradients indef-
initely, RMSProp maintains an exponentially decreasing average of the
squares of past gradients. The update of the weights is performed as

follows:
n

Ti41 = Tt — —=———0t-
VEIg?], +e

Where E[g2]t is the exponential moving average of the squared gradients
at time t, and € is a small value to avoid divisions by zero.

2. Exponential moving average: The key to RMSProp is that it calculates a
moving average of the squares of the gradients with a decay factor. This
allows the algorithm to remain effective even in problems where the
gradients vary significantly over time. The calculation of this moving
average is defined as:

E g%, =vE[¢}], ,+ (1 - g (19.9)

Where ~ is the decay factor, usually close to 0.9.

(19.8)
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Advantages of RMSProp: RMSProp solves the problem of excessive
learning rate decay in AdaGrad by limiting the influence of old gradients
through the use of a moving average. This allows maintaining an adequate
learning rate throughout the training, especially in deep neural networks
where gradients can vary considerably between layers. This method has
proven to be particularly effective in optimization tasks with redundant data
or features of very different magnitudes.

Adagrad with a learning rate of 0.01
AdaGrad is an adaptive optimization algorithm that adjusts the learning
rate of each parameter based on the cumulative magnitude of gradients in
previous iterations. This adjustment allows the algorithm to be effective in
scenarios where features are sparse or gradients vary considerably between
dimensions [11].
1. Adaptive update: At each iteration t, the parameters x; are updated using
the gradient g;, adjusted by a factor that depends on the cumulative sum
of squared gradients:

Tty1 = Tt — n\/GgitiH-
t

Where Gt is the sum of the squared gradients up to t, and ¢ is a small
value to avoid divisions by zero.

2. Adaptive advantages: AdaGrad automatically adjusts the learning rate
for each parameter. Parameters associated with large gradients are
updated more slowly, while those with small gradients are adjusted more
quickly, improving learning efficiency on sparse data.

3. Mahalanobis norm: AdaGrad uses the Mahalanobis norm to project
the updates, which ensures that the update steps are adjusted to the
behaviour of the accumulated gradients, resulting in more stable and
efficient updates.

This adaptive approach allows AdaGrad to achieve better convergence,
especially in problems with sparse data or where features have different
scales of importance. To improve the convergence of the model, the following
callbacks were implemented during EarlyStopping and ReduceLROnPlateau
training.

(19.10)

19.3.2.4 Evaluation and metrics
The model was evaluated using the following metrics:

* RMSE (Root Mean Square Error): measures the standard deviation of
the predictions with respect to the actual values.
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* MAE (Mean Absolute Error): Measures the average of the absolute
errors.

* R? Score: Evaluates how well the predictions fit the actual values
(coefficient of determination).

These metrics were calculated for both the training and test sets.

19.4 Results

Table 19.3 presents an analysis of various neural network architectures and
optimizers, evaluated using the mean square error (MSE), the mean absolute
error (MAE) and the coefficient of determination (R?). These indicators are
key to measure the accuracy and generalization capability of the model. In the
two-layer architecture (64 and 32 neurons), the Stochastic Gradient Descent
(SGD) optimizer stands out with an MSE of 0.0320 in training and 0.0254
in testing, showing good generalization. In contrast, Adam underperforms,
while RMSprop and Adagrad offer intermediate results. For the three-layer
architecture, Adam achieves the best performance with an MSE of 0.0284 in
training and 0.0218 in test, indicating excellent generalization ability. SGD
and RMSprop are not as effective in this more complex configuration. In
the four-layer architecture, SGD maintains competitive performance with
an MSE of 0.0445 in training and 0.0375 in test. Adam fails to match its
previous performance, and both Adagrad and RMSprop show higher errors.
In summary, SGD is effective on simple architectures, while Adam excels

Table 19.3 Results of the different architectures and optimizers <

MSE MAE R’ MSE MAE R? test

train train train test test
21.(64,32) SGD 0.032 0.1149 0.9689 0.0255 0.1066 0.9703
21.(64,32) Adam 0.077 0.2019 0.9253 0.0634 0.1695 0.9261
21.(64,32) RMS 0.0398 0.1512 0.9614 0.0306 0.1228 0.9644
21.(64,32) Ada 0.0388 0.1245 0.9624 0.0344 0.1191 0.9599
3L.(128,64,32) SGD 0.1223 0.1827 0.8814 0.0959 0.1646 0.8883
31.(128,64,32) Adam 0.0284 0.1174 0.9724 0.0219 0.0982 0.9745
31.(128,64,32) RMS 0.1205 0.2486 0.8831 0.081 0.1945 0.9057
3L(128,64,32) Ada 0.0544 0.1416 0.9472 0.0446 0.1301 0.948

41.(256,128,64,32) SGD 0.0446  0.1444 09568  0.0375  0.1361 0.9563
41(256,128,64,32) Adam  0.0615 0.1935 09404  0.0515 0.1741 0.94
41.(256,128,64,32) RMS 0.0772  0.2415 09252  0.0858  0.2574  0.9001
41.(256,128,64,32) Ada 0.0547  0.1764 09469  0.0429  0.1636  0.95
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Figure 19.2 Comparison of R?.

on more complex structures. The choice of optimizer should consider the
complexity of the neural network to optimize performance.

Figure 19.3 presents the R? values for different combinations of model
architectures and optimizers, evaluating their performance on the training and
test sets. An R? close to 1 indicates a good ability to explain the variability of
the data, and the results suggest that there is no overfitting, as the values are
similar in both sets. The combination of 2L.(64,32) with the SGD optimizer
stands out with an R? of about 0.970 in both ensembles, showing excellent
generalization. Likewise, the 31.(128,64,32) architecture with Adam achieves
an R? of 0.975 on the test set, indicating optimal performance. However,
more complex architectures, such as 41.(256,128,64,32), show slightly lower
results, especially with RMSprop, which has an R? of 0.900 on test. This
suggests that, despite their ability to capture complexities, they do not always
improve performance. An important finding is that Adam offers superior
performance on complex architectures, while SGD is very competitive on
simpler configurations. In summary, simpler models with well-tuned opti-
mizers achieve good results in R2, and the generalization capability is robust,
indicating stability in predicting unseen data.

Figure 4 compares the prediction errors of different neural network
models using two metrics: MSE (Mean Squared Error) and MAE (Mean
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Figure 19.3 Comparison of MSE and MAE.

Absolute Error), for the training and test sets. In the MSE plot, models with
optimizers such as Adam and SGD show better results, with the 21.(64,32)
model with SGD achieving the lowest MSE, indicating a good fit and
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balanced prediction ability in both sets. However, more complex models
such as 3L.(128,64,32) with SGD and 4L.(256,128,64,32) with RMS present
higher MSE, suggesting difficulties in generalizing. The MAE plot reflects
similar patterns, where 21.(64,32) with Adam shows lower absolute error,
indicating good accuracy. In contrast, models such as 4L.(256,128,64,64,32)
with RMS and 3L.(128,64,32) with SGD show higher errors, implying opti-
mization problems. In general, simpler architectures, especially 21.(64,32)
with optimizers such as SGD or Adam, tend to perform better on both metrics.
More complex architectures, such as 41.(256,128,64,32), show worse results,
with larger discrepancies between training and test performance, which may
indicate overfitting or suboptimal optimization.

19.5 Conclusions

The conclusions of this study highlight key implications for policy adoption
and future research design in the field of deep learning. The findings reinforce
the need for clear guidelines on the selection of architectures and optimizers
in neural networks, not only from a technical perspective, but also to facilitate
efficient implementation in practical applications. Simplicity, as observed in
the performance of less complex architectures such as 21.(64,32), is a princi-
ple that can guide strategic decisions in the development of predictive models,
suggesting that in many contexts it is preferable to opt for less complex
solutions that balance accuracy and resource efficiency. This approach could
be crucial for industries seeking to integrate artificial intelligence into their
processes, as it minimizes the risks associated with computational overhead
and overfitting.

As for optimizers, the results reinforce the adoption of approaches such
as SGD and Adam, which proved to be the most effective depending on
the complexity of the architecture. The superior performance of SGD on
simple architectures and Adam on more complex models suggests that model
development policies should be adaptive, adjusting both the architecture and
the optimizer according to the context and specific data needs.

For future research, these results open multiple avenues of exploration.
It is essential to continue to evaluate how different datasets, particularly
those with more complex nonlinear relationships or larger volumes, affect
the performance of more complex architectures. In addition, the impact of
hyperparameters should be further investigated and alternative optimizers that
have not yet been widely studied in this context, such as AdamW or Nadam,
should be tested to confirm the validity of these patterns in different scenarios.



References 377

Finally, the transfer of this knowledge to the applied domain, whether
in Al policies for industrial sectors or to improve technology adoption in
the public sector, requires an evidence-based approach such as the one
presented here. The promotion of policies that incentivize simplicity and
efficient optimization in model development could have a significant impact,
encouraging a more sustainable and effective use of artificial intelligence. The
implementation of policies that promote simplicity and optimization in the
development of Al models can be key to accelerating their adoption in both
industrial and public sectors. The study highlights that simple architectures
and efficient optimizers such as SGD or Adam not only improve performance,
but also facilitate the scalability and maintainability of technology solutions.
In the industrial domain, this could reduce costs and barriers to entry, enabling
a democratization of Al. In the public sector, the use of accessible models
can contribute to scalable and sustainable solutions, such as predictive health
systems and urban resource management. In addition, promoting simplicity in
Al design is also aligned with green objectives, reducing energy consumption
associated with complex models.
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Abstract

In the context of Federated Learning, it is essential to authenticate the incom-
ing messages from various entities. Many works have utilized Certificateless
Public Key Cryptography (CL-PKC) and Signature Schemes. These recent
developments focus on the existence of a single Trusted Authority (TA)
that can issue partial private signatures truthfully without any malicious
intent. This assumption is not pragmatic when multiple competing entities
with some assets are involved. Additionally, dependence on a single TA
introduces a single point of failure and a center of malice. In this work, we
first propose a mechanism for partial key exchange for CL-PKC employing
Traceable Ring Signatures. Furthermore, we utilize the existing blockchain
or logging infrastructure to extend our model to provide accountability and
disincentivization for malicious TAs. The cryptographic tools used in this
work can be parallelized to get more efficiency out of these trusted nodes. To
evaluate our protocol, we also simulate it to argue for the communication and
computation costs.

Keywords: certificateless public key cryptography, distributed learning,
accountability.
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20.1 Introduction

Federated Learning (FL) is a distinct approach to machine learning in which
distributed and decentralized entities train a local model using the localized
data and provide updates to the global server to improve the global model.
There are many inherent benefits to such an approach as it avoids the unnec-
essary sharing of raw data from one point to another. It also has numerous
advantages in terms of scalability and efficiency. However, this approach
generates a complex network structure wherein there is a huge amount of data
aggregation to a local node, usually called the aggregator, where local data
processing occurs. Due to the complexity of the underlying network structure,
enabling key distribution and management is a challenging task. The key
management and distribution are essential to implement the necessary data
security guarantees. Moreover, it is equally important to handle access control
and data authentication from various entities in the network. Without the
necessary steps, malicious entities can exploit the vulnerabilities to inflict loss
of data and assets. Thus, distributing keys and authenticate various messages
from the network entities is of utmost importance. A critical aspect of such
networks is that the end devices that collect the data are usually resource-
constrained with limited computation power. Therefore, we cannot deploy
expensive cryptographic tools for data security.

20.2 Related Work and Contributions

Identity-based Encryption (IBE) [1] [2] allows users to communicate and
share secrets and signatures in which the user’s public key is derived from
a known string associated with the user. However, this requires complete
trust in a Trusted Authority (TA), also known as Key Generation Centre
(KGCQ). This introduces a single point of failure that can reveal all the secret
keys associated with the system users when compromised. Certificateless
Public Key Cryptography (CL-PKC) [3] allows the system users to derive
keys using the trusted KGC without the key-escrow problem in IBE. In CL-
PKC, the users use KGC to get partial private keys, which they can use to
generate their full private keys, reducing the role of KGC. This scheme does
not require certificates, but a trust in the KGC is still required. Other issues
include securely transmitting the partial private key to the user who requests
it. Hierarchical Certificateless Cryptography (HCLC) [4] [5] aims to solve the
concerns regarding trust in KGC by introducing a tree-like structure involving
a root KGC, lower-level KGCs, and the users. The structure dictated by
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HCLC has root KGC at the top, the users as the leaf nodes, and the lower-
level KGCs as the intermediate nodes. This model reduces trust in the root
KGC but requires a complex setup procedure and has scalability issues when
the hierarchy grows. There are concerns regarding communication costs and
the security of higher-level KGCs. However, CL-PKC is very efficient and
computationally inexpensive for resource-constrained devices. Many recent
works propose using CL-PKC in multiple domains, such as Wireless Body
Area Networks, VANET authentication, and Federated Learning with privacy
and anonymity as a feature [6], [7], [8], [9]. However, all these works rely
on a single KGC or TA. In this work, we introduce the usage of multiple and
distributed TAs for the full private key generation. The proposed protocol also
provides accountability for the key generation process using Traceable Ring
Signatures. The TA trying to generate an inconsistent or another key using the
partial private key (key replacement) can be disincentivized. Another benefit
of using a Traceable Ring Signature is that when the key is successfully
generated, the user requesting the key and the TA generating the key only
know about the key generation process, introducing uncertainty regarding
where it was generated, provided appropriate measures are taken to hide
the network traffic. The other participants may become aware that the key
has been generated for a user who desires it in specific applications. The
user must, however, provide certain publicly known parameters related to TA
for consistent encryption, which can be predetermined between the parties if
required.

20.3 Preliminaries

20.3.1 Pairing Based Cryptography

Consider an additive group (G, +) and a multiplicative group (G, .), both
finite groups of prime order q. Let us denote P as a generator of GG1. A pairing
eisamape : G3 x Gy — G2 such that the following properties hold true:

* The map e is bilinear: given A, B, C € (1, we have

e(4, B + C) = e(A, B) .c(4, O),
e(A + B, C) = e(4, C).e(B, O).
Additionally, forany =,y € Z; , wehave e(zA, yB) = e(A, B)ry =
e(ryA, B) etc.
 The map e is non-degenerate: e (P, P ) # 1.
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* There exists an efficient algorithm such that computation of map e is
efficient.

20.3.2 Certificateless Public Key Cryptography (CL-PKC)

CL-PKC is a public key cryptosystem that overcomes the limitations of
traditional Public Key Infrastructure and Identity-Based Cryptography (IBC).
The main objective of CL-PKC is the elimination of digital certificates (as
required in traditional PKI) and the inherent key-escrow problem where the
TA possesses the knowledge of the private keys of all the entities. In CL-PKC,
a TA or KGC facilitates an entity in the private key generation by generating
a partial private key with its secret value. The entity computes its public key
using its secret value. It is interesting to observe that an entity can generate
its public key before generating the private key.

20.3.3 Traceable Ring Signatures

A ring signature allows the signer to sign a message on behalf of a group of
signers and the ability to remain anonymous [10]. Thus, with a ring signature,
an entity can ensure that the message was signed by one of the group members
but cannot identify the signer amongst the group. Blockchains such as Mon-
ero use ring signatures for anonymous transactions [11]. However, in specific
applications such as e-voting, total anonymity can help certain entities cast
double votes without repercussion. Traceable Ring Signature (TRS) [12]
provides functionality to trace a signer’s public key in case the signer issues
a signature for two messages using the same tag. The tag usually consists of
an issue and a ring of public keys pk;;,4. The issue reflects the context in
which a particular vote is to be cast. Let A €N be a security parameter which
denotes the desired level of security. We can define Traceable Ring Signatures
in technical terms as follows. A Traceable Ring Signature scheme consists of
algorithms < Gen, Sign, Verify, Trace > such that:

* (Gen: is a probabilistic polynomial-time algorithm that takes a security
parameter A€N as input and outputs a public and secret key pair
(pk, sk).

* Sign: is a probabilistic polynomial-time algorithm that takes a secret
key, sk;, where i€ N, tag L = (issue, pkring), and message me{0,1}"
as input and outputs a signature o.

e Verify: is a deterministic polynomial-time algorithm that takes tag
L = (issue, pkying), message me{0,1}", and signature o as input and
outputs a bit indicating the validity of the signature.



20.4 Proposed Model 383

e T'race: is a deterministic polynomial-time algorithm that takes tag £ =
(issue, pkring), and two message-signature pairs, (m, o), (m/, O'/) as

input and outputs string resulte{indep, linked, pk}, where pkepkying
subject to the conditions implied by public traceability as defined
in [12].

20.3.4 Merkle Patricia Trie

The Merkle Patricia Trie (MPT) is a distributed data structure that maintains
a consistent and efficient key-value database [13]. It combines Merkle Tree
[14] and Patricia Trie [15]. The Merkle Trees guarantee data integrity and
verification using cryptographic hashing, while the Patricia Tries have an
inherent structure to support efficient storage and retrieval properties. The
data can be accessed through the node path traversal. A generic MPT structure
has three node types: leaf, branch, and extension. One of the main features
of MPT is the easy verification of state changes. The root of the MPT can be
used to ensure that a particular value is consistent throughout the various
distributed instances of a key-value database. This property is supported
by the standard security guarantees of a cryptographic hash function [16].
Currently, MPT is employed in various blockchains such as Ethereum, Quo-
rum, and many more, for storage tracking state changes of blockchain global
state (in the form of a state trie), transactional data, and similar associated
data [13].

20.4 Proposed Model
20.4.1 Notation

The notation throughout the text follows an indexed superscript for a param-
eter to form an association with network participants. In the subsequent
sections, we will use T'A to denote a K GC' throughout our discussion. The
notation £ and TAU) denote Entity with index 7 and TA with index 7,
respectively. Encs (m, k) and Decs (¢, k) denote symmetric key encryption
of message m with key £ and symmetric key decryption of ciphertext ¢ with
key k respectively. The state trie is denoted by ST . The existence of an ele-
ment e in the ST is denoted by e€S7T, and consequently, the non-existence
is denoted by e¢ST . The inclusion of an element e within S7 is denoted by
ST ST | {e}. Every network participant can query S7 and can check for
the existence of e in O (1) time through a query to a subset of validators. The
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validators or authorized participants can also include an element within the
state trie through consensus. The validators also have an internal mechanism
Disincentivize (S), which takes a set S, and disincentivizes the public
keys in the set S through consensus amongst the validators. The messages
within the network participants are denoted as (type, paraml, param2...)
where the first parameter is always message type. The usage of other
parameters will be highlighted in the respective algorithms. The methods
broadcast (msg) and send (dest, msg) are used for message transmission.
The broadcast sends the message msg to every validator in the network
while the method send, sends the message msg to a network participant
denoted by dest. For instance, send TAY), (init) denotes a message
with type init to TAU) . The source of this message depends on the context
of other parameters or where it is mentioned in the text. The process of
receiving a message is denoted by on—recv (< message >) . The operations
regarding Traceable Ring Signatures are denoted by a subscript trs. The

operations Geny,s(A), Signtrs(sk(i) L, m), Verify,s(L, m,o0),

trs»
Traceg,s (ﬁ, (m, o), (m’, o)) are defined as in Subsection 1.3.3.
There exists a method called lookup (Péj )> which takes Péj )" associ-

ated with TAU) and returns corresponding pkéﬁi The lookup table is built
up during the network bootstrapping, as discussed in Subsection 1.4.3.1.
The parameters associated with the network participants are mentioned in

Table 20.1.

20.4.2 Network Architecture

The network architecture is assumed to take the form depicted in Figure 20.1.
Two major network participants are Trusted Authorities (TA) and Enti-
ties (E). Formally we can state that the set of TAs is denoted by
TA = {TAD TA® . TA®Y} and set of entities is denoted by £ =
{E(l), E®@) ... E@®} Itis also assumed that [T A| = w and |E| = z. The
network participants have communication links between each other where
they can exchange data. The role of validators mentioned in Subsection 1.4
is delegated to the network participants of the set T'A. It is also assumed
that the majority of the validators are honest. Therefore, the network par-
ticipants in set T'A have the responsibility of updating and maintaining ST
and executing Disincentivize (S) consistently. ST is assumed to remain
consistent for all operations. All the network participants can query ST
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Table 20.1 Notations. <[

Notation Explanation

TAW trusted authority (TA) with index j

E® entity (E) with index i

1D identifier for £

Zy the multiplicative group of integers modulo prime ¢

s secret value of E(*)

sg) secret value of TAW)

ng ) public parameter P, for T'A)

QW intermediate value generated during partial key generation for entity E®
D® partial private key for F(*)

Dene® encrypted value of D®

N set of natural numbers

A a security parameter for desired security guarantees

o) the TRS signature signed by TAY) for key generation request from £ @
Dkring ring associated with TRS consisting of a fixed set of public keys

£® tag value associated with the key generation for £*)

= Entity with index i

Trusted Authority (TA}
with index j
Communication betwesn
Entities

Communication between TAs

_______ Communication between Entities
and TAs

T

Figure 20.1 The underlying architecture consists of TA nodes and Entities requesting partial
private key generation. In this model, any Entity node can start the protocol with a TA node of
its choice.
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in constant time by issuing a request to one or multiple S7 maintainers.
The network is assumed to be synchronous, and A; bounds the network
packet delivery time. The maximum time for the inclusion of an element
in the S7 and maximum processing time is bounded by A, and A,,
respectively.

20.4.3 Protocol

This section discusses the mechanism for partial private and full private key
generation. Firstly, we discuss the process of network bootstrapping and the
protocol for private key generation between a TA and an Entity. In further
discussion, we introduce algorithms for updating S7, the Audit Algorithm
for enforcing accountability, and finally, the collect AndTrace Algorithm,
which is used in the detection of malicious TA (or TAs).

20.4.3.1 Network Bootstrapping

The process of network bootstrapping is presented in Figure 20.2. The
TAs in the set T'A all have the reference to public parameters pp =<
G1,Go,e, P,H1,Ho >. GG1 is an additive group and G5 is a multiplicative
group. Both G; and G are of prime order ¢q. P is a generator of Gj.
The pairing e is an efficient Billinear Pairing such that e : G3 xG1—Go.
The functions H; and Hs are cryptographic hash functions such that
Hy : {0,1}* =Gy and Ho : {0,1}"—{0,1}". It is important to note

TAY TA TAiw)

Trusted Autherity 1 Trustad Authority | Trusted Autharity w

pp=a Ty, Ga, e POoHy, Moo=

iz Piz oLz
Pt 2 e A& fp A & e

sk k) ¢ Gena (M) sklf] pll ¢ Gener[ 1) skis), phi! ¢ Genul(A)
broadcast(= ba, ngl:'. _D.k-_‘l,l,\] =) broadcast( = bn, P‘:JJ::'= pk,[,'? =) broadcast(< b, PA“-:'= pk,rlt:.j =)

P= {8 B phing = kS

Figure 20.2 Network Bootstrapping. I
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that these hash functions are cryptographically secure with standard security
guarantees.

Each TAU) randomly samples its secret value sgi) from Z;. Then, it

calculates its public key for the CL-PKC key generation mechanism Péj ),
After generating P9 T AD runs Gengrs (\) to obtain sk and pk(] ), which

trs trs»
are its private and public keys for generating Traceable Ring Signatures. The

node then broadcasts Péj ) and pkgi with message type bn to all the other

TAs in the set T'A. Finally, all the TAs obtain set P = {P((]l), cey Péw)} and
(w)}

trs

the ring pkying = {pkzgg, ... pk

20.4.3.2 Key Generation

The flowchart in Figure 20.3 illustrates the logical sequence of the key gen-
eration process along with updating S7 and executing of audit mechanism.
The key generation procedure is illustrated in Figure 20.4. The private key
generation is a procedure between two network participants, namely, E®
with D@ and TAW, Firstly, E® samples its secret value s( from Zy
and also generates the associated set of public keys X (i)<—s(")P0(j) and
Y )5 P After the generation of public keys E(), sends an init message
containing 7D®, X and Y. T AU) on reception of init message starts

Already Generated
aor
Inconsistent Keys

E¥ sends key
genaration request to

TAW

enerate parfial private ke
nd update ST

ith Traceable Ring
ignature

Invalid or Duplicate
update request

Auditupdate
request from

T4 L

Figure 20.3 Flowchart for the full key generation and audit procedure. <J
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Figure 20.4 Key generation protocol. <J
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the generation of partial private key D). Three scenarios can occur. Note
that each case represents a stage in the process. Each case is a check which
must be followed to reach the next one.

« Case 1: D has already been generated for D) as there exists an
entry for 1D in the ST . In this case, TAU) aborts the partial key
generation process and sends a message with type err stating that the
key has already been generated.

eCase2: Ife X0 P =¢ (Y(i), Péj )), it implies that the public keys

generated are inconsistent or Pé] )was not used in for public key
generation.

* Case 3: In this case, the public keys X @and Y are consistent and
TAY can begin the partial private key generation process. It is impor-
tant to note that the D(*) must be transmitted over an insecure channel.
Therefore, it must remain confidential between TAWand E@ . To this
end, TAY samples r randomly from Z; and calculates K «—rX®.
k' is the masked key for symmetric key encryption. Now, T'AU)
calculates the actual key ks for symmetric encryption by calculating
k:skrPé] ). In order to generate D(®), intermediate value Q) must be
calculated as QW «H,(IDW || X@ || Y®). DO is calculated as
D(i)<—sg)Q("). Next, TAU) encrypts D with key k, using symmetric
key encryption to obtain Dem(i). In the subsequent step, TAW signs
message m(V«+Hy DU and tag LO+{IDD | pk,;n,} with sk
to obtain o (7). Finally, T AW broadcasts a message with type gen
containing < o) m@ L") > to every TAET A (including itself)
for updating S7 and sends a message with type res to E() containing
< Depe®, o) | >,

20.4.3.3 Full Private Key Generation ‘ '
On the reception of message of type res from TAY, E@ first tries
to decrypt Dene” to obtain D®. For this it first obtains kg by cal-

culating ko s K. Using key k, it obtains D) by perform-
ing symmetric decryption operation as D®<Dec, (DéQc,ks>. Using
the knowledge of ID® and Dkring, it recovers the tag £ ag

LO{ID® pkying}. The m® for traceable ring signature verification
can be calculated as mW«H, DO . Then E® calculates Q) as
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QW«H(IDW || X® || Y®). From this point on, there are three scenarios.
Here, as well, note that each case represents a stage in the process. Each case
is a check which must be followed to reach the next one.
e Case 1: If Verifyys £, m® 03 = 0, the entity E(®) broadcasts
the message < sigError, 1D > to stop the inclusion of 1D in ST.
It then restarts the key generation process. It is critical to note that in this
case, we do not try to disincentivize the T AY) as it is trivial to construct
an invalid traceable ring signature. This might occur due to an adversary
trying to block communication links for £() and sending an invalid
signature. It is unfair if we try to disincentize TAUY) in such a case.
Therefore, in this case, £() must restart the key generation procedure
with the same or any other TA.

e Case 2: If e DO P —e <Q(i),P(§j)) holds, it implies that the

TAU) did not calculate the value of D® consistently. The mes-
sage signer can be held accountable since the traceable ring sig-
nature is valid. To this end, E() prepares the audit parameters
alype, keyData, signData, aData as follows:

alype <keyError

keyData(—{D(i)7 Q(i)7 Péj)}
SignData(—{cr(ivj)7 m(i)7 L(i)}
aData <{keyData, signData }

Finally, it broadcasts the message with type audit containing <
ID®W  aqType, aData > to all TAET A. The audit procedure by TA
is discussed in Algorithm 2.

(4)

dlpke €an be calculated by E®

* Case 3: Finally, the full private key sk
(%)
clp
the message with type gen containing < sigma®), m® £0 >
to all the T'A€T A. However, this can be optimized by checking if after
A, time, If Hy ID® €8T is true or not, if not, then broadcast the
message for the updating S7 .

as sky «s DO, For completeness we specify that £()broadcasts

20.4.3.4 Update ST ‘ ‘
During the key generation procedure between TAY) and E(), a TA€T A,
say TA® can receive multiple messages. These can be messages of type
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gen, sigError, and audit. Updating ST concerns gen and sigError mes-
sage types. This process is described by Algorithm 1 . On reception of <
gen, o) m@ £ > in reference to £, TA®) first verifies the traceable
ring signature. If the verification fails, it notifies £(*) to restart partial key gen-
eration and returns L. If 7 D(® for which registration is done, exists already in
ST, T A®) prepares to start the audit procedure as discussed in Algorithm 2.
For this, initializes audit Type parameter aT'ype as aT'ype «+—dupRegFError.
It accumulates the received signature data in signData and further includes
it in audit data represented by aData. It then broadcasts the message with
type audit attaching data < ID®, aType, aData >. On the other hand, if
IDWEST, TAK®) waits for 2A, + A, time. If it does not receive message
of type sigError in reference to 1D, it includes the 7D in the ST,
otherwise it notifies F(¥) to restart partial key generation.

20.4.3.5 Audit Algorithm

In our protocol, we audit and disincentivize an entity for two cases, namely
for keyError and dupRegFError, which correspond to inconsistent and
duplicate key generation, respectively. The issuance of both cases has been
discussed earlier. The audit of type keyError is generated by an entity E®

when the relatione DO P =¢ (Q(i), Péj )) does not hold. Similarly, the

audit of type dupRegError is initiated by a T'A¥) when there is an attempt
to generate partial keys for entity E(*) for which a key has already been
generated. This can be an attempt to replace keys for entity £() or any other
attack with similar intent. In the first step, T'A(*) initializes an empty set M
to store public keys of malicious TA (or TAs) for disincentivization. Next, it
verifies whether the traceable ring signature in aData is valid. If it is invalid,
disincentivization cannot occur, and algorithm will return false results. This
is because it is trivial to produce invalid signatures. To discuss the Audit
Algorithm, we need to discuss the collectAndTrace as defined in Algorithm
3. It takes 1D, £() and aData. This Algorithm is executed as a subroutine
in Algorithm 2. By the end of algorithm, collect AndTrace returns set M
containing the public key (or keys) of malicious TA (or TAs).

It is crucial to note that when it is called, it is executed in parallel,
and its execution time is bounded by Ay + A,. It first initializes the set
T and the set M. The set T stores received traceable ring signatures in
form of a tuple m®), o® . The set M will be used to add the public
key (or keys) of malicious TA (or TAs). Next, it obtains m,,q; and 0,47,
the suspected message and a valid traceable ring signature generated by
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Algorithm 1: Update ST by TA®)

Data: First message < gen, a@h), m(i), LD > in reference to £L®
Result: Update ST and execute Audit if necessary on — recv(< gen, ¢, m®, £® >)
if  Verify,(£®, m®,a®)) = 0 then
Failed! Notify E® to restart partial key generation
return L
end
id « LD issue
if H,(id) € ST
aType « dupRegError
signData « { d@D m®, O}
aData <« {signData }
broadcast(< audit, IDD, aType,aData >)
else
wait(Ag + A,)
if not received < sigError, ID® > from ID® then

ST U {H,(LD.issue)}

else

Failed! Notify E® to restart partial key generation

end

end

a malicious TA. It then starts a timer and waits for Ay time receiving
traceable ring signatures generated by TAcT A for auditing in form of a

message < auditRes, I D(i), L(’),mggdit, Jggdit >. It verifies the 'Caudit(z)
and received tag £(") are same and the signature is valid. If both are true,
then it includes the tuple m®), () in the set 7. It is important to note

that this procedure of receiving and processing signatures also occurs in
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parallel. Next, the T'racey,s is used to find the malicious public key by run-
ning T'raceqs (ﬁ(l)v (m,0), (mggdit’ Ué?dit))’ v (mggdit’ Jiﬂdit) €T If
the | 7| = w, then we will have at least one pk¥) €pkyring in the set M with
very high probability. If |7| < w, algorithm includes all the non-signers.

Lastly, if | 7| > w, few TAs signed the message more than once.
Thus, to get the signers who signed more than once, we run T'races-s for

@ @

audit’ P audit
include such public keys in the set M and return M. With the discussion of
collect AndT'race, we can focus on the two cases for Audit Algorithm. Now,
depending on the type of error, there are two possibilities:

every pair of (m ) €7 with every other such pair. In the end, we

Algorithm 1: Audit algorithm executed by TA®

Data: First Audit Message < audit, ID®, aType, aData > in reference to 1D

Result: T for successful disincentivization or L for error
// Initialize empty set M for storing public keys of malicious TAs
M <@
o) « aData. signData. o)
LYW « aData.signData. L®
m® « aData.signData. m®

if  Verify,(£®,m®,¢@)) =0 then

return L

end

if  aType = keyError
if e(D(i),P) *e (Q(i), Pn(j)) then
Layaie™® < (1IDD, Phring}
(O Po(k)

Maudit

L(i))

broadcast(< auditRes, IDW, @& m® 50 >)

audit’ ~ audit

(9] ; ) (k)
Oquait < Sl-gnn"s (Sktrs' Mayaits

M « collectAndTrace(IDD, £ 4q:: 7, aData)

wait(As + A,)
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| Disincentivize(IM)
end
end

if  aType = dupRegError then

Layaie™® < (DD, pkying)
W p®

Maudit

o eSigntrs(skng), m®) L(”L))

audit audit’

broadcast(< auditRes, ID®, L@, mg;)dit, O’éﬁ?iit >)

M « collectAndTrace(IDD, L 441 P, aData)

wait(As + Ap)

Disincentivize(M)
end

return T

* Case keyError: In the case of keyFError, the validity of the claim
that the generated key is invalid is verified. If the claim is true, T A%
prepares a traceable ring signature for the audit process endorsing its
public key Pék) as the message and tag Lowair? —{I D), Pkring }. This
tag facilitates the finding of malicious TA. After this, T'A(*) broadcasts
the message of type auditRes with contents 7D® L(®and mgz)dit
is broadcasted to every other TAcTA. TA® calls the func-
tion collectAndTrace with parameters Lowair'? and aData. The
collect AndTrace executes in parallel to return the set M in utmost
Ag + A, time. Finally, the nodes disincentivize the participants in the
set M by executing Disincentivize (M).

« Case dupRegError: In this case as well, TA®) prepares a trace-
able ring signature for the audit process endorsing its public key Po(k)
as the message and tag E(wdit(l)k{l DO, Pkring} and then it broad-
casts it with type auditRes. Finally, M is returned by executing
collect AndT'race in parallel in at most A; + A, time, and the public
keys in the set M are disincentivized.
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Algorithm 3: collectAndTrace algorithm executed by TA®)

Data: ID(i),Laudit(i), aData

Result: Build and Return the set M

\\ Initialize empty set M for storing malicious TRS
M9

My < aData. signData. m®

Omar < aData.signData. Al

timer < 0

while timer < A

on —recv (< auditRes, IDW, LD, mt(z?ldlt,

o8 >)

audit

2@ = £, A Verifyes (L(” m® g ) =1 then

audit’ Yaudit

7Um® o

audit’ ~ audit

end

end

MUPIY |V 00800} €T ATraceys (L9, (m ), (mSyier 00ie) ) = Pk
if [Tl <w
signers « ¢
. U flook (s) 3 (m® ) yeqg
signers {00 up(muudit | {maudit’ audlt}
M U {pkying — signers}
end

if 1Tl >w
MU {pk"{(»)}} | {V{mz(i)dirl' ,Eﬁm} {m;{t)ditZ’ g?mz} ETA
i (€% (62 o » —
Traceys ( LO, (mauditl' Uaudm) , (mauditZ' Uauditz)) =pk®
end

return M

This concludes the discussion of the established protocols and associated
algorithms.
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20.5 Empirical Results and Analysis

To evaluate the protocol, we designed a simulation using Golang [17]. For
communication, protocol buffers were used. We implemented the Fujisaki-
Suzuki Traceable Ring Signatures using the Ristretto prime-order group [18].
The group operations were done using the PBC library [19] to implement the
original protocol. All the simulations were done on a Laptop with Intel(R)
Core (TM) Ultra 7 165H 1.40 GHz processor with 32 GB Memory.

Since the generation of ring signatures is a bottleneck, we evaluated our
implementation of traceable ring signatures sequentially and in parallel. As
depicted in Figure 20.5, we evaluated the signature generation and verifica-
tion process with ring sizes 10, 50, and 100. The time required to generate
and verify 1000 signatures was recorded. As evident in Figure 20.5 (c), for
a ring size of 100, the generation and verification took about 20 s. However,
this is resolved when multiple signature generation and verifications are done
in parallel; for a similar ring size of 100, the duration was reduced to 2.2 s.
A similar reduction by a factor of 10 was also observed for ring sizes 10 and
50. Our evaluation shows that the scheme can be used for practical purposes.

Moreover, we simulated different instances with variations in the number
of TAs and Entities. The results of the simulation are presented in Figure 20.6.
The packet delays followed the Poisson distribution. We varied the number of
Entities (nEntities) by 50, 100, and 200. The number of Trusted Authorities
(nTA) varied by 5, 10, and 20. For nEntities = 50, we observe that the
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Ring Size = 10, Sequential  , , Ring Size = 50, Sequential biala ool Ring Size = 100, Sequential |+ yere' pon e

a w0 w0 sd e 1000 0 0 40 w0 sO 1000 3 W0 AN B0 B0 100
Number of Signatures Number of Signatures Number of Signatures
(@ ®) e

L » Genaration time. o = Genration time i - = Generation tme
- Ring Size = 10, Parallel *  Verification time 00 Ring Size = 50, Paraliel «  Varification time - Ring Size = 100, Parallel o Verification time.
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Figure 20.5 Benchmark for traceable ring signatures for sequential and parallel execution.
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. 2

nEntities

Figure 20.6 Key generation benchmarking for nT'A = 5, 10, 20 with different number of
Entities. <]

total time for both nT A = 10 and nT A = 20 is upper bound by 4.5 s.
This result is in line with the expectation that as more TAs are present, the
load of key generation is distributed equitably. However, it is essential to
notice that the size of the response from TA to Entity will be larger due
to the increased size of the ring signature. This results in transmission and
processing delays. The effect of increased signature sizes can be seen from
the case for nEntities = 100. In this case, the configuration with nT' A =
5 outperforms the configuration for n7T'A = 10 and nT A = 20. It is also
interesting to observe that the configuration with nT"A = 20 outperforms the
configuration with nT'A = 10. However, as more entities are added to the
system, the effect of this decentralization is evident. The time required for key
generation for nEntities = 200 is the minimum for the configuration with
nT'A = 20. Therefore, as more entities are added to the system, the protocol
performs better with more trusted authorities. However, the requirement for
the number of TAs varies from case to case.
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Figure 20.7 Single run comparison of key generation for nT'A = 5, 10, 20 with different
number of Entities.

We also evaluate a single protocol run with various configurations with
nTA =5, 10, and 20, respectively. The time was recorded as more entities
joined the system and requested a partial key generation and the corre-
sponding data is reflected in Figure 20.7. Finally, the duration for successful
completion of the complete protocol was recorded as well. The results are
depicted in Figure 20.6. In this specific case, it can be inferred that the
performance of the configurations nT’A = 10 and nT'A = 20 are very
close to each other until nEntities = 175. As more entities are introduced,
configuration with nT'A = 20 achieves better time performance. However, as
stated previously, the performance may vary on average due to large ring
signatures. This can be optimized by fixing a specific ring for every key
generation response.

20.6 Conclusions and Future Works

In this work, we have established a protocol to generate a CL-PKC-based
private key with the network model and multiple trusted authorities. We
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have also evaluated the computation and communication bottlenecks for
efficient protocol implementation. The results indicate that the model can
be adapted to accommodate the distributed nature of various applications.
Considering the applications, the network model can have multiple use cases.
For instance, in Federated Learning, a sensor node may not want to opt for a
specific Trusted Authority confined to a geographic location or organization.
This model facilitates the decentralization of the trust model in this case.
It is important to note that we have established the accountability model
for the general case of certificateless partial key generation. This work can
be extended to accommodate the multiple trusted authorities in the existing
models for Distributed Learning. Many of these models have established
privacy-preserving solid models. However, inclusion must be made so the
pre-existing guarantees are intact.
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