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Preface  

A New Edge AI Reality 

This book is the result of the rich exchanges of ideas and presentations at the 
European Conference on EDGE AI Technologies and Applications (EEAI) 
held on 21-23 October 2024 in Cagliari, Sardinia, Italy, offering a panoramic 
snapshot and a technical deep dive into the contemporary landscape of 
edge AI. With twenty selected chapters, it encapsulates the convergence of 
fundamental concepts, technical advancements, and real-world deployments 
that define the edge AI continuum. 

Collectively, the book serves as a reference for the field, capturing 
the current state-of-the-art and anticipating future trends in hyperautoma­

tion, generative AI, connectivity, autonomy, and security mesh architectures. 
Whether you are seeking in-depth technical knowledge, inspiration for novel 
applications, or a strategic overview of the edge AI landscape, you will find 
invaluable insights from thought researchers and practitioners at the forefront 
of the field of edge AI. 

A brief overview of each of the twenty chapters is provided below, 
highlighting the research and applications of edge AI that underscore the 
book’s commitment to both technological and societal impact. 

Edge AI Systems Verification and Validation: This chapter explores the chal­

lenges of verifying and validating complex edge AI systems, which integrate 
hardware, software, and data. It proposes a structured framework that com­

bines model- and data-driven engineering to ensure these systems are reliable, 
robust, and meet regulatory standards. 

Pioneering the Hybridization of Federated Learning: This work introduces a 
hybrid federated learning framework for human activity recognition, where 
some clients agree to share a portion of their data. The research assesses 
whether this partial data sharing can improve the overall classification 
accuracy of the collective model while maintaining user privacy. 

xix  



xx Preface 

Edge Intelligence Architecture for Distributed and Federated Learning: This 
chapter proposes a novel architecture for monitoring Electric Vehicles (EVs) 
by combining Federated Learning, Knowledge Distillation, and model com­

pression. This approach enables the creation of efficient, privacy-preserving 
AI models that can be deployed on resource-constrained edge devices for 
applications like predictive maintenance. 

Challenges and Performance of SLAM Algorithms on Resource­Constrained 
Devices: This study evaluates the performance of various visual-based 
SLAM (Simultaneous Localisation and Mapping) algorithms on resource-

constrained hardware, such as the NVIDIA Jetson. It benchmarks several 
deep learning-based systems on metrics such as accuracy, energy consump­

tion, and resource usage to assess their real-world viability. 

Designing Accelerated Edge AI Systems with Model­Based Methodology: 
This chapter presents a Model-Based Cybertronic System Engineering 
(MBCSE) methodology for designing optimal edge AI systems with bespoke 
hardware accelerators. This approach enables a holistic analysis that bal­

ances performance, power, and cost, ensuring AI algorithms can be deployed 
effectively within tight system constraints. 

Edge AI Acceleration for Critical Systems: Focusing on the demanding 
environment of satellites, this work discusses hardware solutions, such as 
FPGAs and CGRAs, for real-time, autonomous AI processing. The research 
addresses critical system challenges, including power constraints and radi­

ation tolerance, and details the design of an FPGA-based GPU and an AI 
accelerator framework. 

Model Selection and Prompting Strategies for LLM­Based Robotic Sys­
tems: This chapter examines the challenges of selecting and implementing 
Large Language Models (LLMs) in resource-constrained robotic systems. It 
highlights that changing model weights or precision often requires signifi­

cant modifications to prompting strategies, complicating the development of 
modular, weight-agnostic systems. 

Optimising ViT for Edge Deployment: This research presents a hybrid 
token reduction method, combining token merging and pruning, to make 
Vision Transformers (ViT) more efficient for semantic segmentation on edge 
devices. This approach significantly reduces computational complexity with 
only a minimal drop in accuracy, though it highlights challenges in exporting 
pruned models. 
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Recent Trends in Edge AI: This chapter provides a comprehensive overview 
of recent techniques for efficiently designing, training, and deploying 
machine learning models on edge devices. It covers scalable architectures, 
neural architecture search, and compression methods, such as quantisation 
and pruning, to enable energy-efficient AI in resource-limited environments. 

Scalable Sensor Fusion for Motion Localization in Large RF Sensing Net­
works: This work addresses the challenge of accurate motion localisation 
in large-scale wireless sensing networks by using a probabilistic model. It 
demonstrates that variational Bayesian techniques offer a scalable solution 
for sensor fusion, enabling localised updates that model non-local effects 
efficiently. 

Multi­Step Object Re­Identification on Edge Devices: This chapter proposes 
a pipeline for vehicle re-identification on edge devices using a multi-step fea­

ture extraction and matching process. The system detects an object, converts 
it to a vector embedding, and queries a database to find matches, achieving 
high precision in real-world camera network scenarios. 

A TinyMLOps Framework for Real­World Applications: This work introduces 
a TinyMLOps framework to streamline the optimisation and deployment 
of AI models on microcontrollers. The framework uses cloud resources for 
intensive tasks while gathering real-time performance metrics from target 
devices, ensuring an accurate and scalable solution for deploying AI in 
constrained environments. 

Transfer and Self­Learning in Probabilistic Models: This chapter explores the 
integration of transfer-learning and self-learning techniques within a single 
probabilistic model. The research finds that this synergy can be achieved 
through prior optimisation, enabling models to adapt across different envi­

ronments where they are deployed. 

A Novel Hierarchical Approach for On­Device Energy Efficient Fault Clas­
sification: This work proposes a hierarchical architecture utilising multi­

ple smaller neural networks to perform energy-efficient fault classification 
directly on edge devices. By dividing the problem into smaller sub-tasks, 
the approach achieves a nine-fold reduction in energy consumption with 
comparable accuracy to a non-hierarchical model. 

Discovering and Classifying Defects at the Edge: This chapter presents an AI-

based optical inspection solution for detecting defects in digital and wooden 
industry products. Using YOLO and ResNet models deployed on edge 
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devices, the system achieves high accuracy in identifying defect positions 
and classifying defect types, with explainability tools clarifying the model’s 
decisions. 

Conscious Agents Interaction Framework for Industrial Automation: This 
paper examines the integration of human cognitive models into industrial 
automation, aiming to create flexible, multi-agent systems where humans and 
machines collaborate as equal partners. Case studies in vertical farming and 
HVAC control demonstrate how agents can reason and negotiate to achieve 
both collective and individual goals. 

Neuromorphic IoT Architecture for Efficient Water Management: This work 
proposes a neuromorphic IoT architecture inspired by biological systems 
to address the energy and communication challenges of traditional IoT 
networks. A case study on water management demonstrates how this event-

driven, asynchronous approach can be realised with neuromorphic hardware 
to create a more efficient and responsive system. 

Online AI Benchmarking on Remote Board Farms: This project aims to 
create a collaborative platform, dAIEdge - VLab, that enables researchers 
to benchmark AI models on a range of remote edge devices. This virtual 
laboratory will provide access to shared resources and tools, enabling users 
without deep-embedded expertise to conduct live AI experiments. 

Optimising Neural Networks for Water Stress Prediction in Europe: This 
study compares various neural network architectures and optimisers to predict 
water stress, a key sustainability indicator accurately. The findings show 
that a three-layer architecture with an Adam optimiser provides the highest 
accuracy, offering a valuable tool for informed water resource management. 

Decentralising Key Generation in CL­PKC with Traceable Ring Signatures: 
This chapter addresses a key vulnerability in Federated Learning by propos­

ing a mechanism to decentralise key generation in Certificateless Public Key 
Cryptography. Using traceable ring signatures and blockchain infrastructure, 
the model provides accountability and disincentivises malicious behaviour 
among trusted authorities. 
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Abstract 

The integration of edge artificial intelligence (AI) into different complex 
systems presents unique challenges, particularly concerning their reliability, 
robustness, safety, and transparency. Edge AI systems must function as 
intended and meet regulatory and technical standards. Traditional verification 
and validation (V&V) methodologies, which are well-suited for conventional 
software (SW) and hardware (HW) systems, do not fully address the unique 
characteristics of edge AI-based systems that include hardware, software, 
elements of edge AI technology stack and data. 

The chapter delves into the challenges and methodologies for edge AI 
verification and validation to identify the unique elements required to develop 
verifiable edge AI systems based on a structured verification and validation 
framework integrated with model- and data-driven engineering principles, 
assurance cases, and domain-specific requirements. It highlights the termi­

nology and concepts for edge AI as a technology that integrates HW, SW, 
and edge AI technology and data while presenting the challenges of the 
convergence of these technologies in developing verification and validation 
solutions. 

Keywords: edge AI, edge AI system, verification, validation, machine learn­

ing, deep learning, AI agents, agentic AI, system engineering, small language 
models. 
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2 Edge AI Systems Verification and Validation 

1.1 Introduction and Background 

Edge AI has become a cornerstone of innovation in various industries, driv­

ing advancements in automation, decision-making, and predictive analysis. 
Edge AI systems applying machine learning (ML), deep learning (DL), and 
data processing at the edge involving deep neural networks (DNN) present 
significant challenges for ensuring the reliability, safety, and effectiveness 
of intelligent embedded devices across the edge AI computing continuum, 
ranging from micro- to deep- and meta-edge. Edge AI can be either deter­

ministic or non-deterministic, based on the typical application and design 
choices involved. Many edge AI applications prioritise real-time, determinis­

tic behaviour for critical tasks, such as control algorithms. Other applications 
can leverage the non-deterministic nature of AI to deliver more adaptable 
and creative solutions as the non-deterministic nature of edge AI means it 
can offer different interpretations based on context. In real-time applications, 
edge AI systems require precise timing and consistent response times. This 
is demanded for tasks where milliseconds of delay can be critical. Deter­

ministic edge AI is appropriate for applications that demand predictability 
and consistency, while non-deterministic approaches are advantageous for 
applications that require adaptability, creativity, and continuous learning. The 
choice between using a deterministic or non-deterministic approach finally 
depends on the detailed requirements of the application and the expected 
trade-offs among predictability, adaptability, and computational cost. 

The advancement of edge AI technologies and the ubiquity of automated 
AI-based tools have created complex operational environments. Edge AI 
systems are evolving towards engineering advanced adaptive systems and 
require new concepts for verification and validation to address the challenging 
multidimensional integration of HW, SW, AI models, algorithms, datasets, 
and the multimodality of data. 

The advantages of leveraging edge AI in many industrial applications 
include real-time processing, enhanced privacy and data security, reduced 
latency, optimised bandwidth, reliability, and scalability, as illustrated in 
Figure 1.1. 

Edge AI technology stack combines AI and IoT with edge computing, 
allowing data processing and edge AI algorithm execution to occur directly 
on devices located at the edge of the network. By bringing AI closer to the 
source of data generation, edge AI enables more efficient and responsive 
decision-making across a wide range of applications. 

AI systems, particularly those based on machine learning (ML), pose 
unique challenges that differ from traditional software. Unlike conventional 
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Figure 1.1 Edge AI advantages. 

programs where behaviour is largely determined by explicit code, AI system 
behaviour often emerges from complex interactions between algorithms, vast 
datasets, and the operational environment [1]. 

Many advanced AI models, particularly deep neural networks, function 
as “black boxes,” making their internal decision-making processes difficult 
to understand, predict, or inspect directly, hence difficult to validate [2]. This 
opacity, combined with potential determinism/non-determinism and sensitiv­

ity to data variations, complicates efforts to guarantee reliability, safety, and 
fairness [3]. 

A particularly demanding application domain of edge AI is real-time 
machine vision, which is critical in domains such as industrial robotics, 
autonomous navigation, and quality inspection. In these systems, the correct­

ness and timeliness of visual perception directly influence physical actions, 
safety, and mission success. Their dependence on high-throughput, often 
noisy and non-reproducible visual data, and the need for ultra-low latency, 
makes their verification and validation particularly challenging under edge 
constraints. 

The data-driven approach is based on systematically and algorithmically 
producing the best dataset to feed a given AI-based model, focusing on 
improving data quality and data governance to enhance the performance of 
a specific problem statement. Data-driven AI aims to improve data quality 
and outcomes by treating code as an unchangeable entity and dealing with 
labelling, augmenting, managing, and curating data. This is part of the 

⏎ 
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data preprocessing, emphasising an iterative AI lifecycle consisting of data 
collection, model training, and error analysis. 

The model-driven approach is based on producing the best model for a 
given dataset and aims to build new models and algorithmic improvements 
to enhance performance. The model-driven edge AI focuses on improving 
code reflecting the edge AI model or algorithm to achieve adequate results 
from fixed datasets. Edge AI developers view the training datasets from which 
the code, model, or algorithm is learning as a collection of reference labels. 
The edge AI model is made to fit that labelled training data and assumes 
the training data is external to the edge AI development process. 

In model-driven edge AI, the focus is on optimising an edge AI model, 
whereas in data-driven edge AI, the focus is on data quality improvement. In 
model-driven edge AI, the aim is to find the most suitable edge AI model or 
an optimisation technique for a given problem, whereas, in data-driven edge 
AI, the aim is to find inconsistencies in the collected data for a given problem. 
The two approaches require specific verification and validation solutions. 

Validation, in the context of edge AI systems, moves beyond the verifica­

tion by checking if a system was built according to its technical specifications 
to seek confirmation that the edge AI system is fit for its intended purpose 
and effectively meet the actual needs and expectations of its users and 
stakeholders within its specific operational environment. 

This necessitates the implementation of rigorous verification and vali­

dation processes, underscoring the responsibility and accountability in the 
development and implementation of edge AI systems. 

The growing complexity and societal impact of AI, edge AI and gen­

erative AI demand a shift from purely technical verification towards a 
more holistic validation approach. This approach must encompass not only 
functional correctness but also usability, ethical alignment, fairness, robust­

ness in real-world conditions, and overall effectiveness in achieving desired 
outcomes [6]. 

Before the adoption of AI agents and agentic AI with the use of large lan­

guage models (LLMs), the development of autonomous and intelligent agents 
was deeply rooted in foundational paradigms of AI, such as multi-agent 
systems and expert systems, which emphasise social action and distributed 
intelligence [13][28]. 

Small language models (SLMs) are designed to offer capabilities similar 
to LLMs but scaled to edge computing capabilities, such as reduced size, 
processing requirements, and memory size. SLMs contain fewer parame­

ters (e.g., hundreds of millions to one billion) while still providing strong 
performance for specific tasks. 
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Agentic AI is a class of systems that extends the capabilities of tradi­

tional AI agents by enabling multiple intelligent entities to collaborate on 
pursuing goals through shared memory [18][20], structured communication 
[24][22][26], and dynamic role assignment [21]. 

Ethical and legal aspects and the requirements on explainability and 
interpretability can lead to system development decisions that do not solely 
attempt to optimize functional requirements such as accuracy and robustness. 
In this case, system design choices rely on trade-offs that should ideally be 
made consciously by system developers. 

Agentic AI systems pose challenges in explainability and verifiability due 
to their distributed, multi-agent architecture. While interpreting the behaviour 
of a single language model powered by the agent is already non-trivial, 
this complexity is multiplied when multiple agents interact asynchronously 
through loosely defined communication protocols. Each agent may possess its 
memory, task objective, and reasoning path, resulting in compounded opacity 
where tracing the causal chain of a final decision or failure becomes exceed­

ingly difficult. The lack of shared, transparent logs or interpretable reasoning 
paths across agents makes it highly difficult, if not impossible, to determine 
why a particular sequence of actions occurred or which agent initiated a 
misstep. Compounding this opacity is the absence of formal verification tools 
tailored for agentic AI. In traditional software systems, model checking and 
formal proofs offer bounded guarantees, while there exists no widely adopted 
methodology to verify that a multi-agent system comprising multiple large 
language model agents collaborating on tasks will perform reliably across all 
input distributions or operational contexts. 

Validation, therefore, serves as a cornerstone for building trustworthy 
edge AI, systems that stakeholders can confidently rely upon to operate 
safely, effectively, and responsibly [7]. It directly addresses the widening 
gap observed between accelerating edge AI capabilities and lagging safety 
protocols. 

The AI verification standardisation efforts within the edge AI community 
underscores a fundamental challenge: establishing justified confidence, or 
trust, in edge AI systems whose behaviour often emerges unpredictably. 
This inherent uncertainty and the potential for significant negative impact 
necessitate rigorous V&V processes. 

V&V encompasses activities designed to ensure that an edge AI system 
not only meets its specified requirements but also fulfils its intended purpose 
safely and reliably in its operational context. While drawing upon established 
V&V principles from software and systems engineering, edge AI verification 
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and validation requires tailored approaches and methodologies to address its 
specific complexities. 

The emphasis on “trustworthiness” in standards and frameworks like 
ISO/IEC TR 24028 directly reflects this imperative to build demonstrable 
confidence in AI systems [4][5]. 

This chapter provides a comprehensive overview of the verification and 
validation of edge AI systems. It examines definitions grounded in inter­

national standards, outlines the core elements subject to verification and 
validation, details the typical process steps involved, analyses the signifi­

cant research challenges, explores contextual variations, discusses current 
research trends, and summarises future directions needed to advance the field. 

1.2 Foundational Concepts and Edge AI Verification and 
Validation Taxonomy 

In edge AI systems, the failure of an AI component can lead to overall system 
failure, highlighting the need for AI V&V. Components with AI capabilities 
are treated as subsystems. V&V is carried out both on the AI subsystem 
itself and on its interfaces with other parts of the overall system, just as 
with any other subsystem. That is, the high-level definitions of V&V remain 
unchanged for systems containing one or more AI components. 

AI V&V challenges require approaches and solutions that go beyond 
those for conventional or traditional systems (those without AI elements). 
In the context of edge AI systems, AI components and subsystems need to 
be integrated into the systems engineering framework. This involves iden­

tifying the characteristics of AI subsystems that create challenges in their 
V&V, highlighting these challenges, and providing potential solutions while 
determining open areas of research in the V&V of edge AI subsystems. 

Conventional SW/HW systems are engineered via three main phases, 
namely, requirements, design and V&V. These phases are applied to each 
subsystem and to the system under design. 

Before the expansion of AI, ML, DL, and generative AI, research on V&V 
of neural networks addressed the adaptation of existing standards (e.g., IEEE 
Std 1012-Software Verification and Validation) and processed the augmen­

tation of these standards to enable V&V and new techniques and lessons 
learned to solve the V&V issues for systems integrating AI components. 

In all the adaptation and augmentation attempts, one of the challenges 
is data validation, as the data upon which AI depends should go through a 
form of V&V process. Data quality attributes that are important for edge AI 



7 1.2 Foundational Concepts and Edge AI Verification and Validation Taxonomy 

systems include accuracy, currency and timeliness, correctness, consistency, 
usability, security and privacy, accessibility, accountability, scalability, lack of 
bias, and coverage and representativeness of the state space. Data validation 
steps can include file validation, transformation validation, import validation, 
domain validation, aggregation rule and business validation. 

AI-based systems follow a distinct lifecycle compared to traditional sys­

tems. For edge AI systems learning lifecycle, V&V activities occur through­

out the lifecycle, as illustrated in Figure 1.2. The requirements allocated to 
the edge AI subsystem encompass both hardware and software (HW/SW), as 
well as the AI models and data that flow up to the system from the edge AI 
subsystem. 

Verification refers to the set of the activities that ensure that the edge 
AI system implements the specific function, and the system is built right 
according to requirements. 

Edge AI system verification is the process of checking that the edge AI 
system achieves its goal without any bugs. It is the process to ensure whether 
the developed edge AI system is right or not. It verifies whether the developed 
product fulfils the requirements. Verification is static testing. Verification 
means answering the question: are we building the edge AI system, right? 

Edge AI verification and validation require approaches and solutions 
at data, model and system level beyond those for cloud AI and conven­

tional systems. Edge AI lifecycle workflows require to combine the SW/HW 
engineering methods with the data and system level analysis. 

Data quality attributes like accuracy, timeliness, correctness, consistency, 
usability, security, privacy, accessibility, accountability, scalability, lack of 

Figure 1.2 Edge AI verification and validation process. ⏎ 
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bias, etc. are critical for edge AI. These data quality attributes are part of 
a larger edge AI non-functional requirements set. 

Verification of edge AI systems involves systematically ensuring that AI 
models and their implementations fulfil specified requirements and intended 
purposes, as defined by recognised standards such as ISO/IEC 22989 (Infor­

mation Technology - Artificial Intelligence - Concepts and Terminology). 
According to ISO, verification refers to the confirmation through objec­

tive evidence that specified requirements have been fulfilled. When applied 
to edge AI systems, verification processes ascertain that AI models and 
related software systems conform rigorously to technical and functional 
specifications, without necessarily validating the appropriateness of these 
specifications. 

Principal elements involved in edge AI systems verification include: 

• A formal requirements specification represents a crucial element, where 
clearly defined, unambiguous requirements serve as the foundational 
basis for verification. These specifications typically include functional 
requirements, performance criteria, safety constraints, security mea­

sures, and ethical guidelines. 
• Model verification that entails evaluating AI models, including machine 

learning (ML) and deep neural networks (DNNs), ensuring their inter­

nal logic and behaviours align precisely with predefined specifications. 
Techniques employed in model verification include formal methods, 
theorem proving, model checking, and simulation-based testing. 

• Software and hardware integration verification, which is vital, ensur­

ing edge AI systems correctly interact with hardware components and 
software environments. It includes examining interface correctness, 
interoperability, real-time performance, and robustness under varying 
conditions and inputs. 

• Rigorous test case generation and execution constitute essential verifi­

cation steps. AI system verification employs automated test generation 
methods, including boundary value analysis, equivalence partitioning, 
and mutation testing, complemented by scenario-based testing to thor­

oughly assess compliance and performance under diverse and extreme 
operational conditions. 

• Documentation  and traceability processes involve detailed records 
demonstrating systematic compliance with verification steps, adherence 
to standards, and requirement fulfilment. Comprehensive documenta­

tion supports transparency and accountability and facilitates continuous 
improvement and iterative refinement processes. 
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In this context, the principal verification process involves several method­

ical steps: 

• Requirement Analysis: Clearly define and document edge AI systems’ 
functional, performance, and safety requirements. 

• Verification Planning: Establishing a structured plan that details verifi­

cation strategies, methods, criteria, and resources. 
• Model and Code Inspection: Applying manual or automated inspections 

and formal verification techniques to analyse AI model structures and 
implementation code for correctness. 

• Test Development: Generating extensive and varied test cases cover­

ing all possible usage scenarios, operational environments, and stress 
conditions. 

• Verification Execution: Systematically conducting tests and verification 
activities, rigorously analysing outcomes against specified acceptance 
criteria. 

• Reporting and Review: Documenting detailed verification outcomes, 
identifying discrepancies, and facilitating stakeholder review to ensure 
comprehensive verification coverage. 

• Iterative  Refinement: Addressing identified issues through iterative 
model adjustments, re-verification cycles, and continual improvement 
to achieve specified verification goals. 

Validation refers to the set of the activities that ensure that the edge AI 
system that has been built is traceable to the requirements and the right edge 
AI system is built to meet user needs. 

Validation is the process of checking whether the edge AI system is up to 
the mark or, in other words, if the product has high-level requirements. It is 
the process of checking the validation of the edge AI system, e.g., it checks 
if what we are developing is the right edge AI system. It is validation of the 
actual and expected edge AI systems. Validation is a form of dynamic testing. 
Validation means answering the question: are we building the right edge AI 
system? 

Validation of edge AI systems is a critical and systematic process 
intended to ensure that the developed AI system meets stakeholders’ and 
end-users’ specific needs and expectations, as explicitly outlined in ISO/IEC 
22989 (Information Technology — Artificial Intelligence — Concepts and 
Terminology). According to ISO standards, validation involves confirming 
through objective evidence that the requirements for a specific intended use 
or application have been fulfilled. In AI, validation goes beyond verifying 
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compliance with technical specifications—it assesses whether the system 
performs suitably in real-world conditions and scenarios. 

The principal elements involved in the validation of edge AI systems 
encompass several dimensions: 

• The identification of intended use and user requirements is foundational. 
Clear articulation and comprehensive understanding of user needs, oper­

ational contexts, and usage environments are paramount. This involves 
gathering input from stakeholders and end-users to form a robust basis 
for subsequent validation activities. 

• Operational scenario definition is critical. Edge AI systems must be val­

idated within scenarios that accurately represent real-world operational 
contexts. Scenarios are typically derived from realistic usage conditions, 
including normal operational states, boundary conditions, and potential 
abnormal or edge cases. 

• Performance evaluation under realistic conditions is essential. Valida­

tion combines simulated environments and real-world testing to ensure 
edge AI systems perform reliably and effectively. Performance metrics, 
such as accuracy, precision, recall, robustness, resilience, and usability, 
form the basis for evaluating system performance and alignment with 
stakeholder expectations. 

• Human-machine interaction and usability assessment are integral to 
validation. Edge AI systems are validated to ensure effective and 
intuitive interactions with human operators or users. Usability testing, 
user experience assessments, and feedback loops with real users facil­

itate comprehensive evaluations of the AI system’s ease of use and 
accessibility. 

• Safety, security, and ethical considerations are central elements of the 
validation process. These assessments verify that edge AI systems func­

tion correctly and comply with safety standards, security protocols, 
data privacy laws, and ethical guidelines, aligning with international 
frameworks and societal expectations. 

The edge AI validation process typically involves structured, methodical 
steps: 

• Requirement and Expectation Definition: Establishing clear validation 
criteria and user expectations, documenting them rigorously. 

• Validation Planning: Creating detailed  validation plans that specify 
methodologies, scenarios, test environments, and acceptance criteria. 
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• Scenario Development: Defining realistic operational scenarios and 
selecting representative use-cases and edge-cases for comprehensive 
validation. 

• Simulation and Real-world Testing: Controlled simulations are con­

ducted, followed by real-world trials to evaluate AI system performance 
against established criteria. 

• Performance and Usability Assessment: Analysing performance out­

comes, usability data, and user feedback to ascertain compliance with 
expectations and user requirements. 

• Safety, Security, and Ethical Evaluation: Systematically reviewing com­

pliance with safety and security standards, data protection requirements, 
and ethical norms. 

• Reporting and Continuous Improvement: Compiling comprehensive 
validation reports, documenting findings and recommendations, and 
establishing iterative cycles for continuous system refinement. 

Verification and validation of AI and edge AI models and data are 
required in safety-critical applications to ensure the trustworthiness of edge 
AI-enabled systems (e.g., reliability, availability, maintainability, safety, secu­

rity, resilience, connectability, explainability, interpretability, transparency, 
etc.) as illustrated in Figure 1.3 and Figure 1.4. 

Dependable edge AI systems involve using systems and software engi­

neering principles to systematically guarantee dependability during the edge 
AI system’s construction, V&V, and operation and consider legal and 
normative requirements directly from the start. 

Figure 1.3 Edge AI dependability – Trustworthiness. ⏎ 
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Figure 1.4 Edge AI dependability - Trustworthiness extended properties. 

The progress made in developing standards and regulatory frameworks 
for AI and edge AI aims to ensure the responsible use of AI in various 
applications. 

The relevant standards for AI that can be applied to edge AI systems are 
ISO/IEC 42001 and ISO/IEC TR 24028:2020 that are described below. 

The ISO/IEC 42001 standard, a management system for AI, focuses 
on building trust and dependability in AI systems. It provides a frame­

work to establish, implement, maintain, and continually improve their AI 
management systems, ensuring the responsible development and use of 
AI. The standard emphasises trustworthiness, fairness, transparency, and 
accountability in AI systems [43][44]. 

The ISO/IEC TR 24028:2020 standard addresses topics related to trust­

worthiness in AI systems, including approaches to establish trust in AI 
systems through transparency, explainability, controllability, etc.; engineer­

ing pitfalls and typical associated threats and risks to AI systems, along 
with possible mitigation techniques and methods; and approaches to assess 
and achieve availability, resiliency, reliability, accuracy, safety, security and 
privacy of AI systems [5]. 

Traditional V&V workflows, such as the V-model, are insufficient 
for ensuring the accuracy and reliability of AI and edge models. As a 
result, transformations of these workflows occurred to better serve edge AI 
applications. 

1.2.1 Agentic AI and AI Agents 

The evolution of generative AI and the emergence of AI agents and agentic 
AI requires addressing them under the presentation of foundational concepts 

⏎ 
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and edge AI verification and validation taxonomy by defining the concepts 
and their specific characteristics. 

AI Agents can be defined as autonomous software entities engineered 
for goal-directed task execution within bounded digital environments. These 
agents are characterised by their ability to perceive structured or unstruc­

tured inputs, to reason over contextual information, and to initiate actions 
toward achieving specific objectives. The main characteristics of AI and 
edge AI agents are autonomy, task specificity, reactivity and adaptability, 
which enable the agents to operate as modular, lightweight interfaces between 
pre-trained AI models and domain-specific pipelines and workflows. 

AI agents are the concrete instantiations of the agentic AI paradigm. An 
AI agent is a specific software or hardware entity that embodies the principles 
of agentic AI. It is a tangible system equipped with sensors to perceive its 
environment and effectors to act upon it. While agentic AI is the “what,” the 
AI agent is the “how”, the actual implementation that performs tasks, makes 
decisions, and interacts with external environments. 

Agentic AI systems describe a paradigm shift from isolated AI agents to 
collaborative, multi-agent ecosystems capable of decomposing and execut­

ing complex goals [21]. These systems typically consist of orchestrated or 
communicating agents that interact via tools, APIs, and shared environments 
[23][14]. 

A key distinction between agentic AI and AI agents lies in their level 
of abstraction, as the agentic AI is a conceptual framework, whereas an 
AI agent is a functional system. An analogy can be drawn between the 
theory of computation and a physical computer. One provides the theoretical 
foundation and a model of what is possible, while the other is the practical 
machine that executes computations based on that theory. 

Agentic AI reflects a broad paradigm in AI and edge AI centred on 
creating systems that can perceive their environment, reason about their 
observations, and act autonomously to achieve specific goals. It is the 
underlying philosophy and set of principles that guide the development 
of intelligent, goal-oriented systems. This concept emphasises proactivity, 
reactivity, and social ability, defining the potential for AI to operate as an 
independent actor rather than a passive tool. Agentic AI systems introduce 
internal orchestration mechanisms and multi-agent collaboration frameworks. 
Agentic AI extends the foundational architecture to support complex, dis­

tributed, and adaptive behaviours by integrating components such as spe­

cialised agents, persistent memory, orchestration and advanced reasoning and 
planning. Agentic AI introduces novel memory integration, communication 
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paradigms, and decentralised control, paving the way for the next generation 
of adaptive workflow automation in autonomous systems, swarm robotics, 
and autonomous vehicles with scalable, adaptive intelligence. 

In robotics and automation, agentic AI enables collaborative behaviour in 
multi-robot systems. Each robot operates as a task-specialised agent, such as 
a picker, transporter, or mapper, while an orchestrator supervises and adapts 
workflows. These architectures rely on shared spatial memory, real-time sen­

sor fusion, and inter-agent synchronisation for coordinated physical actions. 
Use cases include warehouse automation, drone-based orchard inspection, 
and robotic harvesting [25]. 

Verification and validation of edge AI systems, based on AI agents 
and agentic AI components, must focus on ensuring the correctness, reli­

ability, and robustness of autonomous decision-making in highly dynamic 
and constrained environments, which requires validating that the AI agents 
consistently perform their intended functions correctly under varying exter­

nal environment conditions, including unexpected scenarios and adversarial 
inputs. 

Due to the limited computational resources typical of edge devices, V&V 
must also confirm that the system meets stringent real-time performance 
requirements, ensuring timely responses to critical events despite hardware 
and network limitations. 

Another aspect is assessing the resilience and safety of adaptive learning 
processes within these systems, particularly as they evolve in open envi­

ronments. V&V efforts should capture how individual agents and collective 
multi-agent behaviours emerge and interact, verifying alignment with overall 
system objectives and preventing unsafe or unintended actions. 

Additionally, transparency and trustworthiness are key elements that 
enable human oversight, offering clear traceability and checkability of 
decisions made by autonomous components at the edge. 

1.3 Defining Verification and Validation per Standard 

Several ISO standards offer consistent definitions for verification and val­

idation, primarily within the context of quality management and sys­

tems/software engineering that can be applicable to AI and edge AI as 
presented below. 

ISO 9000:2015 (Quality management systems ­ Fundamentals and 
vocabulary) provides the definition for verification as the “confirmation, 
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through the provision of objective evidence, that specified requirements have 
been fulfilled" [29]. The focus is on confirming that the system or component 
conforms to its design specifications and requirements [31]. It answers the 
question: “Did we build the product right?” [32]. Verification is often viewed 
as an internal process comparing the outputs of a development phase against 
the inputs [31]. Validation is defined as the “confirmation, through the provi­

sion of objective evidence, that the requirements for a specific intended use or 
application have been fulfilled” [29]. The focus shifts to ensuring the system 
meets the needs of the user and fulfils its intended purpose in the actual 
context of use. It answers the question: “Did we build the right product?” 
[32]. Validation often involves testing under real or simulated use conditions 
and considers stakeholder needs [31]. 

ISO 9001:2015 (Quality management systems ­ Requirements), states 
that validation activities ensure the resulting products/services meet require­

ments for the specified application or intended use. Validation often involves 
acceptance testing with end-users and assessing fitness for purpose, making 
it frequently an external process, whereas verification is more often inter­

nal. Both verification and validation are essential components of quality 
management and are necessary for ensuring a dependable system [30]. 

ISO/IEC/IEEE 15288:2015 (Systems and software engineering ­ System 
life cycle processes) standard integrates V&V into the system lifecycle and 
considers that the verification process has as purpose “to provide objective 
evidence that a system or system element fulfils its specified requirements 
and characteristics” [34]. It involves activities comparing the system or 
element against requirements, design descriptions, and other required char­

acteristics, confirming it was “built right” [35], while the validation process 
has as purpose “to provide objective evidence that the system, when in 
use, fulfils its business or mission objectives and stakeholder requirements, 
achieving its intended use in its intended operational environment” [33]. 
This process confirms that stakeholder requirements are correctly defined, 
and that the system meets its intended purpose in the context where it will 
operate [33]. 

ISO/IEC 22989:2022 (Information technology ­ Artificial intelligence 
­ Artificial intelligence concepts and terminology) AI-specific standard 
defines verification as “confirmation, through the provision of objective 
evidence, that specified requirements have been fulfilled,” noting it assures 
conformance to specification [9]. While not explicitly defining validation in 
the same way, it defines trustworthiness as the “ability to meet stakeholder 
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expectations in a verifiable way” [38]. This definition links the core goal of 
validation (meeting stakeholder expectations/needs) directly to the concept 
of trustworthiness in AI. The standard also incorporates a “verification and 
validation” phase within its depiction of the AI system lifecycle [39]. 

ISO/IEC TR 24028:2020 (Information technology ­ Artificial intelligence 
­ Overview of trustworthiness in Artificial Intelligence) technical report 
further reinforces the link between validation and trustworthiness and defines 
trustworthiness as the “ability to meet stakeholder expectations in a verifi­

able way” [40]. This aligns the concept of trustworthiness directly with the 
objective of validation – confirming that stakeholder needs and intended use 
requirements are met [42]. The report discusses assessing and achieving key 
characteristics like reliability, safety, security, and privacy, all crucial aspects 
evaluated during validation [41]. 

ISO/IEC 42001:2023 (AI Management System) standard specifies require­

ments for establishing, implementing, maintaining, and continually improv­

ing an AI Management System (AIMS) within an organization [43]. An 
AIMS provides a structured framework for responsible AI governance, risk 
management, and operational control throughout the AI lifecycle [44]. Ver­

ification activities are integral to an AIMS, supporting risk assessment, 
impact assessment, performance evaluation, and ensuring compliance with 
policies and objectives [44]. Notably, ISO/IEC 22989 (providing the core AI 
terminology) is a normative reference for ISO/IEC 42001, highlighting the 
foundational role of clear definitions [45]. 

IEEE 1012­2016 (IEEE Standard for System, Software, and Hardware 
Verification and Validation) standard applies to systems, software, and 
hardware being developed, maintained, or reused (legacy, commercial off-

the-shelf [COTS], non-developmental items) [91]. The term “software” also 
includes firmware and microcode. Additionally, each of the terms “system,” 
“software,” and “hardware” encompasses documentation. V&V processes 
include the analysis, evaluation, review, inspection, assessment, and testing 
of products. V&V processes are used to determine whether the development 
products of a given activity conform to the requirements of that activity 
and whether the product satisfies its intended use and user needs. V&V 
lifecycle process requirements are specified for different integrity levels. The 
scope of V&V processes encompasses systems, software, hardware, and their 
interfaces. 
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1.4 Key Elements for Edge AI Verification and Validation 

The elements for verifying and validating edge AI may encompass opera­

tional aspects, system integration, AI models and human-machine interaction. 
Verification and validation are important to ensure reliability, performance 
and accuracy of complex systems. 

Figure 1.5 Verification and validation. 

Edge AI system verification and validation refers to the processes and 
methodologies used to ensure that an edge AI system is dependable, performs 
as expected, and meets certain standards before it is deployed. 

These processes are crucial as the edge AI algorithms can work with high-

stakes decision-making, various sizes datasets, learn and evolve over time. 
The processes are needed for ensuring that the edge AI systems do what they 
are supposed to do, without unintended consequences, biases, or errors. 

AI and edge AI systems typically focus on the actual algorithms and 
models to ensure that they perform as intended under various conditions. In 
addition, edge AI systems focus on validating the systems performance on 
resource-constrained devices, network conditions and privacy in real-world 
scenarios. 

It is critical to distinguish verification from validation. While verification 
checks conformance to specifications (“Did we build the system right?”), 
validation confirms that the system meets the needs of the customer and other 
stakeholders and fulfils its intended purpose in its operational environment 
(“Did we build the right system?”) [30]. 

The introduction of AI in product and systems development has sig­

nificantly increased the complexity of electronic components and systems 
(ECS), by integrating various technologies such as hardware, software, ML, 
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DL, NNs, generative AI, and advanced data analytics. This complexity 
necessitates robust verification and validation frameworks and benchmark­

ing to ensure these systems operate correctly and efficiently as illustrated 
in Figure 1.6. Complex edge AI models require verification and validation 
to ensure their predictions, decisions, and content generation outputs are 
reliable and accurate, which is critical for maintaining the trustworthiness 
of AI systems. Failures in edge AI-based ECS can have significant economic 
and business-critical consequences, including system failures, financial loss, 
and damage to infrastructure, making the dependability of edge AI systems 
paramount. 

In machine vision, specific verification concerns arise from the need to 
ensure reliable object detection, tracking, segmentation, or pose estimation 
across a wide range of dynamic conditions. For example, verification must 
confirm that visual inference results remain stable under varying lighting, 
occlusion, and motion blur, common challenges in edge deployments like 
factory floors or drones. 

Ensuring robustness and reproducibility in edge-based machine vision 
systems is inherently difficult due to the high variability and noise in visual 
data. Unlike structured tabular inputs, images and videos exhibit a vast range 
of intra-class variation—objects or actions belonging to the same class can 
appear drastically different depending on factors such as: 

• Lighting conditions (e.g., shadows, reflections). 
• Occlusions or partial views. 
• Background clutter. 
• Camera distortions, blur, or motion artifacts. 
• Variability in object shape, colour, texture, or viewpoint. 

A comprehensive V&V framework, presented in Figure 1.6, along with 
benchmarking of edge AI-based methods, frameworks, tools, and ECS, 
is essential to ensure performance and dependable system properties like 
security, reliability, robustness, and fairness. 

Verification ensures that edge AI-based methods, frameworks, tools, and 
electronic components and systems are built correctly and meet specifi­

cations, while validation confirms they perform as intended in real-world 
scenarios. 

In edge AI systems there is a need of creating a structured approach 
to defining and applying such a framework to edge AI-based tools and 
methods, ensuring ECS meet functional and non-functional requirements, 
quality, KPIs, and performance standards. 
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Figure 1.6 Verification and validation framework. 

1.4.1 Core Elements for AI Verification 

Verification activities in AI systems must address multiple facets, span­

ning data, models, system-level behaviour, and the processes governing 
development and deployment. Ensuring the integrity and appropriateness of 
each element is crucial for overall system trustworthiness. 

1.4.1.1 Data Verification 
Given that many AI and edge AI systems, particularly those based on ML, 
learn from data, verifying the data itself is paramount [3]. Key aspects 
include: 

Data Quality: Assessing if the data meets predefined standards for accu­

racy, completeness, consistency, timeliness, and representativeness for the 

⏎ 
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target domain [3]. This involves checking for errors, missing values, correct 
formatting, and ensuring the data is current and relevant [46]. Poor data 
quality directly impacts model performance and reliability. Machine vision 
applications often require extensive data augmentation and synthetic dataset 
generation for robustness. In this case, the validity of the augmented dataset 
needs to be verified for plausibility and compliance with conditions of the 
actual use of the system. 

Data Bias: Identifying systemic skews or prejudices within the data that 
could lead to unfair or discriminatory outcomes [3]. Verification involves con­

firming that bias detection methods have been applied and that any mitigation 
steps align with fairness requirements or definitions. This includes checking 
for underrepresentation or imbalances across demographic groups [3]. 

Data Provenance and Lineage: Ensuring the origin and history of the data 
are understood and documented, including all transformations and processing 
steps [47]. Verification confirms traceability back to authorized sources and 
validates the integrity of the data pipeline. 

Data Security and Privacy: Confirming that data collection, storage, and 
processing adhere to relevant privacy regulations like General Data Protection 
Regulation (GDPR), a law in the European Union aimed at safeguarding the 
data and privacy of EU residents or California Consumer Privacy Act (CCPA) 
a US state law that applies to for-profit businesses operating in California that 
collect personal information from California residents, and organizational 
security policies [3]. This includes verifying the implementation of tech­

niques like anonymization, encryption, access controls, and proper consent 
management [48]. 

Data Labelling: For supervised learning, verifying the accuracy, consistency, 
and quality of labels applied to the training and testing data is crucial, as errors 
here directly impact model learning [3]. 

1.4.1.2 Model Verification 
The AI and edge AI model itself, the core component that performs learning 
and prediction, requires rigorous verification: 

Accuracy and Performance: Quantifying how well the model achieves its 
intended task according to predefined metrics (e.g., precision, recall, F1-score 
for classification; BLEU score for translation) evaluated on unseen test or 
validation datasets [41]. Verification confirms that the achieved performance 
meets the specified requirements or benchmarks. 
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Robustness: Evaluating the model’s ability to maintain its performance 
level when faced with noisy data, adversarial perturbations, changes in data 
distribution (drift), or other unexpected conditions [49]. Verification checks 
if the model’s resilience meets specified criteria under defined stress con­

ditions.In machine vision models, robustness testing should also include 
tests for perceptual artifacts, such as camera motion blur or lens distortion, 
and adversarial perturbations that affect visual features. This is especially 
important for safety-critical applications like automated visual inspection or 
autonomous guidance. 

Reliability: Assessing the consistency and predictability of the model’s out­

puts under normal operating conditions over time [50]. Verification aims to 
confirm that the model behaves dependably within its specified operational 
domain. 

Efficiency: Measuring the model’s consumption of computational resources, 
such as processing time, memory usage, and energy [48]. Verification 
ensures the model operates within the constraints imposed by the deployment 
hardware or system requirements. 

1.4.1.3 System-Level Verification 
Verification must also extend to the AI and edge AI system, considering its 
interaction with its environment and users: 

Safety: Confirming that the system operates without causing unacceptable 
levels of risk or harm to humans, property, or the environment [49]. This 
involves verifying adherence to specific safety requirements, standards (like 
ISO 26262 for automotive), and risk assessments. In vision-driven systems, 
safety verification must ensure that the interpretation of the visual scene 
cannot trigger unsafe behaviour due to false positives or misclassifications 
e.g., mis detecting a pedestrian or failing to recognise a hazard in the camera 
feed. 

Security and Resilience: Checking the implementation and effectiveness 
of measures designed to protect the system against threats like unautho­

rized access, data breaches, model tampering, and adversarial attacks [3]. It 
also includes verifying the system’s ability to withstand and recover from 
disruptions [51]. 

Fairness: Evaluating system outcomes across different demographic or user 
groups to ensure equity and the absence of harmful bias or discrimination, 
according to defined fairness metrics or criteria [3]. 
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Privacy: Verifying that the system’s operation, including data handling 
and output generation, complies with privacy principles and regulations 
throughout its use [52]. 

1.4.1.4 Process and Governance Verification 
Beyond the technical components, the processes surrounding the AI system 
also require verification of: 

Transparency: Assessing whether sufficient and appropriate information 
about the AI system (its purpose, data sources, model type, limitations, per­

formance) is documented and made available to relevant stakeholders (devel­

opers, deployers, users, regulators) [53]. Verification checks if documentation 
and communication channels meet specified transparency requirements. 

Explainability and Interpretability: Evaluating whether the system can 
provide understandable reasons or justifications for its outputs or decisions, 
tailored to the applications and users. Verification checks if the explanation 
mechanisms provided meet requirements for clarity, fidelity, and utility. 

Accountability: Confirming that clear roles, responsibilities, governance 
structures, and mechanisms for oversight, audit, and redress are defined, 
documented, and effectively implemented [6]. Verification involves auditing 
these governance processes and structures against standards like ISO/IEC 
42001. 

These verification elements are deeply interconnected [3]. For instance, 
verifying fairness requires access to appropriate data and potentially explain-

ability techniques to understand model behaviour. Verifying safety may 
depend on demonstrating model robustness and having transparent documen­

tation of system limitations. An opaque model hinders the verification of its 
internal logic, making it difficult to assess its safety or fairness properties 
directly. This interdependence necessitates a holistic verification strategy 
rather than treating each element in isolation. 

Furthermore, the emphasis placed on different verification elements natu­

rally shifts depending on the type of AI system. For data-driven ML models, 
verification heavily scrutinizes data quality, bias, model performance, and 
robustness [3]. 

In contrast, for symbolic AI systems built on explicit rules and logic, 
verification may concentrate more on the consistency, correctness, and 
completeness of the knowledge base and the soundness of the reasoning 
engine [64]. 
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Hybrid neuro-symbolic systems demand verification of both the neural 
and symbolic parts, as well as their complex interactions, representing a 
distinct verification challenge [64]. 

1.4.2 Core Elements Subject to AI Validation 

Given validation’s focus on fitness for purpose and meeting stakeholder 
needs, the elements assessed extend beyond traditional software checks. Val­

idating AI systems requires evaluating a broader spectrum of characteristics 
that reflect their performance, usability, effectiveness, and impact within 
their socio-technical context [6]. The exact scope may vary based on the 
application domain, but the core elements subject to validation include: 

1.4.2.1 Ensuring Fitness for Intended Purpose and Operational 
Context 

This is a central element of validation. It involves confirming that the AI 
system effectively achieves its stated goals within the specific environment 
and conditions of its intended use [54]. This requires a clear definition of the 
intended purpose and the Operational Design Domain (ODD), the specific 
conditions under which the system is designed to function. However, defining 
and validating against these can be particularly challenging for adaptive AI 
systems or those designed for open-world environments where conditions 
are dynamic and unpredictable [3]. Validation must assess performance not 
just under nominal conditions but also under stress, edge cases, and potential 
environmental shifts or adversarial inputs [85]. Frameworks like the NIST AI 
Risk Management Framework (RMF) emphasize establishing context (Map 
function) as a foundational activity to inform subsequent measurement and 
management, including validation [55]. 

1.4.2.2 Meeting User Needs and Stakeholder Expectations 
Validation explicitly confirms that the system satisfies the requirements 
and expectations of its end-users and other relevant stakeholders [30]. This 
extends beyond purely functional requirements to encompass aspects like 
usability, user satisfaction, ease of integration into existing workflows, and 
alignment with business objectives [56]. Because AI systems can impact a 
wide range of individuals and groups, validation should involve engagement 
with diverse stakeholders, including end-users, domain experts, potentially 
affected communities, and regulators, to capture a comprehensive set of 
needs and expectations [90]. Addressing the challenge that these needs 
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might be implicit, diverse, or even conflicting is a key part of the validation 
process [57]. 

1.4.2.3 Assessing Real-World Effectiveness and Outcomes 
Validation must measure how the AI and edge AI system performs in practice, 
assessing its actual effectiveness in achieving desired outcomes within real­

istic scenarios [59]. This moves beyond performance metrics derived solely 
from laboratory settings or curated test datasets. It involves evaluating the 
system’s impact on relevant Key Performance Indicators (KPIs), operational 
efficiency, safety records, cost savings, or other context-specific measures 
of success [58]. Initiatives like NIST’s Assessing Risks and Impacts of AI 
(ARIA) program are specifically focused on developing methodologies to 
measure these real-world impacts under controlled conditions [61]. This 
assessment typically requires methods such as Operational Testing (OT), 
field testing, pilot deployments, and continuous performance monitoring after 
deployment [6]. In edge machine vision systems, this includes validating 
that visual perception models continue to perform accurately when deployed 
with quantized weights, compressed inputs, or on hardware that introduces 
latency jitter. This real-world validation should account for degradation due 
to environmental variables and resource limitations. 

1.4.2.4 Evaluating Usability and Human-AI Interaction 
For edge AI and AI systems that interact with or support humans, validation 
must assess the quality and effectiveness of this interaction [60]. This includes 
evaluating usability (ease of use, learnability, efficiency), the clarity and 
utility of the interface, the cognitive load imposed on the user, and overall 
user satisfaction [63]. Particularly for human-AI collaboration or teaming 
scenarios, validation needs to assess the effectiveness of the partnership, the 
safety of the interaction, the appropriateness of trust levels (avoiding over-

trust or under-trust), and the degree of shared understanding between human 
and AI [61]. This requires human-centered evaluation methods, such as 
usability studies, task analyses involving representative users, and systematic 
collection of user feedback [62]. 

1.4.2.5 Validating Ethical Alignment and Societal Impact 
A critical dimension of edge AI validation involves assessing the system’s 
alignment with ethical principles and societal values [6]. This includes 
validating characteristics like fairness, accountability, and transparency in 
practice [55]. Methodologies such as Ethical Impact Assessments (EIAs) are 



1.4 Key Elements for Edge AI Verification and Validation 25 

emerging to help proactively identify, assess, and mitigate potential negative 
ethical and societal consequences before and during deployment [61]. A key 
focus is validating fairness and non-discrimination, moving beyond simple 
dataset metrics to assess the actual impact on different demographic groups in 
real-world deployment contexts [90]. This also involves considering broader 
societal implications related to employment, environmental sustainability, 
and the functioning of democratic processes [7]. 

1.4.2.6 Data Quality and Suitability 
High-quality data ensures that models are trained effectively and can make 
accurate predictions in real-world scenarios [36]. As AI and edge AI systems 
become more complex and are deployed in diverse environments, the chal­

lenges associated with data quality and suitability have become increasingly 
significant. Considering the specific requirements for various AI and edge 
AI systems, challenges for data quality and suitability in AI and edge AI 
validation include: 

Relevance and Representativeness: the data used for training and validation 
is relevant and representative of the real-world environment in which the AI 
and edge AI systems operate. Data must reflect the diversity of conditions, 
contexts, and populations that the system will encounter. If the training data 
is biased or unrepresentative, the model’s performance may deteriorate when 
applied to actual situations. 

Volume and Availability: Considered very important, especially in scenarios 
where data may be generated at high velocity. Obtaining enough high-quality 
data for training and validation can be difficult. In many cases, developers 
may struggle to gather sufficient diverse data from edge devices, leading to 
models that are not well-trained for all possible situations they may encounter 
in deployment. 

Label Quality: important for supervised learning, as it directly impacts 
model accuracy. Inaccurate or inconsistent labelling can mislead the training 
process and result in poor performance in operational environments. Ensuring 
the reliability of labels, especially when data is labelled manually or derived 
from semi-automated processes, can be a significant extra work. 

Bias and Fairness: the biases in learning and training of data, can lead to 
outcomes that are unfair when models are deployed. AI and edge AI systems 
trained on biased data may perpetuate existing stereotypes or discriminate 
against certain classes and groups. Addressing data bias and ensuring fairness 
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in model predictions is key to building trustworthy AI and edge systems that 
serve all stakeholders equitably. 

Data Drift: refers to the shifts in data distributions over time, which can 
degrade model performance. As the underlying data evolves, models may 
become less accurate or irrelevant. Ongoing monitoring and adaptation of 
models are necessary to mitigate the effects of data drift, making it a 
continuous challenge for AI and edge AI validation. 

Data Preprocessing: is a critical step in data management, particularly for 
edge AI systems with limited resources. Cleaning and transforming data into 
suitable formats can be challenging, when using with diverse data sources and 
formats. This preprocessing must be efficient to ensure real-time performance 
while maintaining data accuracy and integrity. 

Synthetic Data: helps augment training datasets and has several limitations. 
The effectiveness of synthetic data depends on its ability to mimic real-

world scenarios accurately. If synthetic data does not accurately represent 
the complexities of real-world environments, it may lead to models that 
underperform when applied to actual data. 

Edge­Specific Challenges: these are related to data collection from dis­

tributed edge devices, considering elements like latency, bandwidth con­

straints, and intermittent connectivity, which can complicate the data vali­

dation process. Ensuring data quality in these scenarios requires innovative 
approaches to data management and model training. 

1.5 The Edge AI Verification and Validation Lifecycle 

According to the OECD recommendation on artificial intelligence [10], an 
AI system is a machine-based framework that, driven by either explicit or 
implicit goals, deduces from the input it receives how to produce outputs 
such as predictions, content, recommendations, or decisions that may impact 
physical or virtual environments. The levels of autonomy and adaptability of 
different AI systems can vary after they are deployed. The lifecycle of an AI 
system generally encompasses multiple stages, which include planning and 
design; data collection and processing; model development and/or adaptation 
of existing models for specific tasks; testing, evaluation, verification, and 
validation; deployment for use; operation and monitoring; and retirement or 
decommissioning. These stages often occur iteratively and are not strictly 
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linear. The choice to retire an AI system can be made at any time during the 
operation and monitoring stage. 

AI and edge AI systems are distinct from other system types, which can 
influence the processes of the lifecycle model, such as [9]: 

• Most SW systems are designed to operate in exactly defined man­

ners dictated by their requirements and specifications. In contrast, AI 
and edge AI systems that utilize ML rely on data-driven training and 
optimization techniques to address a wide range of inputs. 

• Traditional SW applications tend to be predictable, whereas this is less 
frequently true for AI and edge AI systems. 

• Additionally, traditional SW applications are generally verifiable, while 
evaluating the performance of AI and edge AI systems often necessitates 
statistical methods, making their verification more complex. 

• AI and edge AI systems usually require numerous iterations of enhance­

ment to reach satisfactory performance levels. 

The edge AI development lifecycle outlines the stages involved in creat­

ing and operationalizing edge AI systems. It starts with problem definition, 
functional, non-functional requirements and data collection, followed by data 
preparation and feature engineering. Model selection and architecture design 
precede the training phase, where algorithms learn from the prepared dataset. 
Validation and testing ensure model performance and generalization. Iterative 
refinement optimizes the model based on results. Deployment integrates the 
AI system into production environments. Monitoring and maintenance track 
performance, address drift, and update the model as needed. 

Embedding AI and generative AI into the system design requires shifting 
from the current V-model, which addresses the HW and SW development 
cycle, to a W-model superimposed on the V-model to account for data and 
AI-specific artifacts. This includes the AI model development and data into 
the AI system’s lifecycle development, as illustrated in Figure 1.7 [92]. 

When superimposed on the traditional V-model used in HW and SW 
development, the W-model AI development lifecycle creates a comprehensive 
framework that addresses the distinct yet interrelated processes of AI data 
development and HW/SW engineering. This approach ensures that AI models 
and supporting systems are developed in a cohesive, iterative, and validated 
manner. This approach aligns existing tools and methods with AI technolo­

gies. The extension into the W-model structures represents the development 
workflow of AI systems comprising HW, SW, AI stack, and data components. 
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Figure 1.7 Edge AI system W-Model (adapted from [92]) 

The inner W part of the model represents the AI-enabled processes 
and workflows integrated into the conventional model. The AI system W-

model emphasises systematic validation and verification at each stage of 
the AI development process, helping ensure the robustness, reliability, and 
performance of AI systems. The W-model addresses the specific design and 
development requirements of edge AI systems, distinguishing them from 
traditional HW/SW and computing paradigms. The novelty in the model 
lies in the fact that the data required for development and AI, ML/DL, 
and generative AI model training is integrated into the development cycle, 
superimposed on the traditional V-model, and follows the algorithm selection 
and training in each lifecycle stage. 

The edge AI system W-model emphasises that AI and generative AI are 
integral to the lifecycle development processes of any AI-based product or 
service. 

As presented in the AI system W-model at the start of the development 
lifecycle, developers can utilise AI and generative AI to understand domain 
requirements and design architecture. The design captures both functional 
and non-functional requirements for embedded computing systems, such as 
those in automotive control or industrial units, considering hardware con­

straints and real-time performance needs. Challenges concerning edge AI 
requirements and AI requirements engineering are extensive and due in part 
to the practice by some to treat the AI element as a “black box”. Formal 
specification has been attempted and has proven to be difficult for tasks 
that are hard to formalise, requiring decisions on the use of quantitative 

⏎ 
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or Boolean specifications, as well as the incorporation of data and formal 
requirements. The challenge is to design effective methods for specifying 
both desired and undesired properties of systems that utilise AI- or ML-based 
components. 

When considering the broader principles of agentic AI and AI agents, 
their development must be integrated into the edge AI system W-model as a 
specific part of the lifecycle development processes of any AI-based product 
or service. As a result, the agentic AI and AI agents V&V extends beyond the 
individual agent, focusing on validating the system’s autonomy and the ability 
to achieve long-term goals without unexpected consequences by assessing the 
alignment of the AI agent’s goals with the overall objectives of the edge AI 
system and ensuring that its learning and adaptation mechanisms do not lead 
to unsafe or undesirable states over time. 

1.6 Failure Case Behaviour in Edge-based Machine Vision 
Systems 

In the context of edge-based machine vision systems, the study of failure case 
behaviour is a critical component of any robust verification and validation 
framework. These systems are increasingly deployed in real-world, safety-

critical environments, ranging from autonomous vehicles and industrial 
robotics to surveillance and medical diagnostics, where failures can result in 
substantial consequences. While conventional validation focuses on average-

case performance metrics such as accuracy or mean average precision, these 
metrics often obscure rare but consequential failure modes. An edge AI 
system that performs well under ideal conditions may fail unexpectedly in 
the presence of visual distortions, environmental variability, or edge hardware 
constraints. 

Failures in machine vision models frequently arise in conditions that 
deviate from the data distribution seen during training. Examples include 
poor lighting, motion blur, occlusions, scale variation, or visual clutter. In 
edge deployments, such conditions are not only likely but expected, and the 
consequences of misclassification or missed detection can be severe. Further­

more, edge systems often operate with limited fallback options, and they must 
respond in real time, leaving little margin for error recovery. Understanding 
and characterizing these failure scenarios is therefore essential for both safety 
assurance and iterative model improvement. 

One important strategy for investigating failure modes involves delib­

erate stress testing through visual perturbations. By applying controlled 
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transformations—such as adding noise, blurring, shifting brightness, or intro­

ducing occlusions—it becomes possible to evaluate how resilient a vision 
model is to real-world distortions. These tests often reveal brittle model 
behaviours that are not apparent during standard validation. 

In addition, targeted scenario-based testing using simulation tools or 
recorded video sequences enables systematic exploration of edge cases. This 
is especially valuable for applications involving dynamic environments, such 
as autonomous navigation, where rare events (e.g., unexpected pedestrian 
appearance or sensor occlusion) may not be captured adequately in avail­

able datasets. Scenario replay or simulation also supports reproducibility of 
observed failures, which is often a challenge in field deployments. 

Another aspect of failure case analysis is the examination of uncertainty 
and confidence levels in model predictions. Machine vision systems may 
produce incorrect predictions with unjustified confidence, especially when 
faced with unfamiliar or out-of-distribution inputs. Monitoring softmax confi­

dence, prediction entropy, or Bayesian uncertainty estimates can help identify 
instances where the model is likely to fail. These signals may be used in 
runtime monitoring or to trigger fail-safe mechanisms. 

Post-hoc explainability methods, such as saliency maps or activation 
heatmaps, also play an important role in understanding failure behaviour. By 
visualising the regions of an input image that contributed most to a model’s 
prediction, one can diagnose whether a failure was due to the model focusing 
on irrelevant or misleading features. This insight often reveals underlying 
dataset biases or spurious correlations that were inadvertently learned. By 
combining scenario condition variables and the predictions as features in 
probabilistic frameworks (e.g., Bayesian networks) is also a method for 
modelling the uncertainty in predictions. 

Hardware-specific issues also need to be considered in failure anal­

ysis. For instance, the quantization of weights and activations required 
for execution on edge hardware (e.g., FPGAs or ASICs) can introduce 
numerical inaccuracies that degrade model performance in subtle ways. 
Testing the consistency between floating-point reference models and their 
hardware-deployed counterparts is essential to identify precision-induced 
errors. Similarly, real-time system profiling can reveal frame drops, synchro­

nization mismatches, or input-output latency violations that lead to perceptual 
failures. 

Finally, insights gained from the analysis of failure cases should feed back 
into the design and development process. Difficult or misclassified examples 
can be incorporated into retraining pipelines, synthetic data can be generated 
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to increase robustness, and system architectures can be adapted to detect 
and respond to high-uncertainty inputs. Ideally, safety envelopes are defined 
at design time to formally capture the operational conditions under which 
the system is guaranteed to function correctly. This creates a closed-loop 
process that not only identifies but also mitigates and prevents known failure 
patterns. 

The systematic study of failure case behaviour is indispensable for 
building trustworthy machine vision systems on edge platforms. It enables 
developers to move beyond average-case performance toward comprehensive 
assurance of correctness, robustness, and safety under realistic and adverse 
conditions. 

1.7 Research Challenges in Edge AI Verification and 
Validation 

Edge AI represents a cutting-edge computing approach that seeks to relocate 
the training and inference of ML models to the network’s edge [12]. However, 
implementing intelligence at the edge presents several significant challenges, 
such as the necessity to limit model architecture designs, ensuring the secure 
distribution and execution of the trained models, and managing the consider­

able network load needed to disseminate the models and the data gathered for 
training. 

Edge AI systems that incorporate continuous learning involve the gradual 
updating of the models within the systems during production and test runs 
operations [9]. The data input into a system during these operations, is 
not only evaluated to generate an output but is also concurrently utilized 
to modify the model, aiming to enhance it based on the production data. 
Depending on the design of the continuous learning system, certain human 
interventions may be necessary, such as data labelling, validating the appli­

cation of specific incremental updates, or monitoring the performance of 
the edge AI system. Continuous learning can address the limitations of the 
initial training data and assist in managing data drift and concept drift, but it 
also presents significant challenges in ensuring the edge AI system operates 
correctly while learning. It is essential to verify the system in production and 
to capture the production data to be able to include them as part of the training 
dataset in future system updates. 

Catastrophic interference (and catastrophic unlearning) occurs when the 
training for new tasks disrupts the model’s comprehension of previous tasks 
[11]. As new information supersedes earlier learning, the model forfeits its 
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capability to manage its initial tasks. Given the risk of catastrophic inter­

ference, continuous learning necessitates the capability to learn over time 
by integrating new observations from current data while preserving prior 
knowledge [9]. Numerous ML algorithms excel at learning tasks only when 
the data is provided in a single batch. As a model is trained on a specific task, 
its parameters are modified to effectively tackle that task. However, when 
new training data is introduced, the adjustments made for these new inputs 
can erase the knowledge the model had previously gained. In the context of 
neural networks, this occurrence is regarded as one of their key limitations. 

The combination of edge AI, IoT and Cyber-Physical Systems (CPS) 
marks a significant transformation in data processing by bringing it closer 
to the origin. This strategy minimizes latency, improves real-time decision-

making, and lessens the load on centralized cloud resources. In CPS, control 
logic is utilized to process input from sensors, through actions of actuators 
and thus affecting processes occurring in the physical world [9]. This is 
particularly evident in robotics, where sensor data is directly employed to 
manage the robot’s operations and execute tasks in the physical world. 
Typically, robots are equipped with sensors at the edge to evaluate their 
current conditions, processors to facilitate control through analysis and action 
planning, and actuators to implement those actions. 

In contrast to industrial robots, which are consistently repeating the same 
trajectories and actions without deviations, service robots or collaborative 
robots must adapt to evolving situations and dynamic environments [9]. Pro­

gramming this adaptability presents significant challenges due to the inherent 
variability. Components of edge AI systems can play a role in the control 
software and planning processes through the “Sense-Plan-Act” framework, 
allowing robots to modify their actions in response to obstacles or changes 
in the location of target objects. The integration of robotics and edge AI 
system components facilitates automated physical interactions with objects, 
environments, and individuals. 

In machine vision-based robotics, the visual processing pipeline itself 
must be verified and validated not only for accuracy but also for real-time 
responsiveness. Edge V&V must ensure that latency from image acquisition 
to action initiation does not exceed application-specific safety thresholds. 
Techniques like real-time trace logging and FPGA-based image path profiling 
can support this validation. 

The challenges and appropriate methodologies for AI verification are not 
uniform; they vary significantly depending on the type of AI model employed 
and the application domain’s risk profile. 
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Model­Specific Challenges and Verification Focus 

Deep Learning (DL) / Sub­Symbolic AI: 

• Challenges: The primary verification challenges stem from their inher­

ent opacity (making internal logic inscrutable) [64], strong data depen­

dency (performance tied to training data quality and representativeness) 
[76], difficulty in formal specification of complex learned behaviours 
[64], susceptibility to adversarial examples, and challenges in general­

ization beyond training data distributions [76]. Scalability of verification 
methods is a major bottleneck due to the vast number of parameters and 
high-dimensional inputs [52]. Non-determinism can also arise during 
training or inference [70]. 

• Verification Focus: Emphasis is placed on empirical performance eval­

uation using diverse test datasets, extensive robustness testing against 
perturbations and adversarial attacks, fairness audits to detect biases 
learned from data, applying explainable AI (XAI) techniques (like 
LIME, SHAP, saliency maps) and interpretable AI (IAI) to gain insights 
into model decisions [74][75] and, where feasible, formal verification of 
specific, localised properties such as robustness bounds around specific 
inputs [69]. 

Symbolic AI / Rule­Based Systems: 

• Challenges: These systems often suffer from brittleness, meaning they 
struggle to handle situations not explicitly covered by their predefined 
rules or knowledge base [73]. Creating and maintaining large, consis­

tent, and complete knowledge bases can be labour-intensive and requires 
significant domain expertise [72]. They typically lack the ability to learn 
directly from raw, unstructured data. A computer vision model trained to 
detect stop signs may misclassify a slightly occluded or weathered sign 
because it hasn’t seen enough variation in training. Traditional software 
can also exhibit brittleness, i.e. they both struggle but in different forms. 

• Verification Focus: Verification centres on the logical integrity of the 
system. This includes checking the consistency of the rule set and 
knowledge base (absence of contradictions), analysing completeness (do 
the rules cover the intended domain?), formally verifying logical prop­

erties like soundness and validity of reasoning steps [64] and ensuring 
the traceability of outputs back to specific rules, which provides inherent 
explainability [72]. 
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Neuro­symbolic AI: 

• Challenges: This hybrid approach aims to combine the strengths of DL 
and symbolic AI but verifying the interaction and ensuring consistency 
between the neural (learning) and symbolic (reasoning) components is 
a key challenge [64]. Developing unified V&V frameworks that can 
handle both paradigms simultaneously is an active area of research [64]. 

• Verification Focus: Requires a multi-pronged approach: verifying the 
neural components using DL-specific techniques, verifying the symbolic 
components using logic-based methods, and crucially, verifying the 
interface and the correctness of the combined system’s behaviour. A 
major research direction involves leveraging the symbolic part to con­

strain, explain, or formally verify aspects of the neural part’s behaviour 
[64]. 

Domain­Specific Challenges and Verification Focus 

Safety­Critical Systems (e.g., Automotive, Aerospace, Medical, Indus­
trial Control): 

• Requirements: These domains demand high levels of reliability, safety, 
robustness, and predictability [49]. System failures can have catas­

trophic consequences, including loss of life, severe injury, or significant 
environmental damage [49]. 

• Challenges: The need for provable guarantees clashes with the opacity 
and non-determinism of many AI components [65]. Meeting stringent 
regulatory standards (e.g., ISO 26262, IEC 62304, DO-178C) requires 
extensive evidence and documentation, which is difficult for AI/ML 
[68]. Managing the complexity of interaction with the physical world 
and ensuring safety across a vast range of operational scenarios is 
extremely challenging [71]. Exhaustive testing is typically infeasible 
due to the combinatorial explosion of possibilities [47]. Achieving 
deterministic replay for debugging and analysis is crucial but difficult 
[78]. 

• Verification Focus: Emphasis on rigorous methodologies, including 
formal methods where applicable, extensive simulation-based testing 
covering edge cases and failure modes, hardware-in-the-loop and real-

world testing, fault tolerance analysis, adherence to domain-specific 
safety standards, meticulous documentation, and end-to-end require­

ments traceability [65]. Building a robust safety case with sufficient 
evidence is paramount [78]. 
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Business or mission critical: 

•  Requirements: Business or mission-critical edge AI systems refer to 
applications that utilise AI to enable real-time decision-making and 
enhance operational efficiency. These domains demand high levels of 
scalability, reliability, safety, robustness, and interoperability. Due to 
their critical nature, they require special attention to ensure performance. 

• Challenges: Deployment challenges arise from network reliability, as 
edge devices may operate in environments with unstable connections, 
affecting data synchronisation and model updates. The diversity of hard­

ware platforms can cause compatibility issues and necessitate tailored 
solutions. Software challenges include the need for model optimisation, 
as AI models must be adjusted for edge deployment to balance accuracy 
and resource utilisation. Environmental conditions also pose risks, as 
edge devices must withstand various factors that can influence hard­

ware performance and reliability. Regulatory and compliance challenges 
require navigating global data protection regulations to ensure that AI 
systems adhere to legal standards. 

• Verification Focus: Verifying the effectiveness of edge AI systems 
involves establishing rigorous processes to ensure AI models meet per­

formance standards under diverse conditions. Performance evaluation 
includes conducting real-time benchmarks to assess the responsive­

ness, accuracy, and resource utilisation of AI models deployed on edge 
devices. Interoperability ensures that edge AI solutions operate and com­

municate effectively within existing ecosystems and various hardware. 
Compliance verification requires regular audits to ensure that edge AI 
systems adhere to data privacy laws and industry regulations. Robustness 
verification involves stress-testing models against adversarial attacks 
and unexpected inputs to confirm their resilience in real-world scenarios. 
Lifecycle management strategies are necessary for overseeing the entire 
lifecycle of edge AI systems, from development and deployment to 
decommissioning. 

Consumer Applications (e.g., E­commerce, social media, entertainment): 

• Requirements: Often prioritize performance (e.g., accuracy of recom­

mendations, speed of response), user experience, scalability, and cost-

effectiveness. While direct physical safety risks are typically lower, 
significant concerns exist around fairness, bias, privacy, security (e.g., 
data breaches), misinformation, and ethical use [66]. 
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• Challenges: Managing bias and fairness effectively across large, diverse 
user populations [66]. Protecting user privacy in data-hungry applica­

tions. Detecting and mitigating the generation or spread of harmful 
content or misinformation [67]. Preventing user manipulation (e.g., 
prompt injection in chatbots) [67]. Understanding and mitigating poten­

tial large-scale societal impacts [79][80]. 
• Verification Focus: Often relies more heavily on empirical testing, such 

as testing for performance, user studies for usability and acceptance, 
large-scale fairness and bias audits, privacy impact assessments and 
compliance checks, evaluation of content safety filters, and robust­

ness testing against common failure modes or attacks. While formal 
verification might be used for specific critical components (e.g., pay­

ment processing), the overall verification rigor may be less intense 
than in safety-critical domains, unless specific high-risk functions are 
involved. 

The fundamental difference in verification approaches between these 
contexts stems from the level of acceptable risk and the potential severity 
of failure consequences. Safety-critical domains operate with extremely low 
risk tolerance, demanding the highest levels of assurance and necessitating 
the use of more rigorous, often formal, verification techniques, alongside 
adherence to strict regulatory frameworks [65]. Consumer applications, while 
facing significant ethical and societal risks, typically have a higher tolerance 
for certain types of failures (e.g., a poor recommendation vs. a medical misdi­

agnosis), allowing for a greater reliance on empirical testing and monitoring. 
Addressing these domain-specific challenges in business and mission-critical 
edge AI systems is key for ensuring their reliability and effectiveness. 

The inherent difficulties in verifying both pure DL (opacity) and pure 
symbolic AI (brittleness) have spurred interest in hybrid neuro-symbolic 
approaches [64]. By integrating the pattern-recognition strengths of neural 
networks with the explicit reasoning and transparency of symbolic methods, 
these approaches offer a potential pathway to building edge AI systems that 
are more amenable to verification and trust, particularly for complex tasks 
[77]. The verification of hybrid systems introduces its own set of research 
questions regarding the interaction and consistency between the different 
components [64]. 

For validation a one-size-fits-all approach to edge AI is ineffective due 
to the diversity of edge AI technologies and their application domains. The 
specific validation focus, methods, metrics, and acceptance criteria must 
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be tailored to the type of AI system and the context in which it operates, 
particularly considering the nature of user interaction and potential real-world 
consequences. 

Validation Nuances Across AI Types 

Generative AI (e.g., LLMs, SLMs, VLMs, image generators): Validation 
priorities include assessing factual accuracy (mitigating “hallucinations”), 
ensuring content safety (detecting toxicity, bias, harmful content), preventing 
malicious use (e.g., generating disinformation or deepfakes), and evaluating 
output quality attributes like coherence, relevance, and creativity, which 
often lack objective metrics [66]. The inherent non-determinism is a key 
challenge, requiring validation strategies that assess output distributions or 
use human evaluation and red-teaming [81]. Defining and validating the 
“intended purpose” for highly flexible generative models is complex [87]. 

Agentic AI and AI agents: The AI agent act as a deterministic compo­

nent with limited scope, while agentic AI reflects distributed intelligence, 
characterised by goal decomposition, inter-agent communication, and con­

textual adaptation, demonstrating key characteristics of the modern agentic 
AI frameworks. Agentic AI systems define an emergent class of intelligent 
architectures in which multiple specialised agents collaborate to achieve 
complex, high-level objectives utilising collaborative reasoning and multi­

step planning [17]. V&V of edge AI systems employing AI agents focuses on 
the reliability and safety of the agent’s actions in its operational environment 
to ensure the agent’s decision-making logic is robust and predictable under 
a broad range of inputs, especially unexpected or anomalous sensor data. 
This involves rigorous testing of the agent’s software, hardware, edge AI 
algorithms and data components to confirm they meet design specifications 
and performance benchmarks. Another aspect of V&V for edge AI systems 
that must be considered is the formal verification of the agent’s reasoning 
processes, which involves creating mathematical models of the agent and its 
environment to demonstrate that specific critical properties, such as safety, 
robustness, and resilience, are met. For complex, learning-based agents, this 
can be supplemented with extensive simulation-based testing to explore the 
vast state space and identify potential failure modes before deployment in the 
domain applications. 

Autonomous Systems (e.g., autonomous vehicles, industrial robots): 
Validation overwhelmingly focuses on safety, reliability, and robustness 
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within complex and dynamic physical environments [7]. Key challenges 
include achieving sufficient test coverage across a vast space of potential 
scenarios (combinatorial explosion), bridging the gap between simulation 
and real-world performance, validating perception systems, and ensuring 
safe decision-making under uncertainty [78]. Validation heavily relies on 
extensive simulation, structured scenario-based testing, field testing, for­

mal methods for safety-critical properties, and potentially runtime verifica­

tion/monitoring [78]. Validating human oversight mechanisms is also critical, 
especially in military or safety-critical contexts [71]. 

Decision Support Systems (e.g., medical diagnosis aids, credit scoring 
tools): Validation emphasizes accuracy, reliability, fairness, explainability, 
and the system’s impact on human decision-making and outcomes [7]. Chal­

lenges include validating against potentially imperfect or subjective ground 
truth, ensuring edge AI recommendations are beneficial and not misleading, 
rigorously assessing and mitigating bias across different user groups, and 
providing sufficient transparency to enable user trust and accountability. Vali­

dation typically requires domain-specific performance metrics, evaluation by 
domain experts, user studies assessing impact on decisions, and thorough bias 
and fairness audits [85]. 

Domain­Specific Considerations 

The application domain significantly shapes validation priorities and meth­

ods due to differing risk profiles, regulatory requirements, and stakeholder 
concerns: 

Healthcare: Extremely high stakes due to direct impact on patient safety and 
well-being [82]. Validation must adhere to regulatory frameworks (e.g., FDA 
regulations for medical devices, HIPAA for privacy, EU AI Act classifying 
medical AI as high-risk). Key validation elements include clinical efficacy 
(proven through clinical evaluation/trials), safety, reliability, data privacy, 
mitigation of bias in diverse patient populations, usability for clinicians, 
and explainability to support clinical judgment and trust. Frameworks like 
FUTURE-AI offer specific guidance for trustworthy AI in healthcare [86]. 

Finance: Focus on regulatory compliance (e.g., financial conduct author­

ities, anti-discrimination laws), fairness and bias mitigation in areas like 
credit scoring and loan applications, accuracy in fraud detection, model risk 
management, robustness against market volatility, security against financial 
attacks, and explainability for audits and customer inquiries [83]. Validation 
involves rigorous back testing, stress testing under various market conditions, 
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comprehensive bias audits using relevant fairness metrics, security penetra­

tion testing, and checks for regulatory adherence. 

Transportation (especially Autonomous Vehicles): Safety is the absolute 
priority [82]. Validation must demonstrate safe operation under a vast range 
of environmental conditions (weather, lighting, road types) and interactions 
(other vehicles, pedestrians, cyclists). This involves validating perception 
systems (sensor fusion, object detection/classification), prediction models, 
and planning/control algorithms [71]. Validation relies heavily on extensive 
simulation covering millions of virtual miles, structured scenario-based test­

ing (including edge cases and failure modes), real-world road testing, and 
the development of robust safety cases supported by evidence [78]. Formal 
verification methods may be applied to critical safety properties [71]. 

Social media / Content Platforms: Key concerns involve mitigating the 
spread of misinformation and harmful content, addressing algorithmic bias 
in content ranking and recommendation, ensuring fairness in content mod­

eration, protecting user privacy, and managing the impact on user well-being 
and societal discourse [84]. Validation is challenging due to the massive scale, 
the dynamic nature of content and user behaviour, the subjectivity involved 
in defining “harmful” or “fair,” and the difficulty in measuring long-term 
societal impacts. Validation methods often include large-scale testing, human 
content review and rating, analysis of user engagement and feedback data, 
and monitoring metrics related to bias, toxicity, and content diversity. 

This context-dependency highlights that effective AI validation requires 
not only technical expertise, but also deep domain knowledge [86]. Generic 
validation checklists are insufficient; protocols must be tailored to the spe­

cific AI type, its intended application, the operational environment, the 
relevant risks, and the specific needs and values of the stakeholders in that 
domain [88]. 

1.8 Trends and Methodologies in Edge AI Verification and 
Validation 

The field of edge AI verification is rapidly evolving, driven by the increasing 
capabilities and deployment of AI systems, alongside growing concerns about 
their trustworthiness and potential risks. The unique challenges of edge AI 
validation are driving significant research and development into new method­

ologies, techniques, and tools. These efforts aim to provide more rigorous, 
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scalable, and comprehensive ways to ensure edge AI systems are fit for their 
intended purpose. 

Formal methods are advancing with a growing interest in applying, math­

ematically rigorous techniques, to the verification and validation of edge 
AI systems. Techniques like model checking, theorem proving, abstract 
interpretation, and reachability analysis are being adapted to prove specific 
properties of edge AI components, especially neural networks, concerning 
safety, robustness against perturbations (e.g., adversarial examples), and fair­

ness. Major challenges remain in scaling these methods to handle the high 
dimensionality and complexity of edge AI models and in formally specify­

ing properties for systems operating under uncertainty or with incomplete 
requirements. Research focuses on developing more scalable algorithms, 
better abstraction techniques, and methods for probabilistic verification. 

Explainable and interpretable AI for V&V are techniques that are increas­

ingly explored as tools for validation and verification. By providing insights 
into why a model makes a certain prediction (e.g., identifying important input 
features using SHAP or LIME, visualizing attention mechanisms, generat­

ing counterfactual explanations), AI explainability and interpretability can 
help validators assess whether the model’s reasoning aligns with domain 
knowledge, requirements, or certain rules or principles (e.g., ethical). The 
techniques can aid in debugging unexpected behaviours, identifying reliance 
on spurious correlations, and verifying compliance with constraints (e.g., fair­

ness). This helps address the “black box” challenge for validation purposes. 
The reliability and interpretation of explanations themselves require valida­

tion, and research is ongoing to understand the effectiveness and limitations 
of using AI explainability and interpretability for V&V tasks. In the context 
of edge machine vision, lightweight explainability methods can help assess 
whether the model’s attention aligns with relevant image features. These 
methods assist in verifying that edge vision models respond to semantically 
appropriate cues and not to background artifacts or compression noise. 

Neuro­Symbolic AI combines the strengths of data-driven neural networks 
(sub-symbolic AI) with rule-based logical reasoning (symbolic AI). The 
symbolic component can represent explicit domain knowledge, constraints, 
or reasoning rules, potentially making the hybrid system more interpretable, 
data-efficient, and robust. From a validation perspective, neuro-symbolic 
approaches offer promise by potentially enabling formal verification of the 
symbolic reasoning part, using symbolic knowledge to constrain or validate 
the neural network’s outputs, and providing more transparent explanations 
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for system behaviour. Research is actively exploring different integration 
architectures and their implications for validation. 

Agentic AI and AI agents brings new challenges required the advance­

ments of research focusing on developing new V&V techniques tailored to 
the dynamic nature of agentic AI, including advancing methods in runtime 
monitoring and formal verification that can cope with learning-based com­

ponents and non-determinism. Creating simulation platforms that can model 
complex, real-world physics and multi-agent interactions will be crucial for 
testing edge systems exhaustively before deployment. The use of digital twin 
and immersive triplet environments could enable the safe exploration of an 
agent’s behaviour under a wide range of standard and adverse conditions, 
helping to identify potential failure modes early. In this context, based on the 
technology trends research should address the system-level and collaborative 
aspects of agentic AI at the edge by creating frameworks for validating not 
only individual agents but also the collective, emergent behaviour of multi-

agent systems. Developing techniques to ensure that the goals of individual 
agents remain aligned with the overall system objectives, even as they adapt 
and learn, is paramount. Research into explainable XAI and IAI for edge 
devices is required, as it will enable human operators to understand, trust, 
and effectively manage the decisions of autonomous agents, ensuring safe 
and predictable operation in complex, real-world scenarios. 

1.9 Conclusion 

The rapid advancement and deployment of edge AI necessitate a parallel 
evolution in the designers’ ability to ensure that edge AI systems are safe, 
reliable, fair, and aligned with human values. Verification, as defined by 
standards such as ISO/IEC 22989, is the assurance through objective evidence 
that specified requirements have been fulfilled, forming a cornerstone of 
building essential trust. It provides the rigorous checks needed to confirm that 
AI systems are built according to their intended design and specifications. 

The unique characteristics of AI, particularly its potential opacity, non-

determinism, complex data dependencies, and difficulty in formally spec­

ifying requirements for emergent behaviours, pose significant challenges 
to traditional V&V approaches. The black-box nature of many models 
hinders direct inspection, scalability limitations restrict the application of 
formal methods, and the dynamic nature of edge AI systems and their 
environments demands continuous evaluation beyond design-time checks. 
Addressing conceptual challenges related to fairness, value alignment, and 
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adversarial robustness requires ongoing fundamental research, and significant 
progress is being made. International standards provide common terminol­

ogy (ISO/IEC 22989), frameworks for trustworthiness (ISO/IEC TR 24028), 
and management systems for responsible AI governance (ISO/IEC 42001). 
Methodologically, an increasing number of researchers are adopting formal 
methods for specific AI and edge AI verification tasks, developing advanced 
testing techniques (e.g., metamorphic and adversarial testing). 

Metamorphic testing techniques are used to verify the behaviour of AI 
models, when predicting the exact output for a given input is challenging 
or impossible. The metamorphic testing techniques focus on identifying 
relationships between inputs and outputs, known as metamorphic relations, 
that act as logical rules or properties that should hold true when inputs are 
modified. Adversarial testing is a technique in which inputs are intentionally 
designed to expose weaknesses or flaws in a system, thereby identifying 
scenarios where the system produces harmful or biased outputs. This enables 
testers to identify vulnerabilities and ensure the system responds safely and 
effectively [37]. 

Generative AI excels at pattern recognition, classification, and predictive 
analytics, generates new patterns and multimodal content (e.g., text, sound, 
images) and plays a dual role in the verification and validation process, for 
example, as part of an edge AI system that has to be verified and validated 
and as a technology that supports the V&V processes by generating V&V 
requirements, specifications and automatically performing the V&V. 

The V&V of emerging edge AI agents face challenges arising from the 
inherent autonomy and the dynamic environments in which these agents 
operate. The agents can rely on machine learning models that can produce 
non-deterministic outputs, making the behaviour difficult to predict and for­

mally verify. Continuous interaction with external environments introduces 
an extensive and unpredictable operational space, where unforeseen events 
can lead to emergent behaviours that were not anticipated during the design 
and testing phases, posing risks to safety and reliability. 

Further challenges for the V&V processes are the unique constraints 
of the edge environment itself. Edge AI systems must operate within the 
limitations of computational power, memory, and energy, which can impact 
the performance and consistency of their decision-making processes. Edge 
AI agents must make real-time decisions, where latency is a critical factor. 
Validating that an edge AI agent responds correctly and within strict time 
constraints, especially when facing intermittent connectivity or degraded 
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sensor input, is a significant hurdle that requires novel testing methodologies 
beyond traditional software V&V. 

The process of V&V agentic edge AI systems requires addressing the 
interaction between human and AI agent components to ensure that the 
agent’s behaviour is understandable and transparent to human users, which 
allows for efficient oversight and human intervention when necessary. The 
V&V process must confirm that the edge system can communicate its 
state and intentions evidently and that its autonomous actions are auditable, 
interpretable and explainable. 

This supports explainable AI techniques, implementing runtime verifica­

tion for operational assurance, and opening the use of neuro-symbolic archi­

tectures to bridge the gap between learning and reasoning. Neuro-symbolic 
AI is a type of AI that integrates neural and symbolic AI architectures to 
address the weaknesses of each, providing a robust AI capable of reasoning, 
learning, and cognitive modelling. 

Continued research is essential to develop more scalable and robust 
verification techniques that can handle the complexity of new edge AI sys­

tems. Addressing foundational AI safety problems, enhancing automated and 
human-centric V&V approaches, and building comprehensive, trustworthy 
AI frameworks that integrate technical verification with ethical consider­

ations and governance are key priorities. Achieving verifiably trustworthy 
AI requires a holistic perspective, acknowledging the interplay between 
hardware, software, AI models, data, systems, processes, and the technical, 
application, and environmental contexts [40]. 

Achieving the goal of trustworthy AI and edge AI systems that are 
demonstrably beneficial and responsibly integrated into society requires ele­

vating validation beyond a mere technical, end-of-phase check. It demands a 
holistic, continuous, and lifecycle-integrated approach [54]. 

This approach must rigorously integrate technical validation (ensuring 
robustness, reliability, and security) with user-centric validation (confirming 
usability, fitness for purpose, meeting needs), ethical validation (assessing 
fairness, accountability, and value alignment), and real-world effectiveness 
monitoring [90]. 

Success requires multidisciplinary collaboration, bringing together 
AI/ML experts, software engineers, domain specialists, human factors engi­

neers, ethicists, social scientists, legal experts, end-users, and regulators. 
International standard bodies like ISO and organisations like NIST provide 
essential frameworks, common terminology, and guidance (e.g., ISO 9000, 
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ISO/IEC/IEEE 15288, ISO/IEC 22989, ISO/IEC TR 24028, ISO/IEC 42001, 
NIST AI RMF) [89]. 

The rapidly evolving nature of AI means that significant ongoing research 
and innovation in validation techniques are imperative to address the chal­

lenges effectively. 
Edge AI system validation is a dynamic and increasingly critical field. As 

AI capabilities continue to advance and these systems become more deeply 
embedded in our lives, the methods used to ensure they are fit for purpose, 
safe, and aligned with human values must also evolve. 

The focus is shifting from static, pre-deployment checks towards contin­

uous, adaptive, and context-aware validation processes that span the entire 
edge AI lifecycle. Addressing the complex technical, ethical, and societal 
challenges associated with edge AI validation requires sustained research, 
multidisciplinary collaboration, and international cooperation. 

Continued innovation in validation methodologies and tools will be essen­

tial to harness the transformative potential of AI responsibly and build a future 
where edge AI systems are trustworthy and integrated into industrial and 
business processes. 
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Abstract 

The Internet of Things (IoT) nowadays greatly benefits from Artificial Intel­

ligence (AI) algorithms implemented in the edge, because of their efficiency 
and the reduction of costs that they imply. The advent of Federated Learning 
(FL) has made possible the combination of the advantages of edge-AI, among 
which the privacy of users, as their data is not shared with the cloud, with the 
collective intelligence. However, FL is known to have worse performance 
compared to its centralized counterpart, which may not be tolerable in certain 
cases. In this paper, we propose a hybrid framework for FL, imagining a 
number of clients that are willing to share part of their data. We envisioned 
two types of Hybridization: vertical and horizontal. The goal of this paper is 
to assess whether a small hybridization can bring advantages to the overall 
performance of the whole FL procedure in terms of classification accuracy. 

Keywords: Internet of Things (IoT), deep learning (DL), federated learning 
(FL), human activity recognition (HAR), performance evaluation. 

2.1 Introduction and Background 

The growth of the Internet of Things (IoT) has enabled novel monitor­

ing systems capable of gathering data from heterogeneous and pervasive 
devices, supporting smart city, healthcare and industrial domains. This data 

53  

DOI: 10.1201/9788743808862-2

https://dx.doi.org/10.1201/9788743808862-2


54 Pioneering the Hybridization of Federated Learning 

is processed using advanced Deep Learning (DL) techniques for system state 
forecasting, contributing to the integrated paradigm of the Artificial Intelli­

gence of Things (AIoT) [1]. However, it is well known that advanced DL 
techniques, particularly those used in computer vision applications, require 
large datasets with adequate number of instances for each system state or 
class to be predicted. In many cases, building reliable DL models requires 
aggregating data from multiple heterogeneous users or organizations per­

forming decentralized data collection for a common task. This is the case, 
for instance, of most of Human Activity Recognition (HAR) applications that 
utilize DL models trained from wearable or camera-based IoT data gathered 
from multiple volunteers or via crowdsensing techniques [2]. 

State-of-the-art AIoT systems often rely on cloud-based centralized archi­

tectures, which facilitate the aggregation of IoT data from diverse clients. 
While these solutions enable easy deployment and scalable computational 
and storage resources, they also raise significant privacy concerns due to the 
inherent risks associated with data sharing. Federated Learning (FL), first 
proposed in 2018 [3], has emerged as a privacy-preserving alternative to 
centralized machine learning, enabling cooperative training in a distributed 
environment. In a typical FL setup, multiple clients independently train mod­

els on their private datasets and only share the trained weights with a central 
server, which aggregates these weights and sends the updated model back 
to the clients. This approach ensures that no raw data is exchanged among 
clients, although concerns about the trustworthiness of the centralized server 
remain [4]. Moreover, variations in data quality and quantity across clients 
can create challenges in ensuring fair evaluation of each client’s contribution 
and achieving a high-quality global model [5]. To address the issue of non-

i.i.d. (non-independent and identically distributed) data across clients, various 
solutions have been proposed, such as clustering clients with similar data 
distributions or adopting weight-based model aggregation techniques [6]. 

In this paper, we aim to bridge the gap between centralized and Federated 
Learning (FL) methodologies, in order to address distributed IoT use cases 
where privacy requirements vary from client to client. For instance, some 
clients may be willing to share raw data, while others may not, due to 
differences in client nature (e.g., public vs. private organizations), varying 
perceptions of privacy—often shaped by social factors [7]—or monetiza­

tion strategies, where some clients are incentivized to sell their data. We 
refer to this scenario as hybrid FL and describe this hybridization approach 
for data gathering and model building at the server side, which offers a 
novel interpretation compared to other studies [4]. Specifically, this paper 
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explores two types of FL hybridization: vertical and horizontal. In the vertical 
hybridization, a portion of clients shares raw data with the centralized server, 
while others only share deep learning model coefficients generated from 
local training. In the horizontal case, all clients share a variable portion 
of their raw data (e.g., corresponding to the amount for which they have 
been compensated) in addition to the DL model coefficients trained on the 
complementary data. We evaluate the performance of both strategies using 
two benchmark datasets (related to Human Activity Recognition and image 
classification) and analyze the impact of different levels of hybridization 
compared to pure centralized and FL-based approaches. Our results demon­

strate that hybridization can be a powerful tool for improving the accuracy of 
federated systems, even when applied slightly. 

To summarize, the key contributions of our paper are the following: 

• Introduction of hybrid FL as a new strategy for privacy-adaptive learning 
in IoT scenarios. 

• Proposal of two versions of hybrid FL, respectively horizontal and 
vertical, based on distinct methods of integrating raw data and deep 
learning weights at the server. 

• Evaluation of proposed strategies across varying degrees of hybridiza­

tion, using two widely adopted benchmark datasets in the DL commu­

nity. 

The rest of the paper is structured as follows. Section 2 introduces the 
revised FL architecture supporting the vertical and horizontal hybridization. 
Section 3 describes the evaluation methodology, datasets and metrics. Sec­

tion 4 presents some evaluation results. Section 5 concludes the work and 
discusses future research steps. 

2.2 Hybrid FL Architecture 

We consider the scenario depicted in Figure 2.1, composed of two main 
actors: N distributed clients and the server. Each client ci possesses its own 
dataset Di gathered through its local sensors, and a DL network topology, 
denoted as m in the following. In a classical FL application, each client 
ci performs local training rounds of model m on Di and then shares the 
list of weights Wi with the server: the latter is responsible for aggregating 
the weights, for instance through the FedAvg [3] algorithm, and sending the 
updated values back to the clients. 

In the proposed hybrid FL architecture, the server performs additional 
storage and computational tasks, basically behaving as a special client device. 
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Figure 2.1 Typical Federated Learning Architecture 

Indeed, it possesses a local dataset Ds that is built from clients’ datasets or � nportions of them. More formally, we have that Ds = D∗ where n ≤Ni=0 i 
and D∗ ⊆ Di. The server trains the m model on Ds getting a local version i 
of weights WS that is later averaged with the weights Wi received by clients 
at each round. We denoted this process as FL hybridization, distinguishing 
between two modes for creating the local dataset Ds: 

• Vertical Hybrid FL. In such case, we have that: n < N  and D∗ =i Di. 
In other words, only a subset of the client nodes shares its own raw data 
with the server. This setup may model two different use-cases: (i) only 
n clients have been compensated with monetary rewards to share their 
data and/or (ii) n clients do not consider their local datasets privacy-

nsensitive. We indicate with rv = the rate of vertical hybridization. 
N 

Clearly, for n = N and rv = 1, the system is equivalent to centralized 
learning. Vice versa, for n = 0 and rv = 0, the system is equivalent to 
a pure FL approach. We investigate the impact of varying rv configura­

tions in the overall DL performance in Section 4. We show in Figure 2.2 
an overview on the conceptual architecture of Vertical Hybrid FL. 

• Horizontal Hybrid FL. In such case, we have that: n = N and D∗ ⊂i 
Di. In other words, all clients share only a portion of their local datasets 
with the server. This setup may model a practical use-case where each 
client shares with the server an amount of raw data proportionally to the y e 

|D∗|
monetary reward it received. We indicate with rh = mean0≤i<N 

i 
|Di|

the rate of vertical hybridization. Clearly, for D∗ = Di, the system i 
becomes a centralized learning. Vice versa, if D∗ = ∅ ∀ci the system is i 

⏎ 
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Figure 2.2 Vertical Hybrid Federated Learning Architecture 

Figure 2.3 Horizontal Hybrid Federated Learning Architecture 

equivalent to a pure FL approach. We investigate the impact of varying 
rh configurations in the overall DL performance in Section 4. We show 
in Figure 2.3 an overview on the conceptual architecture of Vertical 
Hybrid FL. 

We further highlight that the hybridization rates determine the amount of 
required privacy preservation. The maximum value (1) corresponds to when 
all clients share their local data with the server. Vice versa, the minimum 
value (0) forbids any transmission of raw data outside the clients’ devices. 

2.3 Evaluation Methodology and Metrics 

In this section, we describe the experiments that we performed to investigate 
the performances of the two hybrid approaches explained in the previous 

⏎ 

⏎ 
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section. First, we will describe the methodology used to test the effectiveness 
of HFL across two datasets: FEMNIST and UCI HAR. 

The widely recognized University of California Irvine (UCI) HAR dataset 
[8] was created using data from smartphone accelerometer and gyroscope 
sensors, which were used to classify six types of human activities. It was 
gathered from 30 volunteers, each carrying a smartphone while performing 
six distinct activities: walking, walking upstairs, walking downstairs, sitting, 
standing, and lying down. The dataset consists of time-series data captured 
across the three axes of both sensors, along with the corresponding activity 
labels. It has been extensively used in research for developing and assessing 
HAR models using machine learning techniques. Each record in the dataset 
contains a vector of 561 features, derived from both time and frequency 
domain calculations. 

The FEMNIST dataset [9] is an adaptation of the extended version of 
the MNIST dataset that has been modified to be suitable for FL tasks. The 
MNIST dataset contains 28 by 28 pixels images of handwritten digits and 
characters (62 classes in total), and the goal of the DL model is to guess 
the actual character represented. The FEMNIST dataset groups the elements 
on top of the user that actually performed the handwriting, producing a 
number of sub-datasets each of them with a different style of writing. The 
number of users of the FEMNIST dataset is 3500, however, for the purpose 
of our experiment, we considered only 30 users, in order to make experiments 
comparable between the two datasets. 

For UCI HAR we employed, as a base local model, a simple feed-forward 
neural network, while for FEMNIST we adopted a convolutional network. 
Each of the local sub-datasets is split into training and test set using a stratified 
split with a 70%-30% ratio. 

We performed federated classification experiments by employing 6 
epochs and 20 rounds of federation, recording the accuracy score at the end 
of the last round. 

We tested both vertical and horizontal hybridization, by setting alternately 
rv and rh to values spanning from 0% to 100% with a 10% step. 

The experiments were implemented in Python using the Flower frame­

work (https://flower.readthedocs.io/en/latest/). Since Flower does not support 
the implementation of hybridization, we adopted the two following methods 
to simulate the two hybridization methods (as Figure 2.4 suggests): 

• Vertical Hybridization was simulated by aggregating all the clients that 
share their whole dataset instead of the weights into a single client. 

https://�ower.readthedocs.io/en/latest/)
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Figure 2.4 Implementation of the Vertical Hybridization in Flower 

• Horizontal Hybridization was simulated by extracting from each client 
the portion of the training dataset that they aim to share and assigning it 
to a new “sink” client. 

Each experiment was then repeated 20 times, by randomizing the clients 
or the dataset portions to be shared. This ensures scientific rigor and smooths 
out certain corner situations that may arise. 

2.4 Evaluation Results 

This section presents the outcome of the experiments presented in the pre­

vious section. The results are aimed at evaluating the HFL approaches on 
the datasets. We investigate how different levels of data sharing in vertical 

⏎ 
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and horizontal hybridization affect model performance. We first discuss the 
results for the UCI HAR dataset, followed by FEMNIST, to uncover any 
dataset-specific trends and performance differences. A general overview of 
the results shows, as expected, an overall improvement in model performance 
as the degree of hybridization increases, which is notable for both hybrid 
approaches. The UCI HAR dataset performed best. Even with the relatively 
small model size, it consistently achieved excellent results, maintaining accu­

racy above 90% and reaching almost 95% in experiments with higher levels 
of hybridisation. This is shown in Figures 2.5 and 2.6, where the increase 
in model performance as the level of hybridisation increases is evident, 
with an increase of 2 percentage points already at a low level of horizontal 
hybridization (20%). 

The FEMNIST is the dataset where the performance improvements from 
sharing data is most noticeable. As we can observe in the Figures 2.7 and 
2.8, the sharing of a small number of data points could lead to a significant 
improvement in performance. Specifically, sharing 10% of the data led to 
an improvement of approximately 5% in accuracy, while sharing 20% led to 
an additional improvement of approximately 2/3, resulting in a final perfor­

mance of 88%. This is comparable to the 90% accuracy obtained through 
centralized training. Beyond a data sharing rate of 30%, the improvements 

Figure 2.5 Horizontal Hybridization Results for UCI HAR ⏎ 
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Figure 2.6 Vertical Hybridization Results for UCI HAR 

Figure 2.7 Horizontal Hybridization Results for FEMNIST 

obtained are increasingly marginal, with a maximum of 1%. This suggests 
that a data sharing rate of 20% represents an optimal balance between 
performance and data sharing. 

The results demonstrate that the sharing of a portion of the dataset has 
a significant positive impact on the model’s performance. This effect was 

⏎ 

⏎ 
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Figure 2.8 Vertical Hybridization Results for FEMNIST 

observed across two distinct datasets, UCI HAR and FEMNIST, indicating 
that the improvement is not specific to any problem or model. The perfor­

mance enhancement was especially evident in the case of the FEMNIST 
dataset. 

2.5 Conclusion and Future Works 

In this paper we examined the effects of hybridization for Federated Learning 
scenarios. We specifically directed our research towards Human Activity 
Recognition, imagining scenarios in which certain clients would be willing to 
share (part of) their data with the central server for a reward, penalizing their 
privacy to an extent. Results showed that a minimal amount of hybridization 
does provide an increase in the performance. The extent to which the privacy 
of the users is compromised by this is a future work. We aim to study 
how to select carefully data in a way in which the privacy is minimally 
affected, as well as to blend the two hybridization techniques, to select the 
best configuration. 
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Abstract 

In recent years, deep neural networks have achieved success in Electric Vehi­

cles (EVs) monitoring, primarily due to their scalability with large-scale data 
and numerous model parameters. However, EVs rely on resource-constrained 
edge devices that struggle with complex models, and data privacy concerns 
prevent sharing data outside the owning device. Federated Learning (FL) 
and Knowledge Distillation (KD) have emerged as key solutions, enabling 
model simplification and distributed training on private data. FL allows 
models to be trained locally on edge devices, addressing privacy concerns 
while keeping data decentralized and avoiding central server dependencies. 
This approach requires lightweight models optimized for edge intelligence 
deployment. To address this challenge, we propose architectural solutions 
leveraging FL, KD and model compression techniques to create simplified 
Artificial Neural Networks (ANNs) suitable for edge devices in EVs. The 
proposed architecture integrates these methods into a federated environment, 
ensuring distributed training while maintaining computational efficiency for 
EV monitoring and predictive maintenance applications. By combining FL, 
KD, and model compression, our approach enables efficient and privacy-

preserving Machine Learning (ML) models, enhancing Edge Intelligence (EI) 
for EV monitoring in resource-constrained settings. 
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Keywords: knowledge distillation, federated learning, edge computing, IoT, 
edge intelligence. 

3.1 Introduction 

The automotive industry has witnessed a substantial expansion in both 
the scale and intricacy of electrical and electronic system architectures. In 
this regard, the EVs production is becoming increasingly prevalent in the 
field. Therefore, the challenge of predicting diagnosing faults and improv­

ing the LI-ion Battery (LIB) lifetime in EVs becomes progressively more 
demanding. 

Modern monitoring systems approach the battery state parameters main­

tenance, such as the State of Charge (SoC), State of Health (SoH), State of 
Power, Remaining Useful Life, within safe limits, safeguarding the battery’s 
safety. These are based on ML and Artificial Intelligence (AI) models, which 
can adapt the analysis to the specific technology. Furthermore, the compu­

tational trend is moving the data elaboration to the edge, with no requiring 
EVs producers to share their own diagnostic data as training datasets, pre­

serving the industrial secrets and users’ privacy. Actually, edge devices are 
characterized by low capacity and low performance that generally do not 
allow complex operations. For this reason, model simplification becomes 
necessary. 

This scenario can be intended as a specific EI scenario, where AI models 
and algorithms are deployed and executed on resource-constrained edge 
devices. EI refers to the integration of AI capabilities directly on edge devices, 
enabling real-time data processing, decision-making and autonomy at the 
edge of the network. In such contexts, the need to balance computational 
demands with limited hardware resources is critical. Therefore, FL strategies, 
that aim to train models in a distributed manner and keep data locally on 
users’ devices to preserve the privacy, can be adopted. The basic idea of 
FL unfolds in several key stages: i) a model based on an ANN is centrally 
initialized and subsequently disseminated to various peripheral devices; ii) 
these devices independently train the model using their locally available data, 
sending back for aggregation [17] to the central server only the outcomes of 
this localized training, such as the model weights. 

This work aims to define a comprehensive and unified EI architecture 
designed to the specific demands of EVs monitoring systems. The goal is 
to leverage the potential of edge computing and distributed AI strategies to 
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improve the real-time diagnosis, prediction, and overall health management, 
specifically of LIBs. Within this framework, the FL strategy is a cornerstone, 
providing an effective solution for decentralized learning. By enabling model 
training on local devices FL ensures that sensitive diagnostic data remains 
on the edge, thereby enhancing both privacy and security by preserving 
industrial know-how and user-specific data. 

Moreover, to meet the computational efficiency requirements inherent to 
resource-limited edge devices, the architecture also incorporates complemen­

tary compression methods. Among these, KD not only facilitates the transfer 
of knowledge from a larger, more complex “teacher” model to a smaller, more 
efficient “student” model—making it ideal for deployment on devices with 
limited computational power—but also mitigates a well-known limitation 
of FL: KD strategies can effectively address both heterogeneous data and 
heterogeneous models within an FL environment [18]. 

In summary, this architecture proposes the integration of FL, KD, and 
compression techniques to create a scalable, efficient, and privacy-preserving 
solution for enhancing the monitoring and lifetime management of EVs 
within an EI scenario. 

The remaining of the paper is organized as follow. Section 1.2 reports the 
EI background and discuss the recent advance in the literature. Section 1.3 
determines the scenario where the proposed architecture may be deployed. 
That architecture is, therefore, discussed in Section 1.4. Finally, Section 
1.5 summarizes the paper’s insights and brings light on the future research 
activities. 

3.2 Related Works 

3.2.1 Edge Intelligence 

In most of the cases, the computation on edge devices leverages data owned 
by them-self, data not shared with others for privacy reasons. In this context, 
EI leverages data generated at the edge of the network by applying AI directly 
to it. As stated in [28], there is not a formal definition of EI, though it is 
commonly used to describe the execution of AI models on edge devices. 
Therefore, they define EI as the efficient utilization of data in a cooperative 
edge-cloud system, where both inference and training can occur across all 
devices. This prospective is outlined by a six-level framework that categorizes 
where applications are executed, as reported in figure 3.1: 
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• Cloud Intelligence: a model (e.g., Deep Neural Network) is fully trained 
and executed in the cloud. 

• Level 1 — Cloud–Edge Coinference and Cloud Training: a Deep Neural 
Network (DNN) model is trained in the cloud, but inference is performed 
through a cooperation between the cloud and the edge. In this case, part 
of the data is offloaded (e.g., migrated) to the cloud. 

• Level 2 — In-Edge Coinference and Cloud Training: the DNN model is 
trained in the cloud, but inference is carried out at the network edge. In 
this setup, inference is handled by edge nodes or nearby devices, with 
data either fully or partially offloaded to the edge using device-to- device 
(D2D) communication. 

• Level 3 — On-Device Inference and Cloud Training: the DNN model 
is trained in the cloud, but inference is performed entirely on the device 
itself, with no data being offloaded. 

Figure 3.1 Six-level rating for EI described in [28]. ⏎ 
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• Level 4 — Cloud–Edge Cotraining and Inference: Both the training and 
inference of the DNN model are con- ducted in a cloud-edge cooperative 
manner. 

• Level 5 — All In-Edge: Both training and inference of the DNN model 
occur at the network edge. 

• Level 6  — All On-Device: Both training and inference are handled 
entirely on the device. 

As the level of EI increases, the amount and distance of data offloading 
decrease. This leads to lower data transmission latency, improved privacy and 
reduced Wide Area Network (WAN) bandwidth costs. However, this comes at 
the expense of increased computational latency and higher energy consump­

tion. Therefore, there is not universally “best” level of EI. The optimal level 
is application-dependent and should be determined by considering multiple 
factors, such as latency, energy efficiency, privacy and WAN bandwidth 
cost. 

3.2.2 Federated Learning 

Among the different technologies designed to implement training in edge 
devices (e.g., Aggregation Frequency Control, Gradient Compression, Gossip 
Training), FL is often adopted where the learning process involves a federa­

tion of devices or nodes that do not need to share their own data but only their 
optimized model’s parameters. 

FL progresses through key stages, as reported in figure 3.2. Firstly, a 
neural network model is initialized in the central server and distributed to 
peripheral clients. Therein, the model is trained with local data only, sam­

pled by the device itself. Importantly, this training happens autonomously, 
without sharing raw data with a central server. Only the outcomes of the 
training, which are the optimized model weights, are sent back to the central 
server, which aggregates them using an aggregation strategy (e.g., Federated 
Average [17], others [20] that implements the adaptive FedAvg, Lazy and 
Quantizatized gradients [4], [22]). This process maintains data privacy as 
raw data stays on local devices. This iterative process allows the model to 
evolve and improve over time without necessitating the aggregation of raw 
data in a central repository (Figure 3.2). The DFedAvgM framework [23] 
operates without a central server aggregator. It’s implemented on clients 
connected through an undirected graph, where each client performs stochastic 
gradient descent with momentum and communicates only with its neighbors. 
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Figure 3.2 In a Federated Learning scenario, each client trains its model leveraging its own 
private data and sends its model parameters to a central server. The central server aggregates 
the parameters received from each client to enhance the performance of the central global 
model, which is then sent back to the clients. 

This reduces communication costs and enhances privacy protection. The 
authors introduce DFedAvgM and its quantized algorithms offering extensive 
numerical verification of its performance. 

3.2.3 Model Compression 

In most of the cases, peripheral resource-constraint devices, with low compu­

tational capabilities, are not able to handle complex AI models because they 

⏎ 
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cannot guaranty acceptable performance in terms of energy consumption, 
memory footprint and latency, i.e., in inference processes. 

The main idea behind quantization is to convert the weights and activation 
values of a neural network model from high precision to lower precision, 
thereby reducing memory usage and latency [15]. Typically, quantization is 
applied to a pre-trained neural network, a process known as post-training 
quantization, without any fine-tuning [3], [6]. 

As an alternative, the Pruning methods [8] aim to remove non-essential 
components from DNN models while minimizing the impact on performance. 
Over time, pruning techniques evolved into two categories: i) the structured 
pruning as channels that serve as the primary pruning units; while ii) the 
unstructured pruning employs heuristic techniques to eliminate insignifi­

cant parameters, such as low-weight values, gradients or Hessian statistics 
[15]. 

Authors in [28] categorize EI technologies into training and inference 
technologies, as shown in Table 3.1. We have enhanced this table by incor­

porating KD, which serves as a strategy that bridges the two categories. 
While KD is implemented during the training phase, its primary goal is to 
produce a compressed model. The basic concept of KD [10] lies in training 
a simpler model (e.g., the student model) to imitate the behavior of the 
original, larger model (e.g., the teacher model). It produces a more efficient 
and quicker model to be executed. The teacher-student model is reported in 
figure 3.3. 

In [7], different orthogonal distillation techniques classifications have 
been proposed. For example, the KD schema differentiates offline from 
online. Methods falling in the first category mainly focus on improving 
different parts of the knowledge transfer, including the design of knowledge 
and the loss functions. The [25] defines the distilled knowledge as the flow in 
the problem resolution trajectory, [13] uses Singular Value Decomposition 
(SVD) and Radial Basis Functions (RBf) for accuracy enhancement and 
minimizing computational costs, [19] incorporates distillation loss into the 
training of a smaller student network whose weights are quantized. On the 
other hand, the online distillation strategies aim to train both teacher and 
student models in a unified training scheme or, in vary common scenarios, 
to deal with lack of teacher network. The [26] proposes a collaborative 
learning strategy, [12] builds a multi-branch variant of a specified network by 
adding auxiliary branches, [24] leverages an additional classifier facilitating 
collaborative learning [21] and mutual learning without the need for pre-

training a high- capacity teacher model. In many real-world applications, 
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Figure 3.3 The schema illustrates the fundamental concept of KD: during the training 
of a simplified neural network, knowledge from a larger network is transferred to the 
smaller one. 

Table 3.1 From Train to Inference technologies. ⏎ 

⏎ 
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FL meets limitations and several KD frameworks are designed to overcome 
them. For example, the [9] improves communication efficiency reducing 
communication among clients, [5] adopts a grouping strategy to group clients 
that share homogeneous resources improving communication efficiency and 
balancing computing resources, [1], [2], [16] focus mainly on handling model 
and data heterogeneity. 

3.2.4 Beyond the State of the Art 

Actually, the scientific literature is challenging proposing a standard archi­

tecture for EI. Many methodologies may be involved both for training 
and inference. FL, KD, quantization and pruning are examples of enabling 
key technologies available for the exploitation of AI models into the edge 
of the network. This work aims to propose an architecture that includes 
all the mentioned methodologies on a simple workflow that optimizes the 
deployment and execution of EI solutions for EV. 

3.3 Use Case 

The use case focuses on the development of health monitoring systems for 
LIBs lifetime and contextual risk assessment in EVs. Among the various 
monitoring strategies, ML-based methods provide high accuracy, although 
they require large datasets for effective training [14]. Due to the complexity 
and critical nature of managing LIBs in EVs, deploying ML systems on 
resource-constrained microcontroller-based platforms is crucial. This inte­

gration enables real-time monitoring and predictive maintenance, optimizing 
battery performance and extending operational life. 

Although cloud computing offers incomparable performance that can be 
leveraged for centralized activities (e.g., initial training, FL central aggre­

gation), three main reasons lead to the need to push AI computation to the 
edge: 

• Sensing data: the sensing layer within EVs produces a continuous and 
rich flow of data that cannot be transferred to the cloud to prevent 
bandwidth saturation. 

• Real­time response: in a monitoring context, it is desirable to have real-

time alerts rather than waiting for a stable connection with the central 
processor. 
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• Privacy concerns: manufacturers are not inclined to share their own 
diagnostic data with cloud data centers where big data are collected and 
processed. 

The basic flow begins with defining and training an AI model in the 
cloud, potentially utilizing a more complex model in a KD scenario [10]. 
Once trained, the model may undergo optimization techniques such as quan­

tization or pruning to reduce its size and improve inference time. After 
these optimizations, the model is converted into formats compatible with 
microcontroller-based devices (e.g., ONNX, TinyML), enabling deployment 
on distributed clients within EVs. 

Once each client runs its own optimized AI model, real- time monitoring 
takes place locally on the EV. However, as new data continuously flows 
from the vehicle’s sensing layer, the model can be further refined. These 
improvements can be shared with the central cloud, as well as with other 
clients, when stable connection is available, in a FL environment. This 
decentralized learning process allows each client to contribute to the overall 
model improvement without the need to share raw data, thus preserving 
privacy while enabling continual learning and adaptation (Figure 3.4). 

This use case can be classified as level 4 within the EI framework 
proposed by [28], where both cloud and edge devices collaborate to perform 
training and inference tasks. However, in scenarios where the cloud is unable 
to handle training (e.g., due to the lack of a training dataset), the use case 

Figure 3.4 Use case scenario. ⏎ 
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shifts to a level 5, where the edge devices will be engaged for both training 
and inference. 

3.4 Architecture Proposal 

In the context of EVs monitoring, leveraging data-driven approaches based on 
ML and AI algorithms is a critical point because of the limited computational 
and energy capacity of the machines. In the following sections, we will build 
the final architecture step-by-step, describing each involved component. 

3.4.1 Assumption 

The proposed architecture shares computation responsibility between cloud 
and edge computing, exploiting EI method- ologies for training and inference, 
such as the FL, KD, quantization and pruning. The cloud is adopted as much 
as possible for high-computation activities, such as serving as i) complex AI 
model training with existing datasets and ii) FL central node aggregator. Most 
of the inference and a relevant part of the training is intended to be executed 
on the edge. 

The EVs are equipped with low-performance edge devices capable of 
handling models that are generally not too complex. These devices will 
perform monitoring and diagnostic tasks on their own sensing data, thereby 
preserving user privacy constraints. Moreover, since clients do not maintain a 
continuous connection either with the central cloud or among themselves, 
communication efficiency should be ensured. Clients will be responsible 
for performing training and sharing their model parameters to contribute to 
global model improvements. 

3.4.2 Cluster Aggregator 

The Cluster Aggregator, depicted in figure 3.5, is deployed in the cloud and 
primarily functions as the central aggregator for the FL system. This role 
is facilitated by several key modules responsible for specific tasks to ensure 
smooth and efficient operations within the federated framework. 

1) Model Aggregation Module: This module is going to execute the FL core 
function. It generates the global model by aggregating (e.g., Federated 
Average [17]) trained models from the peripheral devices. This process 
ensures that the central model continuously improves by integrating 
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Figure 3.5 Cluster Aggregator schema designed to handle FL central aggregator tasks and 
to implement a distillation framework adaptable during the training process. 

knowledge from distributed nodes without directly accessing their raw 
data, preserving privacy. This module is designed to handle different 
forms of model updates and can incorporate advanced techniques, such 
as weighted averaging, depending on the specific characteristics of the 
distributed models. 

2) FL State Manager: It plays a critical role in maintaining synchronization 
between the cloud-based aggregator and peripheral devices. It tracks 
the status of each client, ensuring that the aggregation process con­

siders only those clients that have successfully completed their local 
model training. The state manager keeps a record of which devices are 
actively participating in each round of FL, their connectivity status, and 
whether their contributions are valid for aggregation. This component 
also manages potential failures or delays in communication, ensuring 
the system can handle interruptions and continue functioning smoothly. 
Its role becomes even more significant in EVs scenario, where each EV 
changes its position very frequently and a stable connection cannot be 
guaranteed. 

⏎ 
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3) System Configuration Handler: The handler is tasked with managing the 
configuration of the entire system. This module ensures that the software 
environment is correctly set up, with all dependencies and configura­

tions aligned for optimal performance. Additionally, it handles dynamic 
updates to system settings, such as changing communication protocols 
or modifying the aggregation frequency. Moreover, it guarantees that 
all components are correctly initialized and maintained throughout the 
lifecycle of the FL process. 

4) Communication Handler: It manages the communication between the 
cloud-based aggregator and peripheral de- vices. It sets up and over­

sees the data transfer channels, ensuring that the communication is 
both efficient and secure. Given the distributed nature of FL, reliable 
communication is crucial for transmitting model updates, hyperparame­

ters, and any other necessary metadata between clients and the cloud. 
The Communication Handler also implements protocols to minimize 
latency, reduce communication overhead, and ensure data integrity 
during transfer. 

5) Training and Model Distillation Modules: The Training Module on the 
cloud side is activated when the global model is initialized and trained 
using an existing dataset. Once this initial training phase is completed, 
the global model is shared with the peripheral clients to begin the 
federated learning process. The clients use the global model as a starting 
point, performing local training on their own data and subsequently 
sharing their model updates with the central aggregator. 

In addition to the standard training workflow, the Model Distillation 
Module plays a crucial role by implementing one or more KD strategies [7], 
[10], [19] during the training process. These strategies can be employed for 
several reasons: 

• When the global model does not achieve an acceptable level of perfor­

mance, KD can be used to refine it further by leveraging smaller, more 
efficient models that capture the key patterns of the original data 

• Mainly in regression problem, different KD strategies make up for the 
lack of the dataset used for training 

• [11], [27], allowing the transfer of knowledge from the pre-trained 
model to the global model without needing access to the original 
data 
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• When the FL process is subject to constraints, such as heterogeneous 
models and/or non-IID data across clients, KD can help align the 
learning processes [18]. 

By integrating KD into the training pipeline, the system can enhance the 
robustness and flexibility of the FL process, improving model performance in 
scenarios where traditional FL might face limitations. 

All Together, the modules described above form a robust infrastructure 
that supports efficient and secure FL and their combination enables dis­

tributed training and aggregation while preserving user privacy, ensuring 
system reliability and maintaining overall system integrity. 

3.4.3 Cloud Components 

Although the Cluster Aggregator is the main component deployed on the 
Cloud, other elements need to be integrated to simplify model training 
and ANN-based model simplification, making them deployable on resource-

constrained devices embedded in EVs (Figure 3.6). 

1) Compression Server: It is introduced to reduce model complexity 
and size, addressing the challenges posed by the low computational 
performance and limited storage capacity of edge devices. It utilizes 
various handlers (i.e., software components capable of managing spe­

cific functionalities) to apply common compression techniques such as 
quantization, pruning and sparsification. These techniques are crucial for 
optimizing models to efficiently run on edge devices with constrained 
resources. 
Quantization reduces the precision of the numerical values used to rep­

resent the model’s parameters, thereby decreasing both the model’s size 
and its computational requirements. This allows edge devices to process 
models more efficiently without compromising significant accuracy. 
Pruning involves removing redundant or non-contributing weights from 
the model, which not only reduces its complexity but can also enhance 
performance by simplifying the model’s structure. This results in a 
leaner, faster model that is more suitable for deployment in resource-

limited environments. 
Sparsification, on the other hand, introduces sparsity into the model by 
setting insignificant weights to zero. This spar- sity can be leveraged by 
specialized hardware to accelerate computations, further enhancing the 
model’s performance on edge devices. 
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Figure 3.6 Software components deployed in the Cloud. 

Together, these compression techniques enable the deploy- ment of 
complex models on edge devices, ensuring efficient operation while 
maintaining the balance between performance and resource utilization. 

2) Release Server: The server is responsible for preparing ANN-based 
models in specific formats, such as ONNX, to enable seamless inte­

gration and deployment across a wide range of platforms and devices. 
The ONNX format, in particular, is highly valued for its interoperability 
between different machine learning frameworks, allowing models to 
be trained in one framework and deployed in another with minimal 

⏎ 
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conversion effort. This flexibility is crucial in environments where mul­

tiple frameworks are in use, ensuring that models can be efficiently 
transferred and utilized without compatibility issues. Additionally, the 
Release Server plays a critical role in the context of TinyML, where 
models must be optimized for execution on ultra-low-power devices 
such as microcontrollers and sensors. In this scenario, the server sup­

ports the conversion of models into highly compact formats suitable for 
deployment on resource-constrained edge devices. By integrating model 
compression techniques and optimizing for reduced memory and power 
consumption, the Release Server ensures that even complex ANN-based 
models can run efficiently in embedded systems. 

3) Deploy Server: AI models will be deployed leveraging the Over-the-air 
(OTA) protocol that allows remote updates on microcontrollers without 
requiring physical access or direct connections. This approach is partic­

ularly beneficial for IoT and embedded systems where devices are often 
distributed in locations that are difficult to reach. 
The OTA deployment process begins with a central server preparing 
the new firmware or software update. The micro- controller periodically 
checks for updates via a secure wireless communication channel, such 
as Wi-Fi or cellular networks. When an update is available, the micro-

controller downloads the update package and performs integrity checks. 
If the update passes the verification process, it is stored in a dedicated 
memory partition on the device. Finally, the microcontroller reboots and 
switches to the new firmware version, ensuring minimal downtime and 
continuous operation. 
Security plays a critical role in the OTA update process. To prevent 
unauthorized or malicious updates, encryption methods, authentication 
protocols, and secure boot mechanisms are often employed to ensure the 
integrity and authenticity of the update process. 

4) Data Storage Server: Storage space provides crucial functionality. As 
its name implies, this server is responsible for storing large datasets 
required for the training process. It ensures that data is readily accessible 
and managed efficiently, supporting the extensive data requirements of 
modern machine learning algorithms. The Data Storage Server also 
handles data preprocessing and augmentation tasks, preparing the data 
in a suitable format for training. 

These integrated components work in tandem to create a robust and 
efficient pipeline for deploying ANN-based models on resource-constrained 



3.4 Architecture Proposal 81 

devices embedded in EVs. By addressing the challenges of model size, 
complexity, and data management, the system ensures that high-performance 
models can operate effectively even in environments with limited computa­

tional resources. 

3.4.4 Distributed Agent 

The FL framework is intrinsically a distributed framework. In the proposed 
architecture (figure 3.7), a Distributed Agent is hosted by each peripheral 
client, which resides on an edge device within an EV. 

1) FL Client Module: Within the agent, this module is responsible for 
establishing communication with the central cluster, receiving the global 
model’s weights, and sending back the updated weights after performing 
local training on its local dataset. This module plays a crucial role in 
the federated learning process, ensuring that the client’s contributions 
are incorporated into the global model. It is important to emphasize the 
complexity of the task managed by the Communication Handler. This 
component must work in coordination with the FL Participation Handler 
to address the asynchronicity of communication. Due to the intermittent 
nature of connectivity between each EV and the central aggregator, 
as well as among the EVs themselves, there is no guarantee of con­

tinuous communication. This sporadic connectivity necessitates robust 
mechanisms to ensure that updates are transmitted accurately and effi­

ciently whenever a connection becomes available, thereby maintaining 
the integrity and effectiveness of the federated learning process. 

2) Inference Module: The local ANN-based model will be utilized in 
inference tasks to implement the monitoring process. This module takes 
the trained model and applies it to real-time data gathered from the 
EV, enabling functions such as predictive maintenance, performance 
optimization, and anomaly detection. By leveraging the local model, the 
EV can make intelligent decisions without relying on constant cloud 
connectivity, thus enhancing the system’s reliability and responsiveness. 
Additionally, the architecture ensures data privacy and security, as the 
FL approach allows data to remain on the edge device. Only the model 
updates, which are less sensitive than raw data, are shared with the 
central cluster. This decentralized approach not only enhances privacy 
but also reduces the bandwidth required for data transmission, which is 
critical in mobile and resource-constrained environments like EVs. 
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Figure 3.7 The final architecture includes a Cluster Aggregator, deployed in the Cloud, and Distributed Agents, deployed on resource-

constrained edge devices. ⏎ 
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Overall, the proposed architecture provides a scalable and efficient solu­

tion for deploying FL in EVs. By addressing communication challenges, 
ensuring data privacy, and enabling local inference, the system enhances the 
capabilities of EVs to perform complex tasks autonomously and effectively. 

3.5 Challenges 

The implementation of distributed artificial intelligence architecture presents 
several key challenges: 

• Communication among devices with limited Internet connectivity and 
energy capacity: The intermittent availability of network connections, 
coupled with restricted energy resources and with the mobility of the 
clients, poses significant difficulties for effective data transmission and 
distributed computing and FL state maintenance. 

• Generalization of neural network architectures, AI frameworks: A crit­

ical challenge lies in ensuring that AI solutions can generalize across 
diverse neural network models, software frameworks, and hardware 
platforms, enabling broad applicability and scalability. 

• Deployment on several architectures: Deploying AI models on micro-

controllers, each with different architectures and processing capabilities, 
adds a layer of complex- ity. Ensuring compatibility and performance 
optimization across these heterogeneous systems requires careful con­

sideration of both software adaptation and hardware constraints. 
• Trade­offs in training and compression methodologies: Striking the 

right balance between various training approaches and data compression 
techniques is essential to optimize performance while managing the 
limitations of resource-constrained devices 

3.6 Conclusion 

In this work, we designed and proposed an architecture aimed at implement­

ing an Edge Intelligence scenario. Thanks to its modularity, each EI rating 
layer, from 1 to 5, can be realized. 

Among different technologies, Federated Learning has been identified 
as a distributed training strategy to prevent data sharing and preserve pri­

vacy. Since edge devices typically have low-performance hardware, we also 
included modules for AI model compression and simplification. 

Although the architecture has been designed for a generic EI scenario, we 
identified the monitoring system of Electric Vehicles as a potential use case 
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where the proposed architecture could be applied after development. Further­

more, a list of interesting challenges and open points has been identified and 
is presented in this paper. 
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Abstract 

Evaluating the performance of Simultaneous Localization and Mapping 
(SLAM) algorithms is essential for the progress of robotic systems. However, 
conducting a comprehensive assessment of SLAM systems in the context of 
recent advancements is challenging due to the wide variety of hardware plat­

forms, algorithm configurations, and datasets available. This study aims to 
test SLAM algorithms on resource-constrained devices such as the NVIDIA 
Jetson AGX Orin 64GB. Experiments are conducted with various visual-

based localization algorithms that either leverage deep learning models for 
specific tasks within the SLAM process or are learned end-to-end to estimate 
camera pose. The evaluation focuses on the following systems: RDS-SLAM 
and VDO-SLAM, which utilize semantic information to achieve precise 
motion estimation; TSformer-VO, an end-to-end Transformer-based model 
designed for monocular visual odometry; and DeepVO, which based on 
recurrent neural networks. The systems are evaluated using several metrics, 
including ATE and RPE to assess pose accuracy and rotational drift, respec­

tively, alongside runtime, energy consumption, and resource usage to gauge 
their efficiency and practicality for real-world applications. 
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4.1 Introduction and Background 

Simultaneous Localization and Mapping (SLAM) is a crucial technology that 
enables autonomous systems, such as robots, drones, and AR/VR devices, 
to navigate and understand their environments without relying on external 
reference systems. SLAM algorithms operate by simultaneously constructing 
a map of an unknown environment while tracking the system’s position 
within it. They typically utilise a combination of sensors, including cam­

eras, LiDAR, and inertial measurement units (IMUs), to gather data about 
the surrounding area. Integrating these sensors improves the accuracy and 
robustness of SLAM but also introduces a higher computational burden, 
posing a substantial challenge to achieving real-time performance. To main­

tain operational efficiency, optimizations such as simplifying algorithms, 
reducing the number of processed features, and leveraging parallel processing 
capabilities are essential. When deployed on embedded systems, SLAM 
encounters unique challenges due to resource constraints, including lim­

ited processing power, memory, and energy consumption. These limitations 
necessitate the development of highly efficient algorithms capable of per­

forming complex tasks in real time, such as image processing, sensor fusion, 
loop closure detection, and optimization. Despite advances in the field, 
numerous challenges persist. Ensuring robustness against sensor noise, man­

aging varying environmental conditions, and scaling algorithms to accom­

modate different map sizes and complexities are critical areas of ongoing 
research. Furthermore, the demand for lightweight implementations that do 
not compromise performance underscores the continuous evolution of SLAM 
technologies. 

The primary aim of this paper is to benchmark specific SLAM meth­

ods on the NVIDIA Jetson AGX Orin 64GB, a robust embedded platform 
tailored for real-time processing in autonomous systems. Specifically, we 
perform a comprehensive performance analysis, comparing RDS-SLAM [1] 
and VDO-SLAM [2], two semantic SLAM techniques, against the Visual 
Odometry (VO) performance of CNN-based methods trained in an end-to-end 
manner. This benchmarking aims to assess the performance of these SLAM 
algorithms under constrained resource conditions, with a specific focus on 
two key aspects: 
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• Performance Comparison: Evaluating the ability of each algorithm to 
accurately localize in dynamic environments. 

• Resource Utilisation Assessment: Analysing how each SLAM 
method leverages the resources of the Jetson AGX Orin, specifically 
regarding CPU and GPU performance, memory usage, and energy 
consumption 

Finally, the study provides recommendations for optimizing SLAM algo­

rithms on embedded platforms and identifies key areas for future research and 
development. 

4.2 Related Work 

SLAM has attracted considerable attention over the past few decades, leading 
to the development of numerous approaches [1-7]. A thorough review of the 
existing literature on SLAM methods reveals a diverse array of algorithms 
tailored for different applications and hardware platforms. For example, 
ORB-SLAM [3] has been widely recognized for its efficiency and robust­

ness on conventional CPUs, demonstrating good performance across various 
environments. Similarly, VINS-Mono [4] and VINS-RGBD [5] are noted for 
their effectiveness in combining visual and inertial data. Recent studies have 
highlighted the potential of DNN-based SLAM systems, such as RDS-SLAM 
[1], VDO-SLAM [2], DF-SLAM [6], Dyna-SLAM [7], and DeepFactors [8], 
which leverage deep learning techniques to improve feature extraction, pose 
estimation, or environment understanding. End-to-end deep learning methods 
like DeepVO [9], TS-Former [10], and DROID-SLAM [11] also mark a 
significant shift in visual localization systems by using neural networks to 
directly learn the entire process from raw sensor data to pose estimation 
and map generation, bypassing traditional hand-crafted feature extraction and 
geometric modeling. However, these methods frequently encounter limita­

tions compared to traditional SLAM techniques, such as lower accuracy and 
significant dependence on large training datasets. Neural Radiance Fields 
(NeRF)- based SLAM [12–16] offers a novel solution by incorporating 
NeRF models into SLAM systems to enhance the representation of 3D 
environments. In contrast to traditional SLAM methods that rely on discrete 
points or sparse features, NeRF-enhanced approaches produce continuous 
volumetric fields to create highly detailed and realistic 3D reconstructions. 
Through the use of neural networks, these methods can model entire scenes 
and facilitate photorealistic rendering by understanding the interactions of 
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light with surfaces. However, NeRF-based SLAM methods face challenges 
on embedded systems due to their high computational requirements, energy 
consumption, complex integration, and limited generalisation, underscoring 
the need for more efficient solutions. 

A growing number of embedded computing platforms now feature 
NPU/GPU units, enabling lightweight deep learning networks to function 
in real time. Many researchers have worked to modify SLAM algorithms 
for low-power embedded platforms, reengineering them to ensure compat­

ibility with these devices. Despite these advancements in SLAM technology, 
implementing these algorithms on resource constrained platforms still faces 
considerable challenges, largely determined by the distinct characteristics of 
both the algorithms and the underlying embedded architectures. Although 
some researchers [17, 18] have explored VO systems resulting in a decreased 
accuracy, others [19–22] have successfully developed keyframe-based SLAM 
systems. Various approaches have been explored to optimize computation 
and power overhead in visual-inertial odometry (VIO), particularly through 
hardware acceleration using FPGAs [23–25]. Although advancements have 
been made, keyframe-based SLAM systems still face challenges in achiev­

ing an optimal balance between efficiency and accuracy for mobile robot 
applications. One of the most recent developments, Dynamic-VINS [26], 
an enhanced iteration of VINS-Mono and VINS-RGBD, showcases remark­

able performance on resource-constrained platforms such as the HUAWEI 
Atlas200 DK and NVIDIA Jetson AGX Xavier. Finally, a hardware-software 
co-design approach is proposed to optimize latency, power consumption, 
and tracking speed in VIO systems by incorporating the Optical Flow (OF) 
estimation on the sensor [27]. In the VINS-Mono pipeline, feature tracking 
was substituted with an OF camera that employs an ASIC-based accelerator, 
while the other components of the VIO pipeline operate on the main processor 
of a Raspberry Pi Compute Module4. 

Assessing the performance of SLAM algorithms is essential for both 
researchers and users of robotic systems. Comprehensive benchmarking 
enables in-depth evaluations, helping to identify the most effective SLAM 
algorithms, and laying the groundwork for future enhancements and inno­

vations in the field. The wide variety of hardware configurations, algorithm 
settings, and datasets complicates thorough comparisons across the state­

of-the-art. There is a notable scarcity of research focused on benchmarking 
SLAM algorithms on embedded systems, highlighting significant gaps in the 
existing literature that this study aims to address. For example, the research 
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presented in [28] assesses power consumption, accuracy metrics, and process­

ing frame rates for ORB-SLAM and OpenVSLAM [29] on NVIDIA Jetson 
embedded systems, particularly the Jetson Nano, Jetson TX2, and Jetson 
Xavier. The SLAM Hive Benchmarking Suite [30] has recently addressed this 
challenge by offering a scalable solution that leverages container technology 
and cloud deployment to analyze thousands of SLAM executions. 

4.3 Methodology 

For this comparison study, a diverse range of approaches have been selected, 
including semantic geometric SLAM methods as well as VO techniques 
derived from deep learning models trained in an end-to-end manner. This 
enables a comprehensive evaluation of various strategies to identify those 
most suitable for embedded systems, focusing on balancing performance and 
computational efficiency. The systems are assessed based on several metrics 
such as pose accuracy and rotational drift, along with an analysis of runtime, 
energy consumption, and GPU and CPU usage to determine their efficiency 
and suitability for real-world applications. 

4.3.1 Selected systems 

We examine the following systems: RDS-SLAM, which enhances the local­

ization process with semantic segmentation; VDO-SLAM, which utilizes 
semantic information for accurate motion estimation and tracking of dynamic 
rigid objects; TSformer-VO, an end-to-end Transformer-based model for 
monocular visual odometry that learns motion estimation directly from 
raw images; and DeepVO, which leverages recurrent networks to capture 
temporal dependencies. 

Unlike traditional SLAM algorithms, which assume a static scene, RDS­

SLAM (see Figure 4.1) detects and excludes dynamic objects to enhance 
the robustness of tracking and mapping. The algorithm extends the base 
framework of ORB-SLAM3 by introducing two parallel threads: a semantic 
segmentation thread and a semantic-based optimization thread. These threads 
enable the segmentation of images into static and dynamic objects using 
methods such as Mask R-CNN [31] or SegNet [32], while optimizing the 
tracking data in real time without blocking the process. The semantic thread 
is executed selectively to keyframes, rather than every frame. The semantic 
information is then propagated across the global map, where each map 
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Figure 4.1 Overview of RDS-SLAM [1]. 

point is assigned a moving probability. This probability is updated as new 
keyframes are processed and is used to classify map points as dynamic, static, 
or unknown. The algorithm identifies dynamic objects using segmentation 
masks from semantic models, assuming that classes such as people and 
vehicles are likely dynamic. Points classified as dynamic are excluded from 
the tracking process to avoid introducing errors in the camera pose estimation. 
In contrast, static points are used to improve the accuracy of the tracking. This 
approach allows RDS-SLAM to achieve precise tracking and robust mapping, 
even in environments with dynamic objects that typically pose challenges for 
traditional SLAM algorithms. 

The VDO-SLAM system (Figure 4.2) is also designed to handle dynamic 
environments. Before the execution of the SLAM algorithm, two crucial 
pre-processing steps are applied. First, Mask R-CNN is used for instance-

level semantic segmentation, which allows for the identification of both 
static and dynamic objects, such as vehicles and pedestrians, by generat­

ing object masks. Second, PWC-Net [33], a state-of-the-art optical flow 
network, is applied to estimate the dense pixel motion between consec­

utive frames. Using these data, VDO-SLAM can estimate the full SE(3) 
motion of dynamic objects, including both their linear velocity and rotational 
movement, while also refining its own camera pose. This integration allows 

⏎ 
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Figure 4.2 Overview of VDO-SLAM [2]. 

for robust navigation in dynamic environments where traditional SLAM 
methods, which assume static surroundings, would fail. 

Visual odometry, a key component of the tracking phase in SLAM, 
can also be accomplished using methods based on Convolutional Neural 
Networks (CNNs). The goal is to enable the system to directly learn motion 
estimation from raw image inputs, eliminating the need for traditional fea­

ture extraction and matching techniques. DeepVO combines Convolutional 
Neural Networks (CNNs) to extract visual features from images with Long 
Short-Term Memory networks (LSTMs) to capture and model temporal 
relationships between consecutive images, enabling the prediction of camera 
movements. 

On the other hand, TSformer-VO takes a distinct approach by utiliz­

ing transformers to extract spatio-temporal features from video sequences. 
Unlike DeepVO, which relies on recurrent mechanisms, TSformer-VO uti­

lizes spatio-temporal attention to capture interactions between images across 
both spatial and temporal dimensions. This allows for a more holistic 
understanding of the scene, leading to enhanced precision in estimating the 
camera’s 6-DoF poses. By processing long-range dependencies within the 
video data, TSformer-VO reduces pose drift and improves robustness in 
dynamic environments. Additionally, the model’s end-to-end learning frame­

work enables it to adaptively optimize feature representations, making it a 
powerful alternative to traditional visual odometry methods. 

4.3.2 Selected systems 

For the benchmarking setup, we used the NVIDIA Jetson AGX Orin 64GB, 
a high-performance platform specifically designed for real-time AI and 
embedded applications. The Jetson AGX Orin features a 2048-core NVIDIA 
Ampere architecture GPU with 64 Tensor Cores and a 12-core ARM Cortex­

A78AE CPU, running at 2.2 GHz. The system is equipped with 64GB 
of LPDDR5 memory and provides 275 TOPS (INT8) of AI performance. 

⏎ 
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The Jetson platform allows for efficient execution of SLAM algorithms, 
balancing high computational power and energy efficiency, making it ideal 
for real-time applications in resource-constrained embedded environments. 
On the software side, all algorithms were deployed using Docker to guarantee 
consistent and efficient testing across various approaches and datasets. This 
containerization enables performance and results to be compared under the 
same conditions, thus streamlining the testing process. 

4.3.3 Evaluation metrics 

The evaluation of SLAM algorithms is based on a set of well-defined metrics 
designed to assess both accuracy and computational efficiency. These metrics 
provide quantitative insight into the global alignment and local consistency of 
the estimated trajectories. Specifically, we utilize Absolute Trajectory Error 
(ATE) and Relative Pose Error (RPE) to measure the discrepancy between 
the estimated and ground truth trajectories, capturing both overall accuracy 
and the drift over time. Additionally, Frames Per Second (FPS) is employed 
to evaluate the real-time performance of the system. To further assess com­

putational efficiency, we monitor system resource usage, including CPU 
and GPU utilization, memory footprint, and power consumption. Detailed 
definitions and the methodology for computing these metrics can be found in 
the Appendix. 

4.3.4 Dataset 

For evaluation, we used the TUM RGB-D dataset [34], a widely recog­

nized benchmark for SLAM systems. This dataset provides various indoor 
sequences captured using RGB-D cameras, which include both static and 
dynamic scenes. These sequences are ideal for testing the performance of 
SLAM algorithms in diverse and challenging real-world scenarios. To ensure 
diversity in our evaluation, we selected a specific subset of sequences that 
represent a wide range of environments, motions, and dynamics. The chosen 
sequences are as follows: 

• freiburg1_desk: This sequence captures normal movements within a 
static office environment, making it suitable for evaluating the perfor­

mance of SLAM algorithms in controlled, steady indoor settings. 
• freiburg1_xyz: In this sequence, the camera undergoes translations 

along all three axes (X, Y, Z) while the environment remains static. 
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It evaluates the algorithm’s ability to handle structured translational 
movements. 

• freiburg2_xyz: This sequence involves rapid translations in a static 
indoor setting, challenging SLAM systems with faster motions, and 
requiring precise tracking in environments with minimal changes. 

• freiburg2_rpi: The camera performs quick rotations around the roll, 
pitch, and yaw axes within an indoor space. This sequence stresses the 
system’s ability to manage sudden rotational movements. 

• freiburg3_long_office_household: A longer sequence set in a domestic 
environment with various objects and changing lighting conditions. 
This provides a complex, real-world scenario with longer-term tracking 
requirements and varying conditions. 

• freiburg3_walking_xyz: This sequence captures rapid movements with 
significant translations and human dynamics, simulating more unpre­

dictable and dynamic real-world conditions. 
• freiburg3_walking_static: Featuring fast movements within a static 

environment, this sequence tests the robustness of SLAM algorithms 
when confronted with high-speed camera motion while the scene 
remains unchanged. 

4.4 Experimentation 

The experiments were conducted to analyze the performance of the selected 
SLAM algorithms under realistic conditions, with a focus on their accuracy, 
efficiency, and suitability for embedded platforms. 

4.4.1 Performance evaluation 

Our study begins with a visual comparison of the accuracy in trajec­

tory estimation across the selected localization systems, using sequences 
from the TUM RGB-D dataset. Figure 4.3 shows the trajectories for the 
freiburg3_structure_texture_far. For TSformer, three configurations are used, 
considering 1, 2, or 3 images to predict the camera motion. 

Table 4.1 & Table 4.2 summarize the average performance on selected 
sequences. Inference for models, whether trained end-to-end or integrated 
as a semantic thread, is performed using PyTorch (FP32), without utilizing 
TensorRT for performance optimization on NVIDIA hardware. VDO-SLAM 
demonstrates a balanced approach, achieving the best performance among 
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Figure 4.3 Trajectory predictions: each color denotes a different tested system. 

Table 4.1 Performance Metrics: overall localization accuracy (ATE), Error between succes­

sive poses (RPE) and Inference Time 

Methods ATE (cm) RPE (cm) FPS 

DeepVO 402.5 1.42 9.6 
TSformer-VO-1 135.2 0.95 7.1 
TSformer-VO-2 172.9 0.91 5.0 
TSformer-VO-3 152.2 0.92 3.8 
RDS SLAM (Mask RCNN) 3.4 0.96 3.2 
RDS SLAM (SegNet) 3.3 1.00 7.5 
VDO SLAM 3.4 1.00 8.1 

the two SLAM systems tested, with an FPS of 8.1, reasonable energy 
consumption (∼10.85W), and a competitive ATE of 3.4 cm. However, a 
key factor driving VDO-SLAM’s efficiency is that semantic segmentation 
is handled in a pre-processing step (0% in the SLAM pipeline itself). 
This approach allows the system to focus the bulk of its computational 
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Table 4.2 Resource Usage 

Methods CPU (%) GPU (%) RAM (%) Power (mW) 

DeepVO 20.99 46.45 15.93 14017.10 
TSformer-VO-1 12.11 95.19 17.90 16881.53 
TSformer-VO-2 10.65 96.77 17.98 16767.64 
TSformer-VO-3 11.07 96.96 18.04 16637.78 
RDS SLAM (Mask RCNN) 18.08 70.51 14.78 16000.26 
RDS SLAM (SegNet) 16.26 60.20 13.49 14535.83 
VDO SLAM 21.20 30.96 10.34 10852.83 

resources on tracking (62.06%), while tasks such as mask generation (13. 
47%) and map optimization (12.79%) consume significantly fewer resources 
(see Figure 4.4). Although this preprocessing strategy improves real-time 
performance during the execution of SLAM, it presents certain limitations. 
From a design perspective, offloading semantic segmentation and motion 
estimation to an earlier stage outside the main pipeline is not an ideal long-

term solution. Ideally, these tasks should be integrated directly into the SLAM 
architecture to enable a more adaptive and responsive system that can adjust 
to new scenes in real time. By separating these processes from the SLAM 
pipeline, VDO-SLAM sacrifices flexibility, which could be a drawback in 
environments where on-the-fly processing of dynamic objects and scene 
changes is essential. 

In contrast, the performance of RDS-SLAM is highly dependent on 
the choice of semantic segmentation model. When using Mask R-CNN, 
RDS-SLAM dedicates 51.64% of its computational resources to seman­

tic segmentation, achieving high accuracy (ATE of 3.4 cm) but with a 
significant trade-off in real-time performance (3.2 FPS) and resource con­

sumption (16W). This makes it less practical for power-sensitive applications. 
However, when SegNet is used, the performance of RDS-SLAM improves 
substantially, with an FPS of 7.5 and lower energy consumption (14.5W), 
making it comparable to VDO-SLAM. SegNet offers a lighter alternative 
that better balances the trade-off between accuracy and efficiency. Despite 
these improvements, both methods still lag behind true real-time perfor­

mance, underscoring the challenge of optimizing SLAM systems for dynamic 
environments without excessive resource demands. 

End-to-end deep learning-based approaches, such as DeepVO and 
TSformer-VO, exhibit significant limitations. Although this architecture 
promises to simplify the visual odometry pipeline, the results show that these 
approaches struggle in terms of accuracy and resource efficiency. For exam­

ple, DeepVO achieves a poor ATE of 402.5 cm, reflecting significant drift 

⏎ 



100 Challenges and Performance of SLAM Algorithms 

Figure 4.4 SLAM Block Execution Time Breakdown. Left: VDO-SLAM; Right: RDS­

SLAM. 

over time, particularly in environments that differ from the training datasets. 
Similarly, TSformer-VO, although slightly better in terms of accuracy, still 
performs poorly compared to geometric SLAM methods. More importantly, 
these end-to-end models suffer from extremely high GPU usage, with 
TSformer-VO consuming more than 95% of the available GPU resources. 
This excessive consumption of computational resources, coupled with limited 
accuracy, makes end-to-end approaches inefficient for real-world applica­

tions on embedded systems. Although they deliver higher FPS, they remain 
inadequate for real-time performance. Furthermore, their imprecision and 
inefficient resource utilization make them unsuitable for tasks that demand 
reliable localization. 

4.4.2 TensorRT optimization for SLAM algorithms 

Exporting the model to TensorRT is essential for running it on NVIDIA 
Jetson devices, as TensorRT is specifically designed to maximize the per­

formance of deep learning models on NVIDIA GPUs. It achieves this by 
implementing optimizations such as precision calibration, kernel fusion, and 
layer fusion, which collectively improve inference speed and reduce memory 
usage. In our investigation into improving the efficiency of SLAM algo­

rithms, we explored the possibility of optimizing the DeepVO PyTorch model 
using TensorRT. To accomplish this, the model was initially exported to the 
ONNX format, which serves as an intermediary representation that facilitates 
compatibility with TensorRT. Then, we evaluated the performance of the 
model using various precision formats, including FP32, FP16, and INT8, 
along with the quantization technique utilizing PQT (Post-Training Quan­

tization). This allowed us to assess the trade-offs between model accuracy 

⏎ 
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and computational efficiency across different precision levels. The results of 
these optimizations, in terms of speedup compared to the original PyTorch 
implementation, are presented in Table 4.3. These findings indicate that 
the application of TensorRT to a deep learning model for VO can result 
in significant speed enhancements while maintaining minimal variations in 
prediction accuracy. Depending on the chosen precision level, it is possible to 
effectively balance speed and accuracy, allowing tailored performance based 
on specific application needs. 

Table 4.3 Performance Comparison of DeepVO-pytorch Optimized with TensorRT 

Precision Format Speedup over PyTorch ATE (cm) 

FP32 4.36x 405.5 
FP16 3.80x 411.9 
INT8 4.23x 468.5 

4.5 Conclusion 

This work evaluated the performance of various localization systems, such 
as SLAM and VO, on resource-constrained devices, specifically the NVIDIA 
Jetson AGX Orin 64GB. By benchmarking systems such as RDS-SLAM, 
VDO-SLAM, DeepVO, and TSformer-VO, the study provided valuable 
insights into the efficiency and accuracy of these methods under constraints 
of computational power, memory, and energy resources. The results high­

lighted the trade-offs between real-time performance and accuracy. Although 
RDS-SLAM achieved higher accuracy, it incurred greater computational 
and energy demands. VDO-SLAM performs at a similar level in terms of 
performance; however, it is important to note that the CNN-based component, 
semantic extraction, and optical flow processing are conducted upstream 
on pre-known datasets. Despite this pre-processing step, which limits its 
adaptability to dynamic environments or new scenarios where the models 
have not been previously trained, VDO-SLAM still fails to achieve efficient 
real-time performance. On the other hand, deep learning-based models like 
DeepVO and TSformer-VO showed limitations in accuracy and high resource 
consumption, making them unsuitable for real-time applications. 

The study emphasized the need for optimization, particularly in inte­

grating semantic segmentation directly into the SLAM pipeline for greater 
flexibility. The findings suggest that there is significant potential for further 
optimizing deep learning-based approaches to improve their viability on 
resource-constrained platforms. Future research could focus on co-designing, 
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refining these algorithms, and exploring ways to balance accuracy and effi­

ciency, while further tailoring them to the constraints of embedded hardware. 
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statistics on CPU, GPU, memory, and power consumption to evaluate the 
efficiency on embedded platforms. 

4.6.1.1 Absolute Trajectory Error (ATE) 
The Absolute Trajectory Error (ATE) is used to measure the global accuracy 
of the SLAM system by evaluating the difference between the predicted 
trajectory and the ground-truth trajectory after aligning them. Let the ground-

truth poses be represented as a series of homogeneous transformation matri­

ces Pgt ∈ SE(3) where i indexes the sequence frames, and let the estimated i 
poses be Pest. The ATE is computed as the root mean square error (RMSE) i 

between the positions of the estimated trajectory and the ground truth after 
aligning them through a rigid body transformation. 

The ATE is mathematically defined as: 
     

 n

n 
i=1

where tgt and test represent the translation vectors (positions) extracted from i i 

the ground-truth and estimated poses Pgt 
and Pest, respectively. The RMSE i i 

measures the Euclidean distance between corresponding positions in both 
trajectories, giving a global measure of accuracy. 

4.6.1.2 Relative Pose Error (RPE) 
The Relative Pose Error (RPE) evaluates the local consistency of the tra­

jectory by comparing the relative motion between consecutive poses in the 
estimated trajectory to that in the ground-truth trajectory. This metric is 
essential for assessing the short-term accuracy of the system in tracking small 
movements, which is critical in dynamic environments. 

Given two consecutive ground-truth poses P
gt 

and P
gt 

, the relative i i+1
transformation between these poses is: 

1  
ATERMSE =

gt − test t  2 , (4.1)i i

y
P
gt 

P
gt 

(4.2)i i+1. 

Similarly, the relative transformation between consecutive estimated 

e−1 
T
gt 
i = 

poses is:     −1
Test Pest =i i Pest (4.3)i+1. 

The RPE is then computed as the difference between the relative trans­

formations of the ground-truth and estimated poses. The translational RPE is 
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defined as the root mean square error (RMSE) of the translation vectors from 
the relative transformations: 

n
1 y e  

t
gt − tgt test − test 2− , (4.4)i i+ i i+ RPEtrans = 

n 
i=1

and testwhere tgti i are the translation components of the relative transforma­

tions Tgt 
and Test and  is the time interval. i i 

For the rotational RPE, we measure the angular difference between the 
relative rotation matrices R

gt 
and Rest , which can be quantified using the i i 

angle-axis representation. The rotational error is defined as: 
  ⎛ ⎞y eT y

Rgt − Rgt T 
Rest − Rest T 

i i+1 i i+1 

2 

e
− 1tr⎜⎜⎝ 

⎟⎟⎠
1 n 

RPErot = arccos 
n i=1 

, 

(4.5) 

where Rgt 
and Rest represent the rotation matrices of the ground-truth and i i 

estimated poses, tr denotes the trace of a matrix, and  is the time interval. 
This metric provides the average rotational error over the trajectory. 

4.6.1.3 Frames Per Second (FPS) 
In real-time applications, the Frames Per Second (FPS) is a critical metric that 
measures the number of frames processed by the SLAM system per second. 
High FPS is essential for ensuring that the SLAM algorithm operates effi­

ciently and in real time, especially in embedded or constrained environments 
where computational resources are limited. FPS can be computed as: 

number of frames 
FPS = . (4.6)

total processing time 

This metric helps assess the speed and responsiveness of the SLAM 
system. 

4.6.2 Alignment methods 

In this section, we describe four different trajectory alignment methods com­

monly used to compare predicted poses against ground-truth data in odometry 
and SLAM systems: scale, 6DOF, 7DOF, and 7DOF with scale. Each method 
focuses on optimizing different parameters (scale, rotation, and translation) 
to minimize the alignment error. 
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4.6.2.1 Scale alignment (scale) 
The scale alignment adjusts only the global scale factor c between the 
predicted trajectory X and the ground-truth trajectory Y, without modifying 
the rotations or translations. 

Method: 

• The objective is to minimize the distance between X and Y by adjusting 
only the scale. 

• The optimal scale factor c is computed as: 

(X .  Y ) 
c = � 

X2 
. (4.7) 

• The aligned trajectory is then scaled as: 

Xaligned = c . X.  (4.8) 

This method is particularly useful for monocular systems, where the scale 
is typically unknown and must be estimated post-facto. 

4.6.2.2 6 Degress of Freedom (6DOF) 
The 6DOF alignment adjusts both the rotation and the translation between 
the predicted trajectory X and the ground-truth Y, but keeps the scale fixed. 
This allows the correction of orientation and position errors. 

Method: 

• The six degrees of freedom include three for rotation and three for 
translation. 

• The alignment is based on the Singular Value Decomposition (SVD) of  
the covariance matrix between X and. 

• The covariance matrix covxy is computed as: 

covxy = 
1 

n 

n 

(yi − meany)(xi − meanx)
T . (4.9) 

i=1 

• The SVD of covxy gives: 

covxy = UDV T . (4.10) 

where U and V are orthogonal matrices representing the principal direc­

tions of Y and X, respectively, and D is a diagonal matrix of singular 
values. 
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• The rotation matrix R is computed as: 

R = U V T .  (4.11) 

where Σ is a diagonal matrix ensuring a proper right-handed coordinate 
system. 

• The translation vector t is calculated as: 

t = meany − R.meanx.  (4.12) 

• The final aligned trajectory is: 

Xaligned = R . X + t.  (4.13) 

This method is ideal for LiDAR or stereo systems where scale is fixed but 
orientation and position errors need correction. 

4.6.2.3 7 Degress of Freedom (7DOF) 
The 7DOF alignment extends the 6DOF method by also adjusting the 
scale factor c, in addition to the rotation and translation. This allows for 
simultaneous correction of scale, rotation, and translation errors. 

Method: 

• In addition to the rotation  R and translation t, the scale factor c is 
computed to minimize the alignment error. 

• The scale factor c is given by: 

1 
c =  . tr(DΣ), (4.14)

σx 

where σx is the variance of the points in X, and tr(DΣ) is the trace of 
the product of the singular values and the diagonal matrix Σ. 

• The transformed trajectory becomes: 

Xaligned = c . R . X + t. (4.15) 

This approach is beneficial in systems where the scale might not be 
exactly known, such as stereo or some lidar systems. 

4.6.2.4 Scale + 7 Degrees of Freedom 
The scale_7DOF alignment combines the benefits of the 7DOF alignment 
with an additional scale optimization step. After applying the rotation and 
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translation, the scale factor is optimized separately to further minimize the 
final trajectory error. 

Method: 

• First, perform a 6DOF alignment to adjust the rotation R and transla­

tion t. 
• Then, optimize the scale factor c independently using the formula: 

c =  
(Xaligned · Y )� 
(Xaligned 

2) 
. (4.16) 

• The final trajectory becomes: 

Xfinal = c · Xaligned. (4.17) 

This method provides a finer correction of scale after the rotational and 
translational alignment, making it useful when significant scale variations 
exist between predicted and ground-truth trajectories. 
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Abstract 

Deploying AI at the edge can be challenging. AI algorithms are very com­

pute intensive. In the data centre, multiple large, power-hungry GPUs are 
often employed. However, edge systems typically have constrained compute 
capabilities and limited power. Further, many systems need to deal with 
size, weight, cost, thermal, and other limitations. Successfully deploying AI 
while meeting these limitations requires a holistic analysis of the system. 
A Model-Based Cybertronic System Engineering (MBCSE) methodology 
enables modelling and analysis of complex systems at a high abstraction 
level. It can be used to analytically find an optimal system architecture 
and hardware/software partitioning. Meeting the computational requirements 
may call for the development of bespoke machine learning accelerators. 
These are complex dedicated compute resources that deliver parallel com­

putation, local data buffers, and some level of programmability. Designing 
an optimal accelerator architecture can be accomplished with an AI assisted 
High-Level Synthesis (HLS) process to efficiently explore the design space. 

This paper describes a Model Based Cybertronic System Engineer­

ing (MBCSE) methodology that can be used to craft a combined hard­

ware/software implementation of an inferencing algorithm, balancing per­

formance, power, cost, and other key design metrics. It begins with an 
algorithmic analysis, determining areas of significant complexity. This is fol­

lowed by allocation of functions to physical computation elements, targeting 
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both board-level and chip-level placement. During the allocation phase, 
complex algorithms may be mapped to bespoke accelerators that will be syn­

thesized from the algorithmic description using high-level synthesis. Finally, 
an analysis of design is performed to ensure that all design metrics are met. 

Keywords: edge AI, system design, system optimization, high-level 
synthesis. 

5.1 Introduction and Background 

Edge systems are often limited in several dimensions. Power consumption 
and compute capabilities are often limited in support of form-factor, weight, 
cost, mobility, and other requirements. This makes deploying AI on these 
systems challenging, as AI algorithms typically consume significant compute 
resource and power. One way to mitigate this is to architect the system 
with the compute resources that meet, but do not materially exceed, the 
requirements for the AI processing needed. 

AI processing can be performed on different types of compute resources. 
For example, inferences can be run on general-purpose processors, graphics 
processing units (GPUs), arrays of multiply/accumulate processing elements, 
FPGA fabric, or bespoke hardware accelerators. Each of these represents 
compromises for the system designer. For example, deploying AI on a 
general-purpose processor typically will require around 100 watts of power 
or more. This results in a heavy battery, limited battery life, and potential 
cooling issues. But it significantly eases the development efforts, as the same 
software and machine learning frameworks can be used in the edge design 
as was used by the data scientists in the data centre. A bespoke hardware 
accelerator will be orders of magnitude more efficient but requires a custom 
IC development effort. 

Developers need a way to understand the impact of their design trade­

offs early in the design cycle to find the optimal architecture for the system 
that addresses the myriads of design constraints imposed by the business, 
regulatory, competitive, and other forces influencing the design of the system. 
Yet, finding a suitable methodology that can address all the design needs is 
tricky. 

Model-based Systems Engineering has been used for software develop­

ment for 25 years. Unified Modelling Language (UML) [1] was the first 
standardized graphical modelling language for specification, construction, 
documentation and visualization of software intensive systems. Because 
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UML was originally developed for modelling SW systems, it was not suitable 
for general system modelling. System Modelling Language (SysML) was 
based on UML but targeted more to the needs of general systems engineering. 
It is widely used for modelling system functionality but has severe capacity 
limitations. 

Systems with functionality implemented in both SW and bespoke HW 
blocks are called Cybertronics Systems [2]. These are difficult to model with 
UML or SysML, which are targeted to single-domain modelling. Finding the 
optimal HW/SW partitioning needs an extensive design space exploration 
and capability to analyse different metrics like processor and bus utilization, 
task latency, power consumption or network load. The modelling method­

ology must support clear separation of function from structure, function 
allocation to structural elements and mapping of structural elements to any 
target technology. One of the methodologies developed for this purpose is 
Architecture Analysis and Design Language (AADL) [3]. It is used to model 
the SW and HW architectures of embedded real-time systems. AADL is a 
useful methodology for HW/SW system modelling and analysis, but it is 
lacking capabilities to the operational and functional analysis and modelling 
of cyber-physical systems. 

5.2 Model Based Cybertronic Systems Engineering 

Challenges of the cybertronics systems engineering are diverse. It begins with 
the system context that can be a network, a computing enclosure with multiple 
Printed Circuit Boards (PCB), a single PCB, a System-on-Chip (SoC), a 
Field Programmable Gate Array (FPGA) or embedded SW. The physical 
system sets the functional constraints that define the requirements for the 
cybertronics subsystems. Furthermore, the individual algorithms communi­

cating with each other and consuming computing resources, can be allocated 
to different processing elements. The design space is huge and finding the 
optimal architecture is difficult. 

Another challenge is the variety of the design domains that are usually 
tightly coupled. An architectural component like PCB contains other archi­

tectural components that are cybertronics subsystems themselves such as 
3DIC or SoC. SW functionality can be allocated onto multiple processors 
that are potentially in different subsystems. In such cases the network of data 
exchanges between the functions must be allocated to physical interconnect 
that can be a network segment, platform bus like PCIe, network-on-chip, or 
something similar, depending on the implementation technology. 
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Third challenge is the fragmented organization of the domain specific 
development processes. Communication between the teams is negligible 
because the different terminologies and specifications are interpreted differ­

ently. This makes maintaining the integrity of the system difficult. 
Model Based Cybertronic Systems Engineering is a new model-based 

methodology developed for modelling and analysis of cybertronics systems. 
It borrows concepts from multiple modern systems engineering methodolo­

gies. The main target of this new methodology is to unify the modelling 
methodologies on different system levels and enable seamless communica­

tion between the architects in the different implementation domains and the 
design teams. 

The first methodology is called HW/SW co-architecting [4]. It is based on 
C++ function tree breakdown, where the functions are allocated to SW that is 
executed on one or more processors or HW accelerators that are implemented 
by using HLS. Because the C++ source code can be used both as SW code 
and input for the HLS, the mapping decisions can be done late in the design 
cycle. This approach works nicely for algorithms that are available, or can be 
translated into, C++, like streaming video or AI algorithms. 

The second methodology used in MBCSE is ARChitecture Analysis and 
Design Integrated Approach, ARCADIA [5]. It is a very simple static infor­

mation model methodology for system modelling according to the INCOSE 
SE handbook. Arcadia can be used to model the functional, logical, and 
physical architecture of the system using standardized artifacts. The functions 
and structures are kept separated, but the allocation of functions, exchanges, 
and components to structures is supported. Arcadia methodology has no 
technology binding nor simulation capabilities itself, so the designer can 
specify any target technology or simulation by using properties. It also has 
capability to transition a component to a subsystem in a separate project. 
These three capabilities make Arcadia a perfect methodology for cybertronics 
system modelling. 

Yet, a comprehensive system modelling methodology must enable design 
space exploration with different types of simulations. Property Model 
Methodology [6] is a dynamic, simulation-based methodology for require­

ments driven system modelling and analysis. Simulations are needed to 
validate the functional correctness of the system model, to analyse the system 
performance of different architecture options and verify the implementation. 
PMM and Arcadia complement each other and form a basis for a cybertronics 
system modelling and validation methodology. 
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Figure 5.1 Model-Based Cybertronics Systems Engineering Methodology 

MBCSE [7] workflow is described in the Figure 5.1. The horizontal 
Requirements-Functional-Logical-Physical (RFLP) architecture process is 
based on Arcadia. The transition from one design layer to another one is 
automated to maintain the integrity between the layers. 

The vertical pillars for each Arcadia layer represent the PMM concepts 
used to import behavioural, performance, and implementation information to 
the Arcadia model and interfacing to the different simulations. Complexity 
management with subsystem transition is part of the Arcadia methodology. 

The third integral part of the MBCSE methodology is interface to all 
cybertronics implementation domains. To keep the number of details to a 
manageable level in the system model the transition to a domain specific 
design flow is a design step, not an automatic model generation. 

The MBCSE methodology allows modelling any type of system. There­

fore, it can be used for modelling of cyber-physical systems with, for 
example, mechanical, mechatronics, electrical, and physical subsystems as 
well. Each model can be specified to be an abstract model without any 
technology binding, or it can be bound to a target technology like a platform 
network or PCB, where the components in the model are physical compo­

nents at this model level like a processor, SoC, or FPGA. But the component 
is a top-level functional model of a separate subsystem that is decomposed 
individually. Yet, all functions, requirements, and properties related to the 
top-level are maintained there and propagated to the subsystem automatically. 

⏎ 
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5.3 Designing Edge AI Systems with MBCSE Methodology 

Edge AI systems have a special character. They are power and computing 
resource limited and usually have hard real-time requirements. At the same 
time, they apply multiple cascaded, or nested, AI algorithms. Therefore, 
they are perfect candidates for model-based design methodology described 
in Figure 5.2. 

The design process begins in the traditional AI algorithm development 
environment like TensorFlow, Caffe, or PyTorch. Once the algorithm is opti­

mized for accuracy and mathematical complexity, the network is translated 
to C++ using one of the Python-to-C converters. The generated C++ code is 
validated against the original Python model to ensure its correctness. 

The same floating-point C++ model is a functional description of the 
AI system functionality and is used as a starting point for the architecture 
analysis and development. In the functional analysis the AI algorithm can be 
treated as one entity, but for a more detailed analysis it must be broken down 
to smaller entities that usually are the individual layers of the neural network. 
Arcadia methodology enables function breakdown into any granularity. For 
example, in the top-level system context the AI algorithm can be one function, 
which is broken down into the individual layers in the lower subsystem level. 
Additional information like kernel size or number of channels can be added 
to the model as properties. 

In the logical architecture phase, the functions are allocated to logical 
components and the data exchanges between them through logical channels. 
This is the first attempt to allocate the functionality to an implementation 

Figure 5.2 MBCSE Process for AI system design ⏎ 
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architecture. The amount of information at this point is still very small and 
it is easy to change the logical allocation by just assigning a function to 
another logical component. This architecture exploration phase enables a 
performance simulation to analyse the latencies, interconnect traffic, pro­

cessor utilization, and many other metrics. The performance model can be 
parameterized to test what-if exploration of design alternatives as shown in 
Figure 5.3. Here, the convolution function is changed from a SW implemen­

tation to a HW accelerator resulting in a 96% reduction in the latency of the 
computation without changing the performance model. 

The purpose of the performance analysis is to find the optimal HW/SW 
allocation and simultaneously design constraints for the HW designers. When 
the optimal architecture is found, a physical architecture model is created. 
It contains more detailed implementation information for creating a virtual 
model for more detailed analysis and HW implementation. 

Parallel to the architectural exploration, the C++ functions targeted to 
HW acceleration are quantized by using fixed-point data types to model the 
HW implementation effects to the AI algorithm. This quantized C++ code 
is validated against the original Python model using the same testbench as 
earlier for functional validation. 

In the next step the quantized C++ code is partitioned into HW models 
that are further optimized for HLS, while functions that remain as SW will 
go through the standard SW development process. 

The HW platform integration is based on the physical architecture model. 
The components, ports, and interconnects can be extracted from the system 

Figure 5.3 Performance exploration ⏎ 
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model and refined in the domain specific design environment. Standard 
components like processors, memories, and peripherals can be taken from 
the library, while custom models are synthesized to RTL using HLS. 

When the platform is integrated, it goes through the domain specific 
verification flow. 

5.4 Creation of Bespoke AI Accelerator 

Once the MBCSE analysis shows that a bespoke AI accelerator is needed, 
whether deployed as an ASIC or FPGA, a hardware design project must 
commence to design, verify, and integrate that hardware accelerator. MBCSE 
provides a set of requirements and constraints for the AI accelerator. It also 
defines the data flows, both the inputs and outputs, to the larger system. This 
constrains the interfaces used for the implementation of the AI accelerator. 

While the deployment of the accelerator must meet the constraints derived 
from the system analysis, there is still a great deal of latitude in the implemen­

tation. The nature of hardware design is such that aspects of the design, such 
as power consumption or throughput, could vary by an order of magnitude or 
two, while meeting the remaining constraints on the system. This means that 
it is critical to understand both the constraints as well as the limitations of the 
constraints. For example, there may be a requirement that an inference must 
be completed in 2 milliseconds. This is a clear performance requirement. 
But this computation may be performed in parallel with another calculation 
that takes, say, 1.5 milliseconds, where the slower of the two limits the 
overall throughput. Or the collection of the feature data from sensors may 
take 1.5 milliseconds. In these cases, there will be no benefit to making the 
AI accelerator go any faster than 1.5 milliseconds. Implementing a faster 
accelerator will typically degrade other system characteristics, such as power 
consumption or silicon area. However, for some systems, achieving higher 
performance or lower power consumption is better, with no limit or point 
of diminishing returns. Thus, itis critical for the designer to know both 
the constraints and the limitations of the constraints to architect an optimal 
implementation. The MBCSE flow delivers this data, and it should be used to 
inform the design process. 

With the constraint data, the hardware development effort can commence. 
However, a traditional hardware development cycle for either ASIC or FPGA 
can take months and requires a level of manual effort such that it is not 
practical to create multiple implementations that are meaningfully different. 
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In the traditional hardware design flow, an initial architecture is decided upon, 
and minor course corrections can be made through the design cycle. But few 
design teams have the resources to do true design space exploration. If the 
design marginally meets the requirements, it will be accepted, even if it is sub­

optimal. Traditional hardware design relies on the experience and intuition to 
select an architecture. However, if the design team has not built a bespoke AI 
accelerator before, there is likely little or no experience base to draw from. 

5.4.1 High-Level Synthesis 

High-Level Synthesis is a technology that takes an algorithm as input and 
produces a target technology specific implementation in the form of a syn­

thesizable RTL design. The input algorithm is generally in the form of 
C++ or SystemC, but new approaches are supporting SystemVerilog and AI 
framework CNNs as input [8], [9]. 

High Level Synthesis is a well-established technology [10], available as 
open-source projects and from commercial EDA and FPGA suppliers. HLS 
works by parsing the input algorithm and creating a global control data-flow 
graph (CDFG) of the algorithm. This graph is analysed to determine data 
dependencies, parallelism in the algorithm, and potential resource sharing 
opportunities. The graph is then transformed into a set of state machines and 
data flow constructs that exactly implement the original algorithm. From this 
the RTL representation is constructed. The RTL implementation requires the 
target clock frequency, and information about the target silicon technology. 
This data would be in the form of an ASIC technology data for a targeted 
ASIC, or for FPGAs, detailed information on the characteristics of the FPGA 
design elements available. 

The HLS tool can create a variety of implementations from a single 
input algorithm. For example, a multiply/accumulate loop could be fully 
unrolled, with a physical multiplier for every multiplication operation. Or 
it could share a single multiplier instance for each loop iteration. The former 
implementation would be fast but would be large and inflexible. The latter 
would be slower but would be smaller and could more easily accommodate 
a varying number of loop iterations. Or, a partial unrolling could be done, 
giving a balance between the two. Typically, the hardware engineer will 
provide guidance to the tool in the form of programming “pragmas” or tool 
settings. This gives the developer control over the level of parallelism and 
pipelining in the resulting implementation, See Figure 5.4. 
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Figure 5.4 Alternative micro-architectures from a single source, based on tools settings and 
constraints 

Since the creation of each RTL implementation is automated, the creation 
of several meaningfully different design options can be done quite quickly, 
in hours instead of months. In a traditional design flow, this would be pro­

hibitively expensive. Each implementation can then be evaluated for power, 
performance, and area (PPA). From the scheduled state machine construction, 
the HLS tool can accurately calculate the latency for the algorithm for a 
given implementation. With knowledge of the target ASIC technology or 
FPGA device the HLS tool can ascertain the specific design primitives used to 
construct each design alternative which provides a good basis for determining 
the area. When combined with design activity (switching data), this can be 
used to produce an estimate of the power consumption. This power estimate 
will include the static power for each gate, as well as the dynamic switching 
power. But it will not include the parasitics, which are only available after 
RTL synthesis and place and route. While the power estimates will have 
some degree of uncertainty, they are still useful for performing comparisons 
between different implementations. 

5.4.2 Implementation and optimization with HLS 

With an HLS flow in place, deploying a bespoke accelerator is more than 
just running the HLS tool. There are several modifications that can be done 
that will improve the operating characteristics of the accelerator. These will 
result in an implementation optimized for the specific application. The first 
is to reduce the size of the network as much as possible. This involves well 
understood pruning techniques. Often a trained network can be reduced by 
90% or more with little to no reduction in accuracy [11]. 

Next would be select an optimal numeric format, or “quantizing” the 
network. Using a more compact numeric representation will reduce the size 
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of memory needed for weights, biases, and intermediate results. It will also 
reduce the size of the operators that process that data. Multipliers will take 
up the most area of the computational logic of the accelerator. And memory, 
used for storing weight, biases, features, and intermediate results will take 
up the most area and consume the most power. In terms of performance, 
movement of the data to and from the processing elements will be the biggest 
performance bottleneck. 

In machine learning frameworks running on general purpose comput­

ers or GPUs, numbers are stored and operated on as 32-bit IEEE format 
floating-point numbers. But, for most AI processing, values usually small 
in magnitude, with a significant portion being between -1.0 and 1.0. Which 
means that a 32-bit floating point representation is excessive, resulting in 
significant unused range, which is wasteful in the design. Eliminating these 
makes the design smaller and more efficient. AI algorithms usually do not 
need to dynamic range supported by floating point numbers. Converting to a 
smaller numeric format such as fixed point, reduced precision floating point 
representations like bfloat16 [12] or posits [13] will result in a reduction in 
memory storage requirements, faster movement of the data, and smaller oper­

ators in hardware. Using quantized aware training, the size of representation 
can often be reduced by a factor of 4 or more [14]. By moving from a 32-bit 
floating point number to an 8-bit fixed point number will reduce the size of 
the multipliers by ∼97%, with a roughly proportional reduction in the power 
consumption. In an HLS flow the developer can choose to create a much 
smaller and more efficient design, or the designer could use the silicon area 
to add more multipliers and execute them in parallel, delivering increased 
performance. 

By changing both the neural network architecture, through pruning, and 
the underlying math, through quantization, the accuracy of the network will 
change. Thus, it is critical that throughout the pruning and quantization 
steps that the accuracy is verified. Quantization and pruning actions will 
impact each other and can be traded-off against each other. For example, 
reducing the size of features or weights will reduce the accuracy of the 
neural network. Increasing the number of layers or channels within each 
layer will increase the accuracy of the neural network. Careful balancing of 
the pruning and quantization will result in an optimal implementation. There 
are AI approaches being researched for finding an optimal quantization and 
neural network architecture, as this is an unbounded search space it is an ideal 
application for neural networks [15]. 
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While optimizing the neural network, it is important to consider the 
impact of these changes on PPA. HLS tools that provide PPA estimates, as 
described earlier, allow the developer to make informed trade-offs between 
micro-architectural alternatives in a way that is simply not possible in a 
traditional RTL design flow. 

5.4.3 Verification and integration 

Once the accelerator is created, the next step is verification of the accelerator 
and integration into the larger system. Verification can be done with both 
formal methods and dynamic verification. One approach is to formally prove 
equivalence between the algorithmic description and the synthesized RTL. 
Some HLS tools provide this capability. However, it is unusual for formal 
equivalence to fully verify the accelerator. To complete the verification, the 
algorithmic model can be instrumented to collect stimulus and expected 
responses that can be used in dynamic simulations. The combination of static 
and dynamic approaches will often reach full verification coverage much 
faster than manual methods. 

Integrating the accelerator into the larger system means creating bus and 
memory interfaces to the external circuitry, in addition to wired connections. 
Most HLS tools have interface synthesis, which will create commonly used 
bus protocols and supports memory interfaces. These will be supported 
for both pre- and post-synthesis models, enabling common testbenches and 
verifications strategies across abstraction levels. 

5.5 Exemplary Results 

To illustrate these concepts, we describe an exemplary system where this 
design flow is applied. The system is a handheld address scanner that reads 
postal codes off address labels on letters and packages. There are multiple 
design domains in this project: the physical design of the package/enclosure, 
the design of the printed circuit board (PCB) electronic sub-system, and a 
system-on-chip (SoC). All these design domains need to support multiple 
requirements: weight, battery life, performance, accuracy, communications, 
security, and more. Balancing these requirements and demands require a 
holistic approach that embodies the multiple design domains and facilitates 
communication between divergent design teams. 

For the electronics subsystem implementation there are three options: 
using a standard processor on a PCB, using a standard microcontroller 
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and FPGA for accelerating some functions, or a custom SoC. Using the 
performance simulator in the cybertronics module level, which contains all 
electronics and SW functions, the design space was narrowed down to SoC. 
A standard processor solution can’t meet the timing and power consumption 
requirements. Also, the thermal issues preclude this option. Using a micro-

controller and FPGA would meet the timing requirements, but the power 
consumption of the FPGA exceeds the required limits, therefore the only 
implementation option is an SoC. 

The SoC implementation was thoroughly analysed using the performance 
simulation and the optimal architecture contains a microcontroller and two 
bespoke accelerators: one for convolution and max pooling and another for 
the two dense layers. Based on the performance analysis, the convolution 
accelerator can use 4 milliseconds for one feature map and the dense accel­

erator 3 milliseconds including data transfer times. The HLS design space 
exploration was used to optimize the latency, area and power consumption. 
Because the data and weights are stored locally in the accelerators, the 
processing time is dominant in the latency and the target latency can be 
reached with a minimum resource implementation. 

5.6 Conclusion 

Complexity of the AI algorithms in the Edge systems is growing rapidly. 
Using general purpose processors or GPUs is no more practical because 
of the high computational load, power consumption limitations, and timing 
constraints. Most of the current design tools and methodologies focused on 
automating the flow from AI algorithm development to implementation, but 
they do not take in account the system-level aspects. The edge systems require 
a careful analysis of the different implementation options, which needs a 
new holistic approach that can handle the complexity of the system level 
architecture. 

Model-based cybertronics systems engineering methodology enables the 
analysis and partitioning of the algorithms on multiple hierarchy levels 
enabling distribution of algorithms across a multi-device system and opti­

mizing the device architecture to provide optimal HW resources for the 
execution of the given algorithm. The C++-based modelling approach allows 
free function allocation to different processing elements and creating bespoke 
accelerators using HLS. This capability streamlines the development process 
and enables late changes of function allocation between HW and SW. 
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Abstract 

This work discusses advancements in edge AI processing for critical sys­

tems, focusing on satellites. We explore hardware solutions for real-time and 
autonomous data processing using Field Programmable Gate Arrays (FPGAs) 
and Coarse-Grained Reconfigurable Arrays (CGRAs). The research outlines 
critical systems’ challenges, such as power constraints, radiation tolerance, 
and the need for reliable AI processing. The paper details the design and 
implementation of an HDL-based GPU system on an FPGA and the FPGA­

AI framework that automates the design of AI accelerators on FPGA. Future 
research focuses on extending neural network support and exploring collabo­

rations for tape-out opportunities of CGRA prototypes. 

Keywords: edge AI, acceleration, space, satellite, critical systems, FPGA, 
CGRA. 

6.1 Introduction 

In the rapidly advancing landscape of technological innovation, Artificial 
Intelligence (AI) is proving to be a pivotal driver for enhancing system 
autonomy and performance across a wide range of critical applications. 
These include not only space-based systems, such as satellites used for Earth 
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observation and scientific research [1], but also autonomous vehicles, defence 
systems, healthcare technologies, and industrial automation. In these diverse 
fields, large volumes of complex data must be processed efficiently and 
in real-time to ensure timely decision-making, reliability, and operational 
success. 

For instance, satellites carry various advanced sensors like cameras, 
radars, altimeters, scatterometers, and lidars, which produce huge volumes 
of data to be processed and analysed. Conventionally, these systems rely on 
limited onboard processing, where raw data is gathered in mass storage for 
subsequent downlink to ground stations for further analysis. In any event, 
with the increasing need for timely information related to Earth observation, 
scientific missions, and space exploration, there is an ever-growing require­

ment for real-time data processing [2]. This paradigm shift places significant 
pressure on the avionics subsystems to process and transmit larger quanti­

ties of data with minimal delay, necessitating a new approach to onboard 
computing. 

Similarly, in other critical systems such as autonomous vehicles, military 
defence platforms, and medical devices, AI must function with extreme reli­

ability, power efficiency, and real-time responsiveness [3]. Current solutions, 
such as data compression techniques or basic on-the-edge pre-processing, 
are far from giving an adequate answer to these complex demands. Besides, 
real-time AI processing in critical systems should be resistant to environ­

mental challenges: whether it is radiation tolerance for space systems, power 
constraints for remote sensing equipment, or safety-critical computation in 
autonomous driving. 

The need for hardware accelerators capable of executing AI algorithms 
with high efficiency, reliability, and adaptability is increasingly clear. Systems 
like Field Programmable Gate Arrays (FPGAs) [4], [5] and Coarse-Grained 
Reconfigurable Arrays (CGRAs) are emerging as leading candidates for such 
tasks. Because they can support parallel processing, adapt to changing work­

loads, and provide low-power yet high-performance computation, they are 
particularly suited to an environment where real-time responses and resilience 
to failure are paramount. 

As industry agendas such as ESA’s ‘Space for a Green Future’ vision for 
2025 [6] look toward harnessing AI for environmental monitoring, disaster 
response, and real-time analytics, these hardware solutions will play a key 
role in advancing next-generation capabilities. Beyond space, applications 
such as autonomous navigation, object detection, and emergency response in 



6.2 State of the Art 129 

smart cities will require similarly robust, power-efficient AI systems that can 
operate seamlessly in challenging environments. 

Edge AI represents a promising solution for developing more autonomous 
and real-time systems, paving the way for innovative applications that can 
address the complex challenges of modern critical environments. As we look 
towards a future with more autonomous and capable critical systems, AI will 
play a pivotal role in transforming how we observe, interact with, and under­

stand them. However, it is well known that AI algorithms are computationally 
intensive. Therefore, it is necessary to identify reliable hardware solutions 
capable of supporting the execution of those algorithms in critical application 
scenarios. 

In the following sections, we will present three ongoing projects to 
meet this technological need. In the short term, we propose an FPGA-

based approach with two possible solutions, the GPU@SAT project and the 
FPG-AI project, a tool flow to automatically generate Convolutional Neural 
Network (CNN) and Recurrent Neural Network (RNN) hardware accelerators 
for FPGAs. In the long term, we propose the CGR-AI project to develop 
a radiation-hardened AI heterogeneous processing platform relying on a 
reconfigurable CGRA core. 

6.2 State of the Art 

Edge AI has garnered considerable interest among researchers in the field 
of space applications, particularly for scenarios where algorithms requiring 
acceleration must balance high-performance demands with stringent resource 
constraints. The choice of technology is inherently application-specific and 
driven by unique requirements, leading to a diverse array of proposed 
solutions and hardware implementations in the literature. 

FPGAs have emerged as energy-efficient platforms for executing artifi­

cial intelligence algorithms [4]. Their inherent hardware parallelism aligns 
well with the computational demands of AI workloads. However, leveraging 
FPGAs for neural network acceleration poses challenges, primarily due to the 
significant engineering effort required to design custom, optimized hardware 
accelerators. To streamline the development and experimentation of Deep 
Neural Networks (DNNs) on FPGAs, several automation toolflows have been 
introduced. Tools such as Microchip VectorBlox AI [7], AMD Xilinx Vitis AI 
[8], and the MATLAB Deep Learning HDL Toolbox [9] support a wide range 
of models, enabling users, even those without extensive FPGA expertise, to 
efficiently deploy and accelerate DNNs on these platforms. 
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Conversely, hardware platforms like Graphics Processing Units (GPUs), 
which dominate commercial machine learning (ML) applications, are rarely 
utilized in space missions. This is primarily due to their higher power 
consumption and vulnerability to Single Event Latchups (SELs). Despite 
the significant potential of deploying GPUs in space, particularly for Deep 
Learning (DL) algorithms, to our knowledge, there have been no suitable 
solutions specifically designed for satellites. Previous research [10], [11] 
has primarily focused on evaluating the feasibility of using Commercial 
Off-The-Shelf (COTS) GPUs, despite their inherent limitations for space 
applications. Similarly, neuromorphic processors are gaining traction as a 
promising alternative for space-based applications [12]. 

CGRAs offer a compelling compromise between flexibility and effi­

ciency. By combining spatial and temporal computation, CGRAs optimize 
performance for specific AI workloads without necessitating task-specific 
hardware redesign, achieving near-ASIC-level performance with software-

like reconfigurability. For instance, the work presented in [13] integrates ML 
with CGRA compilation, significantly enhancing their accessibility and effi­

ciency for practical applications. Another noteworthy advancement is Eyeriss 
v2 [14], a state-of-the-art DNN accelerator designed to enhance throughput 
and energy efficiency for both large-scale models like AlexNet and compact 
models such as MobileNet. 

6.3 FPG-AI: Automation Tool Flow for Efficient Deployment 
of Pre-trained CNN/RNN Models on FPGA Technology 

FPGAs are currently the most suitable solution for bringing efficient and 
performant AI capabilities onboard space missions. The high degree of 
parallelism offered by FPGAs is compatible with AI algorithms, allowing 
for spatial pipelining and achieving high efficiency and performance [4]. 
Besides this, there are several commercial Radiation-Hardened by Design 
(RHBD) FPGA solutions, which also make them a good option for space 
applications. However, the development time for an AI algorithm on FPGAs 
is long since these platforms involve high design effort with required intensive 
optimization due to their narrow resource budgets. 

This challenge has been partially addressed by developing automatic AI 
accelerator generation frameworks [15]. These tools facilitate accelerating 
DNNs on FPGAs by a wide variety of users without any expertise. That is 
important because it reduces the development time while maintaining high 
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performance, hence making the use of FPGAs for AI in space missions 
possible. 

FPG-AI [16] is a technology-independent toolflow for automating the 
acceleration of DNNs onboard FPGAs. It takes as input a pre-trained DNN 
model along with its application dataset. First, FPG-AI prepares the target 
network for hardware acceleration by performing optimizations on model 
topology and shifting arithmetic from Floating-point (FP) to Fixed-point 
(FXP). Then, a Design Space Exploration (DSE) process selects in the 
parameters space of the underlying architecture the point that meets the 
additional constraints provided by the user on application metrics, resource 
consumption, and performance. In this way, the generation of the target 
accelerator will be automated, and FPG-AI will be an end-to-end, ready-

for-use tool while still keeping a high degree of customization concerning 
the user directives. Once the set of parameters is identified, DSE produces a 
configuration file for tuning the hardware architecture. The accelerator in the 
case of FPG-AI is the MDE, which can be a fully handcrafted HDL-based 
design that hosts no third-party IPs and can be customized according to the 
available resource primitives of FPGAs. Thanks to these properties, the MDE 
imposes no limit on device portability and allows, therefore, the implemen­

tation of components from different vendors with disparate resource budgets. 
Presently, this tool supports AMD XILINX, Microchip, Intel ALTERA, and 
NanoXplore FPGAs. 

FPG-AI generates as output the HDL files describing an accelerator 
customized for the given model and device that meets the additional directives 
received by the user. Unlike other solutions, the toolflow provides the HDL 
sources of the accelerator and not the final bitstream, allowing the user to 
exploit the unused portion of the FPGA for complementary tasks. Figure 6.1 
reports the block diagram of FPG-AI. 

The FPG-AI framework is characterized by several key features that 
make it highly effective for deploying AI in space missions. One of the 
standout characteristics is technology independence, achieved through the 
MDE architecture. This solution’s handmade HDL code without third-party 
IPs allows it to target multiple FPGA vendors, making the tool particularly 
suited for quickly supporting new devices. 

Another significant feature is the high degree of scalability and cus­

tomization of the hardware accelerator core, which allows users to set 
constraints on resource utilization (DSPs and on-chip-memories), infer­

ence time, and application metrics, tailoring the solution to the specific 
requirements of the space mission. 
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Figure 6.1 FPG-AI block diagram. 

The ease of System-on-Chip (SoC) integration is guaranteed by the 
generation of an AXI Memory-Mapped accelerator which facilitates straight­

forward embedding into existing systems. In addition, FPG-AI’s accelerators 
are completely autonomous during the computation of a neural network, 
eliminating the need to split the workload with the host CPU, improving 
efficiency and performance. 

Currently, the FPG-AI solution supports Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs), [17] broadening its applica­

bility across different types of AI models. Combined with the aforementioned 
features, this versatility positions FPG-AI as a robust and adaptable choice 
for implementing AI in space applications, ensuring high performance and 
reliability in challenging environments. 

6.3.1 Network-in-Network (NiN) case study 

In the following, implementation results are reported for an image processing 
use case to exemplify the workflow of FPG-AI. The model selected for 
this study is Network-in-Network, a commonly used CNN model for image 
classification on the CIFAR10 dataset. Each image in CIFAR10 is a 32 
× 32-pixel colour image, which means it has three colour channels (red, 
green, and blue) for each pixel. These images are divided into ten classes, 
with each class representing a different object or category. The NiN model 
involves three triples of Convolutional layers with padding set to "same". The 
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Convolutional layers are followed by a Global Average Pooling layer which 
provides predictions. Table 6.1 summarizes the features of the NiN. 

As a first step, the pre-trained model undergoes the Model Compression 
process of FPG-AI to quantize the network and shift from FP to FXP arith­

metic. Initially, pre-analyses are carried out to study the effects on model 
accuracy caused by different bit-width settings of each quantity within the 
network. In particular, the input dataset quantization pre-analysis evaluates 
the effects on the application metric depending on the input dataset bit-width 
and identifies the input dynamic range. 

• Weights quantization pre-analysis evaluates the effects on application 
metrics depending on the weights bit-width and identifies the weights 
and biases dynamic ranges. 

• Activations quantization pre-analysis: studies the effects on application 
metrics of different activation bit-widths by evaluating one layer at a 
time and identifies the activation dynamic range. 

Table 6.1 Model summary of Network-in-Network. 

Model Summary 

Model NiN 
Type CNN 
Dataset CIFAR10 
Input image dimension 32 × 32 × 3 
# Convolutional layers 9 
# Convolutional filters for each layer 192, 160, 96, 192, 192, 192, 192, 192, 10 
Convolutional filters dimensions 5 × 5, 1 × 1, 3 × 3 
# Pooling layers 3 
Pooling filters dimensions 2 × 2, 8 × 8 
Type of pooling Max Pooling, Average Pooling 
# Fully Connected layers 0 
# Neurons for each FC layer ­

Total Parameters 969K 
Memory for Parameters [Mbit] 3.69 Mb 

After the pre-analysis, additional bit-true simulations are carried out to 
study the combined effects of quantized inputs, weights, and activations. The 
accuracy trend is analysed in a range across the optimal bit-widths provided 
by the pre-analyses. In this phase, different truncation settings are applied 
to modify activation bit-widths. The whole collection of simulation results is 
finally saved into a table that will be used during the DSE tool phase.The DSE 
then selects a quantized configuration among the ones generated by the Model 
Compression step. For this case study, we decided to extract the configuration 

⏎ 
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with the best application metric, obtaining a final accuracy of 88.88%.There­

after, the DSE exploits an iterative algorithm to best configure the parameters 
of the MDE architecture. Once the DSE algorithm converges to a solution, 
the toolflow runs an automation script that generates all the necessary files 
for the hardware deployment of the network. As a first step, the chosen 
quantization parameters and the obtained architectural parameters are written 
on the MDE configuration file. The latter completes the HDL description of 
the MDE architecture configured to optimally accelerate the given quantized 
model on the selected FPGA device. At the end of this automatic process, the 
user can finally synthesize and implement the accelerator using the vendor-

specific tools associated with the chosen FPGA component. Table 6.2 reports 
the configuration at maximum parallelism for the NiN model on FPGAs from 
diverse vendors. The results have been obtained by using the following tools 
with default synthesis and place-and-route strategies: Vivado Design Suite for 
AMD Xilinx, Synplify Pro for Microsemi, and Quartus Prime for Intel. 

Table 6.2 NiN implementation results for maximum parallelism configuration. 

Device ZU7EV RTPF500T XQRKU060 10AX048 

LUT 56375 63028 105950 26115 

FF 
(24.5%) 
14432 

(13.1%) 
28386 

(31.9%) 
20012 

(14.2%) 
12819 

LUTRAM/µSRAM/MLAB 

BRAM/LSRAM/M20K 

URAM 

(3.1%) 
1104 
(3.1%) 
245.5 
(78.7%) 
5 

(5.9%) 
0(0%) 

512(33.7%) 

-

(3.02%) 
552 
(0.38%) 
277.5 
(25.7%) 
-

(1.7%) 
96 
(1.4%) 
525(36.7%) 

-

DSP 

MDE Frequency [MHz] 
Inference Time [ms] 
Power [W] 
Accuracy [%] 

(5.2%) 
1210 
(70%) 
126.6 
4.54 
2.88 
88.88 

1214(82%) 

50.8 
11.33 
-

88.88 

2410 
(87.3%) 
72.5 
5.39 
3.07 
88.88 

1229 
(89.8%) 
83.33 
218.88 
3.07 
88.88 

These experiments demonstrate the adaptability of the proposed quan­

tization methods and the scalability of the MDE architecture. The acceler­

ated models have been deployed on FPGA devices from different vendors 
(Intel, Xilinx, Microsemi) and various FPGA families, resulting in diverse 
characteristics in terms of technology, available resources, and radiation 
tolerance. This level of adaptability sets FPG-AI apart from other automation 
tools in the existing literature. 

⏎ 
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6.4 GPU@SAT: RISC-V Based SoC Featuring a Soft-GPU 
Hardware Accelerator for Artificial Intelligence 
On-board 

In recent years, General-Purpose Computing on Graphic Processing Units 
(GPGPU) [18] has been gaining popularity due to its high energy efficiency 
and computational capabilities. Although Graphic Processing Units were 
initially utilized only for graphic applications, GPGPU has since bridged the 
gap into the use of GPUs in a wide range of tasks, including image processing, 
cryptography, and Machine Learning [19]. GPGPU exploits frameworks such 
as OpenCL [20] and CUDA [21], which provide high-level programming 
interfaces, allowing for a significant reduction in development time. Compati­

bility with open-source tools, including TensorFlow, PyTorch, and Caffe, also 
supports AI applications. Yet, its performance could be on a par with those 
of custom hardware accelerators, while - because of the lack of flexibility 
and customizability - GPGPU is not capable of efficiently executing distinct 
families of algorithms. As such, combining the advantages of GPGPU with 
the reconfigurability features of FPGAs could represent a viable solution for 
the acceleration of a wide range of ML algorithms in applications with strict 
constraints on cost, size, and power consumption (e.g., in space systems). 
This approach could offer a cost-effective and scalable solution for space 
missions that require high-performance computing capabilities. In this sense, 
soft GPGPU holds the potential to revolutionize the field of space exploration 
by enabling more complex and data-intensive tasks. In space applications, 
special attention must be given to power consumption, resource efficiency, 
and fault-tolerant design. To reduce costs and enable the use of commer­

cial FPGAs for Low Earth Orbit (LEO) missions, it is crucial to prioritize 
fault-tolerant solutions. 

An AI acceleration system compliant with the strict requirements of 
both low and high-level space missions (e.g., fault-tolerance, resource uti­

lization, power consumption), exploiting the existing GPGPU framework, 
as well as FPGA reconfigurability, is still missing. As such, we propose 
the implementation of an SoC featuring the GPU@SAT IP from IngeniArs 
S.r.l. [22], [23], [24], [25], which can execute OpenCL 1.2 kernels. This 
could prove to be an efficient solution not only for the acceleration of ML 
algorithms but also for the execution of any OpenCL kernel in various fields 
of application (e.g., image processing, consumer applications, cryptography), 
ensuring a higher degree of flexibility. Figure 6.2 illustrates the proposed base 
architecture for the SoC. The primary objectives of the project are to develop 
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an AXI-compatible system incorporating the GPU@SAT IP and the open-

source RISC-V architecture, with a strong emphasis on reliability—critical 
for the successful execution of high-level space missions. Additionally, 
we aim to characterize the system on various FPGA platforms, assessing 
performance-to-power efficiency metrics. 

Figure 6.2 Overview of the System-on-Chip based on GPU@SAT. 

6.4.1 Enhancing a soft GPU IP reliability against SEUs in space: 
Modelling approach and criticality analysis on a 
Radiation-Tolerant FPGA 

To enhance the robustness of the GPU@SAT IP against Single Event Upsets 
(SEUs), we propose a detailed methodology revolving around modelling, 
fault criticality analysis, and a systematic application of fault mitigation tech­

niques. Figure 6.3 shows a schematic overview of the GPU@SAT architecture 
and its main design modules. 

We employ the Möbius [26] high-level modelling tool to estimate the 
reliability of the system. The tool supports both Fault Tree Models and 
Stochastic Activity Networks (SANs), but Fault Trees are used here due to 
their simplicity and alignment to assess fault impacts without accounting for 
repair mechanisms. The fault tree model allows the combination of basic 
events like failures of sub-modules using logical gates (AND, OR, XOR, 
etc.), making it possible to model how SEUs affect different components of 
the GPU architecture. Specifically, to quantify the SEU rates, we use data 
provided by Xilinx on the failure rates at Geosynchronous Earth Orbit (GEO) 
of the CRAM and Block RAMs in the target FPGA device, in our case the 

⏎ 
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Figure 6.3 Overview of the GPU@SAT architecture. 

Radiation-Tolerant Xilinx XQRKU060. These rates are applied to the various 
GPU components, estimating the worst-case SEU rate for each module based 
on the number of resources (e.g. LUTs, registers, BRAMs) used in each of 
them. 

As SEU events can be modelled using a Poisson distribution [27], the 
firing time between them follows an exponential one. With this information, 
we modelled the entire GPU architecture to estimate a baseline reliability 
level using the Möbius tool. Table 6.3 presents the reliability estimation 
results for the GPU and its primary sub-components over 60 days. 

The reliability analysis shows that the GPU has a lower reliability than 
its individual sub-components due to its high vulnerability to SEUs. The 
Global Memory Controller and CU Memory Controllers were identified as 
the least reliable parts, with high SEU sensitivity. Applying Triple Modular 
Redundancy (TMR) directly to these components would be too costly in 
terms of area and power, so partial redundancy techniques like Distributed 
TMR and Block TMR with voters are suggested. The results show that, 
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Table 6.3 Reliability values for the GPU and its components over a 60-day span. 

Atomic Model Time­Averaged Reliability 

Workgroup Dispatcher 9.855E-01 
Wavefront Scheduler 9.637E-01 
Global Memory Controller 5.411E-01 
RTM 9.752E-01 
PE Array 6.372E-01 
Control Interface 8.943E-01 
CU Memory Controller 5.011E-01 
GPU w/ 1 CU 2.421E-01 

while no components exhibited extremely low reliability, strategic application 
of fault mitigation techniques can significantly increase system robustness 
without introducing prohibitive overhead. 

Given the high resource consumption of a GPU, applying fault tolerance 
measures universally would be inefficient. Hence, we propose a classification-

based methodology [28] that evaluates each component based on: 

• Criticality: How essential the component is for correct operation. 
• Power/Area Impact: How much power and area each component 

consumes on the FPGA. 

Each component is classified into four criticality and power/area classes 
(C1-C4). The classification helps prioritize which components to protect 
more rigorously and which ones require less redundancy. The criticality of 
each component is assessed based on: 

• Fault Impact: Evaluating both the spatial and temporal importance of 
the module in the GPU architecture. 

• SEU Sensitivity: Based on the type of primitives (e.g., BRAM, registers, 
combinatorial logic) and their sensitivity to SEUs. 

• Component Type and Importance: Importance is determined by how 
critical a module’s function is for the correct operation of the GPU (e.g., 
if it’s responsible for task dispatching or controlling memory access). 

• Power/Area (PA) Impact: This accounts for how much area and 
dynamic power each component consumes on the FPGA. The analysis is 
based on post-place-and-route resource utilization and switching activ­

ity extracted from simulation benchmarks (e.g., matrix multiplication, 
convolution). Components that consume more resources are prioritized 
for less costly fault mitigation techniques to avoid excessive congestion 
and power consumption on the FPGA. 

⏎ 
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After analysing the criticality and PA impact, each component is assigned 
a suitable fault mitigation technique. These techniques are categorized into 
four classes, with higher classes corresponding to more impactful and 
resource-intensive solutions. Two distinct classification tables have been cre­

ated to differentiate between operational and memory components, as these 
typically require the application of different mitigation techniques. Table 6.4 
and Table 6.5 summarize the proposed techniques associated with different 
levels of criticality. 

Table 6.4 Classification based on criticality, area, and power. 

Table 6.5 Operational & Memory Components Classes. 

6.5 CGR-AI: Innovative Coarse-Grained Reconfigurable 
Array Platform for Computing Artificial Intelligence 
On-Board 

While FPGAs offer significant advantages for implementing AI in space, 
they have limitations. Performance and power efficiency are often con­

strained, and the cost per device, particularly for Radiation-Tolerant (RT) 
and Radiation-Hardened (RH) chips, can be substantial [29], [30]. To address 
these challenges, the long-term solution may lie in developing a specific hard­

ware platform tailored for AI applications in space. Such a platform, built on 
RT/RH technology, could offer the throughput required by applications and 
the power efficiency required by the environment, justifying the large-scale 
adoption of AI in space missions [31]. 

⏎ 
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However, maintaining a degree of flexibility is crucial. Designing an 
Application-Specific Integrated Circuit (ASIC) for a specific Neural Network 
(NN) accelerator is not sustainable due to the diverse and evolving nature 
of AI applications [32]. Instead, future hardware platforms should balance 
high performance with adaptability, supporting various AI models and the 
ability to update and reconfigure as mission requirements change. This 
approach would ensure that space AI systems remain robust, efficient, and 
versatile, capable of meeting the demanding conditions of space exploration 
and observation [33]. 

The purpose of the CGR-AI project is to develop an AI engine IP, Com­

plementary to RISC-V/FPGA for AI workload data crunching, powered by 
a CGRA accelerator, to be implemented in std-cell technology. Such engine 
shall overcome existing solutions in terms of: 

• Flexibility: the platform may be easily adapted to a given application by 
executing specific firmware to schedule memory transactions and load 
CGRA configurations. 

• Time Predictability: the CGRA-based architecture performs operations 
in a fixed number of clock cycles. Given the global memory timing 
model, each AI Engine operation is completed within a deterministic 
time bound, ensuring algorithm execution for time-critical applications. 

• Reliability: library and architectural solutions to withstand radiations 
typical of higher orbits. Furthermore, CGRA resources can be used 
to apply dynamic redundancy to the data path, exploiting dedicated 
hardware voters for error correction. 

Figure 6.4 CGR-AI Engine block diagram. ⏎ 
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Figure 6.4 depicts the proposed CGRA-based AI Engine architecture. 
The CGRA [34], [35] is an AI accelerator capable of performing linear and 
approximated nonlinear vector operations with dynamic element width. The 
RISC-V CPU runs the firmware loaded into the Tightly-Coupled Memo­

ries (TCMs) and overlooks all the operations within the architecture. The 
streaming Direct Memory Accesses (DMAs) provide custom pattern access 
to/from local memory, and the Memory-Mapped (MM) DMAs provide access 
to/from external memory. AXI bus is implemented to allow communication 
with multi-core application class CPU, commercial peripherals, and main 
memory/DDR controller. The AI Engine can parallelize common workloads 
in neural network algorithms, like convolutions, pooling, and activation 
functions. The spatial architecture makes the engine capable of distributing 
resources for different algorithms, enabling load balancing during different 
mission stages with dynamic requirements. 

The project is currently in development, and we are in the process of 
setting up an FPGA prototype and characterising the processing core on std­

cell technology. As preliminary results, in Table 6.6 we report synthesis data 
obtained on the 65nm technology for an operating frequency of 625 MHz. 

The analysis is focused on the single Tile module since its results can be 
composed to form the desired matrix. 

For each port configuration, we adapt the number of input and output ports 
of the PE accordingly to the number of Functional Units (FUs) implemented 
(third column), in order: 

1. ambslx: all FUs are present. 
2. ambsx: without LUT FU, which is the one with more utilization of 

resources. 
3. ambs: without LUT and MUX FUs. 
4. am: only with ADD and MUL (e.g., to perform MAC in convolutional 

layers) 
5. lx: only with LUT and MUX (e.g., to execute activation functions) 

We refer to (a) as throughput [GOps]; efficacy is reported in (b) as area 
efficiency [GOps/mm2], where the theoretical throughput of the configura­

tions is divided by the related area and power metrics, and the best solutions 
are highlighted in bold, and (c) as energy efficiency [GOps/W], a direct 
measure of the energy needed for each operation: its inverse is W/GOps = 
W/(Gop/s) = J/Gop. 
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Table 6.6 Throughput compared to Area and Energy Efficiencies. 

# In # Out FUs 
(a) 

625 MHz 
(b) (c) 

ambslx 3.75 17.7 88 
ambsx 3.12 19.4 96.3 

3 In 2 Out  ambs 2.50 22.2 111 
am 1.25 22.9 119 
lx 1.25 27.4 142 

ambslx 3.75 16.1 81 
ambsx 3.12 18.6 93.7 

4 In 4 Out  ambs 2.50 21.4 110 
am 1.25 26.5 151 
lx 1.25 24.8 129 

ambslx 3.75 15.4 80.6 
ambsx 3.12 17.3 90 

4 In 4 Out  ambs 2.50 18 94.9 
am 1.25 16.1 88.4 
lx 1.25 22.7 120 

6.6 Discussion and Conclusion 

The execution of AI algorithms in critical systems is becoming increasingly 
important as the demand for real-time data processing and autonomous 
decision-making grows. Satellites with advanced AI capabilities can enhance 
applications such as Earth observation, scientific research, and space explo­

ration by providing timely insights and efficient data management. However, 
addressing the diverse requirements of performance, radiation tolerance, and 
cost requires various solutions. 

The GPU@SAT approach represents an immediate answer for appli­

cations needing an SW-programmable system, whose reliability has been 
analysed and improved. Such a solution can be considered particularly inter­

esting thanks to the support both from Rad-hard and rad-tolerant FPGAs, 
thus suitable for space applications.FPG-AI provides an immediate, flexible 
solution for these needs. The fact that it can afford high parallelism, ease of 
customization, and integration makes FPG-AI a very promising candidate for 
both present and near-future space missions. The radiation-hardened versions 
of FPGAs can therefore offer such resilience against the harsh conditions in 
space.However, these have their performance and power efficiency limita­

tions, not to mention the high cost, hence the need for continued innovation. 
Overcoming these limitations will long-term be so crucial to sustain further 
advancements in AI across many critical applications. The development 

⏎ 
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of a dedicated hardware platform like CGR-AI, therefore, emerges as a 
strong candidate for such a future direction. The objective is to develop 
a platform that integrates high performance and efficiency, state-of-the-art 
AI applications, flexibility in handling changing mission needs, and varied 
AI models.While it may be the case that GPU@SAT and FPG-AI can at 
present work as a robust and versatile solution for current AI needs onboard 
satellites, continuous research, and development into more specialized hard­

ware platforms, such as CGR-AI, will be very important. These efforts 
will ensure that the potential of AI in space is fully realized, supporting 
more autonomous, efficient, and capable satellite systems that can meet the 
challenges of tomorrow’s space exploration and Earth observation missions. 
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Abstract 

Large Language Models (LLMs) are increasingly becoming adopted for var­

ious applications in information processing and content generation. Coupled 
with the diverse availability of model weights, quantization, and fine-tuning, 
it is desirable to find the best-performing LLM within a certain memory 
budget. Prompting strategy plays a similarly major role in the quality of 
generation, with various methods existing that attempt to induce desired 
behaviour, requiring a major time investment to develop. As new models with 
better performance to memory ratio become available, it may be tempting to 
implement them into an existing system for potential performance improve­

ments. In this work we explore the process of changing weights and note that 
weights from larger models or of different quantization precision are unable 
to replace the original model without modifications to the prompt contents, 
which in turn implies complications in developing modular, weight agnostic 
systems. 
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7.1 Introduction and Background 

The interest to employ Large Language Models for various tasks has grown 
over the past couple of years [1]. Among these are applications in robotic 
systems, including tasks such as high-level planning [2], low-level control 
[3] and semantic map creation [4], but most of these approaches rely on top-

of-the-line LLMs provided as a cloud service [5]. To increase the autonomy 
of such systems, the inference process must be brought as close as possible to 
the physical robotic agent. On-device LLMs for smartphones have received 
official support from Google with Gemini Nano 2 for Android [6] and from 
Apple with Apple Intelligence for MacOS ecosystem [7], a major step for on 
the edge deployment. 

Other LLM developers have published their model weights with relatively 
open licenses, though such models are typically less capable than the ones 
offered exclusively through the cloud [8]. One of the main characteristics 
of an LLM is its size, which is measured in billions of parameters (“LLM 
7B” denotes a model with 7 billion parameters). Currently, graphics cards 
(GPU) serve as the primary means of deploying these models, as they offer 
faster inference speeds than processor (CPU) based solutions [9]. Because of 
the standard 16-bit precision used for LLM weights even a relatively small 
model of 7B parameters (GPT-3, the “first” LLM, had 175B [10]) requires at 
least 14GB+ of VRAM, which currently is only available on the upper end 
of consumer grade GPUs [11]. Various Post-Training Quantization (PTQ) 
methods are available that can successfully reduce the precision down to 4­

bits per weight while still retaining most of the performance [12], crucial for 
deploying as close to the edge as possible. 

The autoregressive nature of decoder-only transformer architecture that 
underpins most LLMs [1] means that they generate the next (sub-)word based 
on all the input text before it according to the defined sampling parameters. 
As such the contents that are fed into the LLM are of high importance and 
has led to the emergence of the discipline of “Prompt Engineering” - the 
process of developing the textual content of the prompt to invoke the desired 
behaviour in the generation. Determining a prompting strategy for a particular 
task includes not only deciding on the contents of the prompt but also 
considerations such as if the task would be better executed over several 
separate prompts, a method known as “prompt chaining” [13], and what 
patterns [14] and methods [15] to employ for each prompt. 

Creating an LLM-based high-level planner in a local context for a robotic 
system places several limitations on model selection which in turn heavily 
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influences the prompting strategy. The ideal solution would provide a valid 
plan in the fastest time within the smallest amount of VRAM spending least 
amount of energy. As response times are a major consideration, even though 
GPUs are an additional power consuming component, currently it is not 
viable to create the system without one, and even the smallest models can 
strain and quickly deplete batteries of purely edge systems like smartphones 
[16]. Because the context window (the maximum amount of text a model can 
process at once) also contributes to memory usage, it may be necessary to 
reduce it, which in turn limits the number of examples that can be given and 
how complex of an instruction can be provided. 

In this work we test how practical it is to change the underlying model 
of an already developed LLM-based system as a way to gain improvements. 
To this end we take our Natural Language Processing-High Level Planning 
(NLP-HLP) module for a mobile manipulator system [17] that uses an LLM 
for inference and replace it with different quantization precision weights 
and from different model families to see if the prompts carry over between 
different weights. A brief overview of LLMs, prompting strategies and LLM 
use in robotics is given in chapter 1.2. We create a validation set for each 
of our prompting steps and compare how well each set of weights processes 
these test questions, with chapter 1.3 elaborating on the experimental setup. 
In chapter 1.4 we display the results from our tests that were carried out on 
the set of different precisions and on the set of different models. In chapter 
1.5 we give our conclusions and outlook for further development. 

7.2 Related Work 

LLM-based systems, regardless of use case, are built on top of various 
prompting strategies, which in turn rely on quality LLM weights to per­

form the generation. The landscape of LLMs has developed rapidly since 
early 2023, when “LLaMA” model weights were leaked to the public [18], 
beginning a wave of interest in local deployment of LLMs that as of October 
2024 has resulted in over 140 thousand “Text Generation” weights of various 
model families, finetunes and their quantizations being uploaded to the public 
Hugging Face model library [19]. 

7.2.1 Local Large Language Models 

Large Language Models as a distinct category emerged after the release of 
GPT-3 [10]. The initial focus was placed on training ever larger models 
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[20], as parameter count correlates with both performance and the concept 
of “emergent abilities” - at a certain scale, models become able to perform 
tasks that with fewer parameters they could not, thought [21] has questioned 
how “emergent” these abilities really are. As larger models are more resource 
intensive to both train and run, to the benefit of local deployment the focus 
shifted away from scale of the model to the scale and quality of training, 
such as the focus of the compact “Phi” model series [22]. The increase of 
scale can be demonstrated by comparing GPT-3’s training of 300 billion 
tokens versus the training of “Llama 3” series models of up to 15 trillion 
[23] and “Qwen2.5” with 18 trillion [24], with both model families providing 
weight sizes that can be comfortably deployed locally. Besides requiring more 
memory, larger weights tend to be slower, which is a problem that “mixture 
of experts” (MoE) models try to overcome by mixing the knowledge of a 
larger with the speed of a smaller model, as done with [25]. This approach 
has limited relevancy for use in edge computing applications, as the memory 
requires all the parameters to be loaded in memory while actively only using 
a smaller portion of them at any one moment. 

To truly place these models on the edge, quantization of weight preci­

sion is necessary to maximally reduce the memory requirements while still 
maintaining most of the performance [12]. Several methods for this process 
have emerged with often different priorities, but two common inference and 
quantization frameworks are the speed oriented, GPU-only ExLlamaV2 [26] 
with its EXL2 format and the more general llama.cpp [27] with GGUF format 
weights that also heavily invest in CPU-only and hybrid inference set ups. 

7.2.2 Prompting 

Prompting is the primary means of interacting with the LLM as the textual 
content is the basis upon which new information is generated. Developing a 
prompt that induces the desired behaviour is a sizable part of deploying these 
LLM-based systems. A variety of methods have been developed by the LLM 
research and open-source community to improve the generation quality [15]. 
Two noteworthy aspects that often get explored include determining what 
kind information should go into a prompt and how much LLM calls per an 
input should be done. 

A common approach is known as “few-shot” or “n-shot” prompting [10], 
where “n” designates how many examples are used in the prompt to condition 
generation towards a particular output format. Another approach is to have 
the model first generate additional information about the input, such as the 
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“Chain-of-Thought” (“CoT”) [28] method, where each example includes an 
intermediate reasoning step that is generated before the final answer. Various 
prompting patterns are highlighted in [14] which can be used to invoke 
specific behaviour in the models, such as having the model be the one asking 
questions. 

LLMs generate their answers auto-regressively one new token at a time, 
with all the previous tokens affecting the probability of the next. If the model 
gets distracted and begins generating “incorrect” data, it is unlikely to recover 
[29]. Various methods attempt to mitigate this by generating several outputs, 
like it is done with “Self-Consistency” [30], which picks the most com­

mon answer amongst the outputs. “Least-to-Most” [31] prompting seeks to 
decompose a problem into subproblems and solves them sequentially. “Tree­

of-Thought” [32] for each decomposition step generates several possible 
paths that are explored with search algorithms. 

“Chain prompting” [13] is another fundamental skill utilized by many 
methods and systems, as it allows creating complex interactions by breaking 
up any task into several specialized prompts, which also allows creation of 
more modular systems. 

7.2.3 LLM in Robotics 

In general, the versatility of LLMs has been explored in wildly differing 
robotics roles. An implementation sceptical of LLMs ability to plan was 
explored in [33], where the model was used to translate natural language 
inputs into the structured planning language, which is then passed to a tra­

ditional planner. LLM as a planner was integrated into [2], where it generates 
the whole plan which is then verified for geometric feasibility and performs 
replanning if necessary. Implementation from [34] uses the LLM to rate a 
list of predefined actions on their probability as the next action needed for 
plan completion, while [35] uses an LLM to provide closed loop feedback 
(including dialog). LLMs have also been used to generate code directly for 
robot control, as shown in [36], while [3] has the LLM generate rewards for 
low-level control functions. LLMs have also been used for mapping, such as 
iteratively searching over a graph as presented in [37] or as in [4] where the 
LLM is used to embed semantic information inside the map itself, making it 
searchable through language. 

All the examples provided above rely on using some of the largest models 
available at the time, which helps showcase the performance of the method. 
However, in order to create an autonomous robotic system that doesn’t rely 
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on a constant internet connection, local LLM application, especially of the 
smaller sized models, is of interest. Methods that attempt to rely on a smaller 
LLM as the primary inference engine are less known. In [38] a LLM is 
combined with a vision encoder to detect and reason about manipulation 
task failures, while [39] uses the LLM to guide the learning process of new 
long-horizon tasks. In [40] an LLM is one of the two main models tested 
for generation planning steps that are then evaluated based on feasibility and 
reward, whereas [41] notes the lower performance of open LLMs, but still 
invest in fine-tuning one to act as communication and planning manager for 
cooperative agents. 

These methods rely on what now would be considered outdated models, 
given the rapid development of openly distributed LLMs over 2023 and 
2024 [42], so it seems as if switching to newer models should provide an 
improvement in performance and make these smaller weights more enticing 
to use. However, a big part of performance comes from the contents of the 
prompt which are usually developed to maximize the quality of results out of 
specific weights. If the LLM-based system consists of a lot of complicated 
prompts and the new model does not immediately outperform the old, it 
may require practically rebuilding the whole system. Therefore, we want 
to explore how well prompts developed for one model perform on different 
models and quantization precisions. 

7.3 Experimental Setup 

After a model is chosen, a lot of time is invested in developing the prompt 
contents such that they invoke the desired generation. Prompting performance 
is typically framed as being mainly affected by model size and the model 
training data from which the various abilities are believed to emerge from 
[20], [28]. As new models with better performance to memory ratios emerge 
it can be worth exploring them as a potential avenue of upgrade for the 
system. Another avenue might be to increase the available memory and move 
to a higher precision quantization, which in theory should also result in 
improvements [12]. However, this would mainly be practical if the prompt 
contents can be retained for the new weights. If the validation shows no 
improvements, it then implies that in certain applications model weights 
are not “hot swappable”, as the prompt contents need to be rewritten which 
reduces the systems overall modularity. 



7.3 Experimental Setup 153 

7.3.1 System Description 

The experiment is based on a previously developed HLP system, which 
utilizes Llama 3 8B Instruct Q4_K_M [43] weights, so the prompts have been 
developed in tandem with these specific weights. The HLP is designed to 
fulfil the planning phase for a mobile manipulator system (MMS) performing 
actions in a vaguely structured indoor environment. In the MMS’s low-level 
planner, a set of action primitives is defined, that describes the system’s 
abilities in a general manner or as highly adaptive functions [17]. The user 
inputs a NL command that is sent to the HLP. The HLP then generates a plan 
based on the MMS’s set of abilities. This system consists of a prompt chain 
with 4 steps split into 3 stages: Filtering (“categorization” and “mobility”), 
Structuring (“preplanning”) and Planning (“planning”): 

• The “categorization” step determines the type of the incoming request 
between 4 categories: “mobile manipulation”, “question answering”, 
“casual discussion”, “any other query”. The rest of the system is only 
interested in “mobile manipulation”. The prompt is 4-shot – containing 
examples for all categories. 

• Because the currently used demonstrator is a static industrial arm, the 
“mobility” step is used to determine in a “True/False” fashion if moving 
between working positions is required or not. Once the demonstrator is 

Figure 7.1 Scematic of the MMS first demonstrator’s HLP system. 
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transferred to a mobile platform, this step can simply be taken out. This 
prompt is zero-shot and is the shortest of the ones tested. 

• The “preplanning” performs two tasks: creating a description (con­

sisting of a marker, original text and a unique ID) for each object 
relevant to the request, formatted as “[“<object_name>”, “object 
name”, 0]”; breaking up the request into smaller sub-tasks that can be 
planned for individually - “[“Pick up <large_cactus>”, [1]], [“Place 
<large_cactus> on <small_tile>”, [0]]”. The prompt uses 3 examples 
of increasing difficulty. 

• The “planning” step creates a plan for each subtask that consists of 
assigning relevant action primitives to respective objects in a reasonable 
order. The input consists of the sub-task text, a list of objects and the 
status of the hand ([“empty”] or [“<obj>”, “obj, 0]”). An input “put 
the <box> on the <table>” should output a plan like “[[“pick”, [0]], 
[“place”, [1]]]”. This is the most complex task of the set as it requires 
some form of reasoning, which smaller models are much less capable 
of [28]. This step employs CoT style step-by-step generation of step-by­

step plan, where it is asked to first restate the task, check its hand status 
and then generate the step: “1. Pick up <obj>. My Hand: <obj>”. It 
also relies on 3 examples with increasing difficulty. 

By defining standardized input and output formats for each step, it is 
possible to integrate them together in a prompt chain in such a way that the 
intermediate product can be processed by traditional programming. This also 
allows the creation of a testing set for each step that is necessary to both 
validate and track the performance of the weights and prompts, though an 
alternative for tasks that are hard to standardize is to use another LLM to act 
as a judge [44]. 

7.3.2 Testing process 

The validation process rates the generated output as follows: if the output 
could not be successfully processed by the script functions, then it is rated 
as “-1”; if the output could be processed but was wrong or unexpected it is 
rated as a “0”; if the output was processed and aligned with the expected 
result, it is rated with “1” and considered acceptable. Scoring only takes into 
consideration expected results and no malus is applied for failed generations. 
The validation set was created specifically for this test, however it is relatively 
simple and small. 
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The initial validation set for all tasks consist of 25 test inputs for each 
output type. The “categorization” set consists of 25 requests for each of 
the categories, to test how well the model can identify the correct category. 
“Mobility” consists of separate sets for “True” and “False”. Both “preplan­

ning” and “planning” consist of 25 each. “Preplanning” is tested on “objects” 
(if the right objects were generated), “object length” (if no extra objects were 
created) and “Steps” (if the expected number of sub-tasks were generated). 
“Planning” is evaluated on “Plan” (if the expected plan was generated) and 
“Hand” (if the correct status of the hand was registered). In total 11 positions 
are evaluated across the current implementation of the system, for a total of 
275 points. 

7.3.3 Model selection 

A selection of different models using Q4_K_M GGUF quantization and 
alternate quantization precisions for the “Llama 3 8B Instruct” model are put 
through the validation system to see if there is transferability of the designed 
prompts in an application with strictly defined input/output formats. 

GGUF quantization method was chosen for its versatility to be deployed 
for CPU, GPU or hybrid inference, however only GPU inference has been 
used for the development and testing of the system. The chosen precisions 
are: “Q8_0”, “Q6_K”, “Q5_K_M”, “Q5_K_S”, “Q3_K_L”, “IQ3_XXS”, 
“IQ2_M” and “IQ2_XXS” [43], [45] , which roughly cover the range of 
available precisions. 

The choice of models for testing was based on their size (able to fit into a 
single consumer-grade GPU) and their status as weights released directly by 
the developers. Third party finetunes were not considered for testing. Overall, 
the selected models represent a size range from 1B to 15B parameters. 

Several benchmarks exist that attempt to quantify and compare the perfor­

mance of different LLM models. The Open LLM Leaderboard [47] combines 
6 such benchmarks to provide thorough evaluation of open-source models, 
while Berkeley Function Calling Leaderboard (BFCL) [48] specializes in 
testing model ability on tool use or function calling, which is a skillset com­

parable to the tasks expected of the planner. A different kind of benchmark 
is Chatbot Arena [8], which lets users compare two models and rate which 
they believe is better, but as such can be susceptible to user preference, “Style 
Control” is used to help mitigate it. These sorts of benchmarks play a role in 
informing decisions about which models to choose and create expectations 
about the model relative performance. 
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7.3.4 Testing environment 

The testing is performed on Ubuntu 22.04 using an Nvidia GTX 3060 12GB 
graphics card, running CUDA version 12.3 and Python 3.11.5. The models 
were loaded using llama.cpp [27] with the llama­cpp­python [53] wrapper, 
which uses GGUF format weights and serves as a quantization method. The 
used maximum context window is fixed at 2048 tokens across all models. 
Sampling parameters include setting “temperature” to “0.0” (greedy sampling 
for most deterministic generation), which also removes random seeds as a 
factor in sampling. Despite this, tests were run at least 3 times with different 
seeds to verify no change between generations. 

7.4 Results 

With “Llama 3 8B Inst Q4_K_M” serving as the base line, two sets of weights 
were tested against it. The first set was used to determine if it is possible to 
shift the system to a different quantization precision either to free up memory 
by going to a lower precision or to improve performance by going to a higher 
one. The second test looked at the viability of replacing the LLM with a 
different model series all together. At temperature “0.0” no changes were 
noticed between the generations in either batch. 

7.4.1 Differences between quantization precisions 

Results from the first test shown in figure 7.2 visualize how 3- and 2-bit 
precisions rapidly degrade in quality, which aligns with general understand­

ing of their behaviour [12], as smaller models incur more loss at lower 
precision. 4-bit and higher precisions however underperform expectations 
as none of them manage to noticeably improve upon the default weights – 
Q4_K_S (smaller than default) match results (245 points), but both models 
make different mistakes. The larger “Q6_K” and “Q8_0” weights score lower 
(237 and 242 respectively), while in theory these models should maintain 
more of the original non-quantized performance. “Q4_K_M”, “Q4_K_S” and 
“Q5_K_M” were the only weights to not suffer from any completely failed 
generations. 

Comparing the specific outputs of “Q4_K_S” and “Q4_K_M” for “mobil­

ity” tests, both models make 3 mistakes, but only 1 is different between them. 
The questions that are failed by both are “Find the basketball” for “False” 
and “Move the chairs” for “True”, which might point to semantic ambiguity 



7.4 Results 157 

Figure 7.2 Correctly passed tests for quantization precision comparison. 

in the validation set. “Q4_K_M” failed on “Flip the book to the next page” 
for “False” while “Q4_K_S” failed on “Carry this chocolate cake for me” for 
“True”. Such minor differences can be a cause of concern, as it can mean 
that a new model could pass the validation test but then fail on tasks the 
previous model had no problem doing. This implies the need for prompting 
methods that can minimize such differences as well as potentially maintain a 
history of previously performed actions that a promising model can be further 
tested on. 

7.4.2 Differences between models 

During the second test, as seen in figure 7.3, none of the tested models were 
able to outperform the default model, despite several of them being larger 
in size and having a higher score on the Open LLM and BFCL benchmarks 
(Table 7.1). The further development of Llama 3 - “Llama 3.1 8B Instruct” ­
seems to perform about as well as “Gemma 2 9B instruct”, while “Qwen2.5 
14B Instruct” takes second place behind the default model. Model size plays 
a noticeable role as the larger models performed better, though not to the 
degree it would be expected. The prompting template also did not seem to 
factor in, considering that “Gemma 2” uses a “user/model” style prompting 
versus “Llama 3” that uses “system/user/model”, which effects how prompts 
are structured. Overall, a similar conclusion can be drawn to what was 
seen with the quantization precision – prompts are unlikely to carry over to 
smaller models, but larger models do not guarantee superior results despite 
technically better performance. 

⏎ 
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Figure 7.3 Correctly passed tests by various LLMs. 

Table 7.1 Model Selection (all models using GGUF type Q4_K_M, all weights used in tests 
sourced from [46] 

Model Name 
Parameters 
(in Billions) 

OpenLLM 
score [47] 

BFCL 
Overall Acc 
[48] 

Chatbot 
Arena score 
(Style 
Controlled) [8] 

Llama 3 8B Instruct [23] 8.03 23.91 34.32 1143 
Llama 3.1 8B Instruct [23] 8.03 27.77 50.87 1133 
Llama 3.2 1B Instruct [49] 1.24 13.76 20.59 1045 
Llama 3.2 3B Instruct [49] 3.21 23.85 46.92 1094 
Gemma 2 2B Instruct [50] 2.61 17.05 22.38 1116 
Gemma 2 9B Instruct [50] 9.24 28.86 51.59 1179 
Mistral 7B Instruct v0.3 [51] 7.25 19.11 - -

Nemo-Instruct-2407 [52] 12.2 23.53 42.56* -

Phi 3.5 mini instruct [22] 3.82 27.4 - -

Phi 3 medium 4K instruct [22] 14.0 32.67 - 1118 
Qwen 2.5 3B Instruct [24] 3.09 21.03 47.09 -

Qwen 2.5 7B Instruct [24] 7.62 26.87 53.69 -

Qwen 2.5 14B Instruct [24] 14.8 32.11 57.68 -
* - value taken from “Open-Mistral-Nemo-2407” 

Looking at individual categories, certain model performance can vary 
between different tasks drastically. As seen in figure 7.4, “Gemma 2 9B 
Instruct” has very strong results when it comes to identifying the status of 
the robot’s hand after the conclusion of the plan but has some of the weakest 
results when it comes to the actual planning. Further investigation reveals 
that the model struggles with placing the correct item IDs in the respective 
actions, a critical failure with no discernible cause. 

⏎ 

⏎ 
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Figure 7.4 Planning success rates for the various models. 

7.4.3 Result comparison to VRAM usage 

As the available memory budget is an important metric to consider in the 
choice of models, the maximum amount of VRAM used during testing was 
noted for all weights tested and is relative to the model size in parameters. 
VRAM usage peaks during the “plan” step, as it has the longest instruction 
prompt. 

Figure 7.5 shows how the larger models that require more memory seem 
to plateau and perform on par with the middle of road models, meanwhile 
the performance of the sub-7B models is more scattered, where the largest 
of this group (“Phi3.5 mini Q4_K_M) shows the second worst results and 
is outperformed by the almost twice as small “Gemma 2B Inst Q4_K_M”. 
Its benchmark scores seen in Table 1.1 do not correlate well with real results 
seen in figure 7.3 and figure 7.4. Further investigation reveals complete failure 
of the “mobility” step, with which other sub-7B models did not struggle as 
much. An example comparison for the “mobility” question “shuffle the deck 
of cards”, “Llama 3.2 3B inst Q4_K_M” answers with “{“Mobile”: False}”, 
while “Phi3.5 mini Q4_K_M” answers with “’{“Mobile”: True}\nThe action 
of shuffling a deck requires moving the cards, which implies that you would 
need to leave your current workstation (the table) where they are placed. 
Therefore, this task necessitates mobility beyond just manipulating objects 
on­table without leaving it entirely.” A model being too verbose is a problem 
from performance perspective, as even if the model can generate the correct 
answer, the additional time spent generation unnecessary tokens slows the 
overall execution time of the system. It also should be noted that all the 

⏎ 
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Figure 7.5 VRAM usage of the tested models. 

text generated after the answer has no contribution to it, rather the model 
is “justifying” why it printed the answer it did. 

7.4.4 Result comparison to Benchmark performance 

Comparing the test scores against the BFCL benchmark results, it can be seen 
in figure 7.6 that the models with higher benchmark scores show better results 
overall, while the default model massively over performs. The “Qwen2.5 3B 
Inst Q4_K_M” performs well on the “planning” tasks which most other small 
models struggle with which is reflected in the BFCL results, however on fur­

ther inspection of the generated outputs, it seems that all “Qwen2.5” models 
have a problem with following the defined structure of “CoT” reasoning, 

Figure 7.6 Testing results relative to model performance on the BFCL. 

⏎ 

⏎ 



7.5 Conclusions 161 

typically ignoring the “My hand: <object>” part, which all the other models, 
even the ones that fail most of the plans, do maintain, which might imply a 
different training approach from the other model families. 

7.5 Conclusions 

Development of an LLM-based system in a resource constrained environment 
faces many challenges. Besides the obvious limitations on model size, a 
general problem that such systems may encounter is the over-specializations 
of prompts for certain applications to not only a specific model (Llama 3 
8B Instruct), but to specific weights (Q4_K_M precision) which complicates 
the adaptation of the system to different models. Tests performed showed 
that larger models with higher rated benchmark performance were unable to 
surpass the performance of the default model, falling short. Perhaps more 
concerning is the fact that the models that almost matched the performance 
typically did so by making a different set of mistakes. A similar trend 
was seen between different quantization precisions – lower precisions lose 
performance, yet going higher does not seemingly improve it. While larger 
precisions did show better results than larger models, considering that both 
would require rewrites of the prompt content, what should be the criteria used 
to decide where to invest time in? As locally testing all the various models and 
their finetunes is simply not viable, trusted benchmarks are a critical aspect 
when it comes to deciding on what weights to spend development time. But 
it seems that certain prompt content may favour one model over another. 

This implies the need to solve two problems. The first problem is to 
eliminate the variance that comes from weights making minor but differ­

ent mistakes, which requires developing the existing system further with 
more advanced prompting methods, however the main drawback will be the 
increase of execution times, which at some point may no longer be practical 
for a robotic system. Second problem relates to weight “onboarding” to an 
existing LLM-based system by a more elaborate validation system that is 
capable of rating new weights without bias for specific weights. Both changes 
should strive to reduce the need for rewriting of prompts and to improve trust 
in the reliability of LLMs to perform these tasks. 

More research is needed to better understand the deployment of the more 
compact LLM models in robotic systems and on the edge in general, but this 
impression may simply be the result of the research cycle, given how recent 
many of the innovations and performance jumps in local LLMs have been. 
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Abstract 

Vision Transformers (ViTs) achieve high accuracy in multiple vision-related 
tasks; however, substantial computational and memory demands limit their 
deployment on resource-constrained edge devices. ViTs process images by 
splitting them into uniform patches, treating each patch as a separate token. 
Since not all regions are equally important—detailed areas may require more 
tokens, while broader regions need—fewer optimizing token processing is 
essential for improving efficiency. To enhance computational performance, a 
hybrid token reduction approach is implemented, integrating token merging 
and pruning strategies. The strengths of CTS, which merges semantically 
similar and adjacent patches using a CNN-based policy network, and DToP, 
which halts the processing of tokens that can be predicted with sufficient 
accuracy in the early layers of the network, are combined in this method. 
A reduction in computational complexity of up to 2× is shown by the 
experimental results, with only an approximate 1% drop in accuracy observed 
on the NVIDIA Jetson AGX Orin 64GB. Exporting a pruned PyTorch model 
to TensorRT remains a challenging task that requires considerable effort. The 
difficulties involved are emphasized, and additional work needed to achieve 
full compatibility with ONNX export standards is outlined. 
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Keywords: vision transformer, semantic segmentation, token reduction, 
token merging, model optimization, computational efficiency, computational 
complexity, edge device. 

8.1 Introduction and Background 

Vision Transformers (ViTs) have achieved outstanding results in various 
vision tasks, but their substantial computational and memory requirements 
pose major obstacles to deployment on resource-constrained edge devices. 
A combination of software and hardware innovations has emerged to tackle 
these challenges, focusing on reducing computational complexity, memory 
consumption, and improving power efficiency. For example, ViTA [1] intro­

duces a dedicated hardware accelerator that optimises ViT inference for 
real-time applications on edge devices, reducing computational overhead 
and enhancing efficiency. Another approach [2] utilises an integer-only sys­

tolic array accelerator to minimise power consumption and computational 
demands. Additionally, the ME-ViT accelerator [3] offers a memory-efficient 
FPGA-based solution that optimises data flow and storage, lowering memory 
usage and power consumption. The 109-GOPs/W FPGA-based accelera­

tor [4] marks significant progress by incorporating a weighted data flow 
mechanism that minimizes energy consumption. This approach prioritizes 
data reuse, optimizing resource efficiency and reducing power usage. On 
the other hand, researchers have explored various optimization techniques, 
including quantization, distillation, and pruning to bridge the gap between 
the high performance of ViTs and the constraints of edge environments, 
making them more practical for resource-limited settings. For instance, 
MobileViT [5] introduces a variant of ViTs that merges convolutional neural 
networks (CNNs) with transformers, resulting in a lightweight model that 
maintains high accuracy while being suitable for mobile and edge devices. 
TinyViT [6] employs knowledge distillation to create a smaller, more effi­

cient transformer model that retains high performance, making it ideal for 
edge applications. Similarly, EdgeViTs [7] are specifically designed for edge 
devices, incorporating optimized attention mechanisms and downsampling 
strategies. 

ViTs typically generate visual patches by splitting an image into a uni­

form, fixed grid, where each grid cell is treated as a distinct token. Though 
straightforward, this approach overlooks the varying complexity of image 
content, as certain regions can be represented with fewer tokens due to 
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their homogeneity. For example, in an image depicting a busy street, tasks 
such as identifying vehicles and pedestrians may necessitate a higher density 
of tokens. In contrast, broader areas of the image, such as the sidewalk 
or the sky, may require significantly fewer tokens. This disparity in token 
necessity raises an important question: is it truly essential to process such 
a large number of tokens at every layer of the network? Given that the 
computational complexity of ViT scales quadratically with the length of input 
sequences, a reduction in the number of tokens presents a viable strategy 
for decreasing computational costs. By intelligently selecting and utilising 
tokens based on their relevance to the task, performance can be optimised 
while simultaneously reducing the resource demands on the model. 

In this context, our work introduces a hybrid token reduction mechanism 
aimed at enhancing the efficiency of ViTs for semantic segmentation tasks. 
This method integrates two cutting-edge techniques: patch merging and early-

pruning. A class-agnostic CNN-based network, trained independently from 
the ViT, merges semantically similar and adjacent patches, while early-

pruning stops the processing of tokens that can be confidently predicted in the 
early layers, reducing unnecessary computations. We implement this method 
with semantic segmentation transformer models, specifically ViT-Base and 
ViT-Tiny, and perform experiments on the NVIDIA Jetson AGX Orin 64GB 
platform. 

8.2 Related Work 

Token reduction techniques are generally tailored to the specific task they 
address. State-of-the-art methods predominantly focus on classification. In 
this case, token pruning methods often permanently eliminate tokens, as 
they no longer affect the outcome. However, in dense prediction tasks like 
semantic segmentation, patches cannot be completely discarded, as each one 
plays a role in the pixel-level predictions needed for detailed results. For 
such tasks, ViTs handle a large number of tokens, where both the size and 
number of tokens must be carefully selected to preserve essential details 
while minimizing computational complexity. Given the demands of dense 
prediction tasks, not all token reduction methods are suitable, with merg­

ing techniques generally proving more effective than pruning approaches. 
Unlike pruning, which irreversibly discards tokens and risks losing critical 
information, merging aggregates similar patches, retaining essential details. 
This approach allows the model to maintain accuracy while reducing com­

putational complexity by carefully selecting which tokens to combine based 
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on their relevance, thereby providing the flexibility needed to adapt to the 
complexities of different image content. Among the token reduction methods 
extended to support dense prediction tasks is DynamicViT [8], [9] that 
employs a dynamic token selection mechanism. Similarly, ToFu [10] has 
produced notable results in image generation tasks, highlighting its potential 
in areas requiring dense, detailed predictions. The authors of TCFormer [11] 
propose their method as a general solution applicable to a wide range of 
vision tasks, such as object detection and semantic segmentation. Nonethe­

less, TCFormer faces a major drawback: the computational complexity of 
its KNN-DPC algorithm increases quadratically with the number of tokens, 
which undermines its efficiency, especially when handling high-resolution 
images. 

To the best of our knowledge, only three token reduction methods 
have been specifically designed for the segmentation. One such approach is 
Content-aware Token Sharing (CTS) [12], which introduces a class-agnostic 
policy model using a CNN network trained separately from the ViT. CTS 
identifies whether adjacent image patches belong to the same semantic class; 
if they do, they can share a common token. This is achieved through binary 
classification to form fixed-size groups of patches within the input image, 
ensuring spatial coherence while eliminating the need to process unnecessary 
tokens. Another approach, Dynamic Token Pruning (DToP) [13], enables 
early-pruning for tokens, allowing simpler tokens to complete their pre­

dictions earlier in the network. DToP divides the transformer into distinct 
stages and utilizes auxiliary blocks for early prediction generation. It also 
incorporates the attention-to-mask (ATM) module [14] as the segmentation 
head, which improves its efficiency in handling dense, pixel-level predic­

tions. Finally, SVIT [15] introduces an innovative method that utilizes a 
lightweight two-layer MLP (Multi-Layer Perceptron) to dynamically select 
tokens for processing within the transformer block. One of its key features 
is that it prunes tokens while retaining them in feature maps, enabling 
their reactivation in later layers. This ensures that important information is 
preserved, even if some tokens are not processed in the early stages of the 
network. 

8.3 Methodology 

Re-evaluating the traditional fixed-grid approach in ViTs paves the door 
to more efficient architectures that can handle diverse visual tasks with 
greater precision and reduced computational overhead. In the vast majority of 
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images, there exist homogeneous regions where it is unnecessary to process 
redundant patches separately. By minimizing the number of input patches, 
we can reduce the total number of tokens handled by the ViT blocks. This 
approach helps prevent the system from expending resources on superfluous 
tokens, leading to lower energy consumption. This drives our investigation 
into improving the efficiency of ViTs through a token merging and prun­

ing strategy tailored for inference on edge devices, specifically aimed at 
enhancing performance in semantic segmentation. Our method integrates the 
strengths of two state-of-the-art techniques: content-aware patch merging 
through CTS and early token pruning via DToP. Figure 8.1 outlines the 
proposed hybrid token optimization mechanism. Tokenization initiates the 
process, dividing the image into a regular grid of patches. To minimise the 
number of patches that need processing, we utilise a class-agnostic CNN 
network to merge neighboring, semantically similar patches. Next, the token-

sharing module transforms these non-uniform size patches into tokens Zi 

Figure 8.1 Outline of the Proposed Hybrid Token Optimization Technique. ⏎ 
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using a linear embedding function as follows: 

Zi = fembed (Pi) (8.1) 

where Pi  represents the group of patches obtained from the image, in which 
each patch pi ∈ P is defined as a sub-region of the image, and fembed (.) the 
embedding function that maps into supertokens Zi. 
As in DToP, the ViT backbone is organised into M stages, with auxiliary 
heads identifying high-confidence tokens that are masked and excluded from 
further calculations. Let C denote the set of high-confidence tokens, where 
each token is determined by a confidence score ck ∈ C : 

ck = f (zi) if confidence (zi) > threshold (8.2) 

This operation is performed on carefully selected layers, specifically after 
a certain number of transformer blocks. Finally, the model processes the 
remaining tokens to generate the final output through per-token predictions. 

8.3.1 Content-aware Patch Merging 

To apply the CTS method to any conventional transformer-based model, it 
is necessary to incorporate a token sharing function Zi, a token unsharing 
function, and a policy model. The class-agnostic policy network determines 
which patches are eligible to share a token prior to their entry into the 
ViT. It focuses on grouping only square neighboring regions, facilitating the 
seamless reassembly of tokens at the output of the ViT backbone. CTS comes 
with a lightweight CNN network to generate probability scores for each 2 × 2 
patch group. It is based on the EfficientNetLite0 model [17], pre-trained on 
ImageNet-1K [18]. This model predicts a similarity score S for a window of 
n patches ωj = {p1, p2, . . . pn} : 

S = σ W T (ω) (8.3) 

where Wp is the learned weight matrix of the policy network and σ(.) is the 
sigmoid activation function. 

Finally, only the top 103 patch windows ωj are merged into 2×2 groups, 
based on the highest-ranked probabilities. As a result, the number of patches 
that are converted into tokens is significantly reduced (Figure 8.2). For 
example, a 512×512 resolution input image traditionally produces 32×32 
patches, with each patch covering 16×16 pixels, resulting in 1 024 patches 
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Figure 8.2 Results of Patch merging: grouped patches in blue, individual patches in red. 

to process. After applying the CTS method, only 715 patches are sent to ViT, 
reducing the number of tokens by 30%. 

8.3.2 Early-Pruning 

The core concept of DToP is to identify easy, high-confident tokens in the 
intermediate layers and exclude them from further computations. After a 
predetermined number of attention block layers, the model directs tokens 
to an auxiliary segmentation head, which adapts the ATM, and applies a 
stopping criterion based on the confidence of its predictions. Specifically, at 
stage M, a confidence score c(m) is calculated for each token Zi, which is 
formalized as follows: 

Z(m + 1) = {zi | c(m) < θ} (8.4) 

where Z(m + 1) represents the set of tokens passed to the next stage. Tokens 
with confidence scores exceeding a predefined threshold θ are classified as 
high-confidence tokens and are discarded, while the low-confidence tokens 
proceed further through the network. This underscores the significance of 
strategically positioning auxiliary heads within the network. Placing them 
too early could make it difficult for the model to accurately predict the 
class of any tokens. We adopt the recommendations from the original DToP 
paper concerning hyperparameters and the positioning of auxiliary heads, 
acknowledging that they may not be optimal in all scenarios. 

⏎ 
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8.4 Experiments 

We integrate our hybrid token reduction mechanism into the SegViT seman­

tic segmentation framework [14], which serves as the baseline for our 
performance comparison study. All experiments are performed using the 
MMSegmentation (mmseg) toolbox [19], which allows for easy customiza­

tion of models by combining different backbones. We integrate ViT-Base, 
which includes 12 encoder layers, a 768-dimensional hidden layer, and 12 
attention heads, alongside ViT-Tiny, which features 12 encoder layers, a 192­

dimensional hidden layer, and 3 attention heads. Both process images by 
dividing them into 16×16 pixel patches. We follow the standard training 
settings in mmseg and use the same hyperparameters as the original papers. 
For DToP, we adopt the configuration recommended by the authors, and 
split the ViT backbone into three stages with token pruning occurring at 
the 6th and 8th layers for ViT-Base. This setup is intended to achieve an 
effective balance between computational cost and segmentation accuracy. 
Additionally, we choose to examine a model divided into two stages and 
position the pruning head after the 8th layer. Since the authors did not 
provide configurations for ViT-Tiny, we applied the same configuration as 
ViT-Base, as ViT-Tiny contains the same number of blocks. Experiments are 
conducted on ADE20k [20], a dataset focused on semantic segmentation. 
Mean Intersection over Union (mIoU) assesses segmentation accuracy, while 
giga floating-point operations (GFLOPs), measured with fvcore package [16], 
reflect model complexity, and frames per second (FPS) indicates throughput. 

For inference on the NVIDIA Jetson AGX Orin 64GB, we primarily use 
PyTorch because of its flexibility and ease of use during model develop­

ment. To optimize performance and fully leverage the hardware capabilities 
of the NVIDIA Jetson platform, TensorRT is the preferred option. How­

ever, we encountered several challenges when exporting pruned models to 
ONNX and TensorRT. While PyTorch 2.4 supports all necessary layers, it 
presents compatibility issues with the OpenMMLab libraries. Specifically, 
the mmseg framework, which depends on MMCV (a foundational library 
for computer vision tasks) and MMEngine (a runtime engine for managing 
training, validation, and inference loops), complicates cross-compilation with 
the latest Python and the preferred CUDA version. Although we ultimately 
succeeded in validating the ONNX export, TensorRT indicated a size mis­

match in one of the backbone layers. It appears that a specific layer contains 
parameters not supported by TensorRT, necessitating further investigation to 
find a solution. 
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Table 8.1 Performance of Token Reduction Method integrated with ViT-Base 

Method mIoU [%] GFLOPs FPS 

SegViT 48.3 112.8 6.8 
+CTS 47.8 75.4 13.3 
+DToP@[6,8] 46.1 86.3 3.9 
+CTS&DToP@[6,8](ours)* 47.2 63.0 12.7 
+CTS&DToP@[6,8](ours) 47.7 62.1 4.5 
+CTS&DToP@[8](ours) 48.3 68.3 6.5 
*on a single A100GPU 

Table 8.2 Performance of Token Reduction Method integrated with ViT-Tiny 

Method mIoU [%] e GFLOPs FPS 

SegViT 37.8 12.0 15.6 
+CTS 37.3 7.6 15.4 
+DToP@[6,8] 38.0 9.9 8.2 
+CTS&DToP@[6,8](ours)* 37.7 6.8 19.0 
+CTS&DToP@[6,8](ours) 37.7 6.8 9.3 
+CTS&DToP@[8](ours) 38.5 6.9 13.1 
*on a single A100GPU 

Table 8.1 and Table 8.2 summarise the performance achieved by the 
model in FP32 format. The results show that integrating our hybrid token 
reduction method into SegViT allows us to maintain a comparable mIoU, 
with segmentation accuracy loss kept within a maximum of 1%. This method 
achieves a reduction in complexity of up to 45% for ViT-Base and 42% 
for ViT-Tiny. By applying only the token merging via CTS, we observe a 
reduction in computational complexity for ViT-Base and ViT-Tiny of 33% 
and 37%, respectively. The early-pruning technique via DToP impacts both 
computational complexity and inference speed, with the number of auxiliary 
heads playing a crucial role. Although placing the pruning heads at the 6th 
and 8th positions yields a 23% reduction in GFLOPs for ViT-Base. This 
advantage comes at the expense of increased inference time, which can slow 
the process down by nearly a factor of two. 

Figure 8.3 illustrates the inference time for each layer of the model, 
including the auxiliary heads used for pruning. It shows that pruning tokens 
with segmentation heads equipped with ATM modules tends to be excessively 
slow, underscoring the need for future work to focus on optimization. Given 
this observation, a single auxiliary head presents the best trade-off between 
reducing complexity and time inference. 

Figure 8.4 and Figure 8.5 display visualized predictions, where the num­

ber of pruned tokens increases from bottom to top. In “easy” samples, most 

⏎ 
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Figure 8.3 Layer-by-layer analysis considering GFLOPs and Throughput (FPS) for pruning 
heads placed at positions 6 and 8 

tokens are pruned after the 6th ViT block, while in “hard” cases, the majority 
of tokens are retained until the final layer. The second auxiliary head (at the 
8th layer) was often unable to prune a significant number of tokens, as it was 
placed too soon after the first head. This highlights that using two pruning 
heads in smaller networks like ViT-Base and ViT-Tiny is not always necessary 
or effective. 

Figure 8.4 ViT-Base segmentation results with pruned tokens masked in black 

⏎ 

⏎ 
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Figure 8.5 ViT-Tiny segmentation results with pruned tokens masked in black 

8.5 Conclusion 

We introduced a hybrid token optimization mechanism specifically designed 
for semantic segmentation, which merges semantically similar neighboring 
patches and incorporates dynamic token pruning based on an early-pruning 
strategy. Implementing our on-the-fly pruning approach significantly influ­

ences architectural design, requiring careful attention to resource allocation 
and dynamic token management. Nevertheless, proposed token reduction 
mechanism can seamlessly transition to a fixed-token strategy. By simply fix­

ing the number of top-k most confident tokens pruned by each auxiliary head, 
rather than relying on the threshold θ, we unlock several advantages. This 
streamlines hardware design by providing predictable resource allocation and 
optimizing performance. It also enhances memory management, improves 
scalability, minimizes overflow risks, and enables parallel processing. Our 

⏎ 
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token reduction technique has been integrated into transformer models (ViT-

Base and ViT-Tiny) within the mmseg framework. Through experiments 
conducted on established segmentation benchmark with an NVIDIA Jetson 
AGX Orin 64GB, we showed that this optimization method can lower compu­

tational costs by up to 45% while maintaining accuracy with minimal impact. 
Nevertheless, while using auxiliary heads to prune high-confidence tokens 
lowers computational complexity, it significantly affects inference speed. We 
suggest that future work concentrate on exploring methods to optimize the 
architecture of auxiliary heads. Despite its advantages, the complex mmseg 
framework and the dynamic pruning can complicate model export, as both 
ONNX and TensorRT require a consistent model structure. Future work will 
tackle these challenges, aiming to create a more seamless and efficient export 
pipeline. Efforts will focus on verifying the compatibility of the pruned mod­

els with TensorRT and ensuring consistent shapes for all inputs to conditional 
layers. This may involve modifying the mmseg framework to include shape-

alignment operations or developing custom ONNX operations to address 
shape mismatches. 
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Abstract 

With a rising demand for ubiquitous smart systems, processing and inter­

preting large quantities of data generated on the edge at a high velocity 
is becoming an increasingly important challenge. Machine learning (ML) 
models such as Deep Neural Networks (DNNs) are an essential tool of 
today’s artificial intelligence due to their ability to make accurate predic­

tions given complex tasks and environments. However, Deep Learning is 
computationally complex and energy intensive. This seems to contradict 
the characteristics of many edge devices, which have only limited mem­

ory, computational resources, and energy budget available. To overcome 
this challenge, an efficient ML model design is crucial that incorporates 
available optimization techniques from hardware, software, and method­

ological perspective to enable energy-efficient deployment and operation 
on the edge. This work comprehensively summarizes recent techniques for 
training, optimizing, and deploying ML models targeting edge devices. We 
discuss different strategies for finding deployable ML models, scalable DNN 
architectures, neural architecture search, and multi-objective optimization 
approaches, to enable feasible trade-offs considering available resources and 
latency. Furthermore, we give insight into DNN compression methods such 
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as quantization and pruning. We conclude by investigating different forms of 
cascaded processing, from simple multi-level approaches to highly branched 
compute graphs and early-exit DNNs. 

Keywords TinyML, energy efficient AI, neural architecture search, pruning, 
quantization, cascaded processing. 

9.1 Introduction 

With the rise of the Internet of Things (IoT), the need to interpret large 
quantities of data from embedded sensor systems has become ubiquitous. The 
possible application domains are nearly endless, ranging from Smart Cities 
over sustainable resource use to agriculture and many more. Yet, including 
computationally complex data processing with models like Deep Neural Net­

works (DNN) seems contradictory to the characteristics of small, embedded 
devices, which usually have substantial limitations regarding energy usage 
and computing capabilities. To overcome this challenge, multiple approaches 
have been taken to reduce the energy footprint of machine-learning models, 
often referred to as TinyML. This work will survey recent literature concern­

ing the most prominent aspects in this field with a focus on embedded sensor 
systems, which we define as: 

• Processing element embedded in a device made for a specific application 
• Computations are done by a microprocessor, microcontroller, or FPGA 
• Optionally includes an acceleration unit (NPU, DSP, etc.) 
• Reduced or no operating system 
• Battery or energy-limited 

The study starts with scalable DNN architectures in Section 2 Scalable 
Deep Neural Architecture search to find efficient network topologies in Sec­

tion 3. The review DNN compression methods to optimize neural networks 
during and after their training are reviewed e.g., Pruning in Section 4 and 
Quantization in Section 5. The survey is concluded by looking at cascaded 
systems in Section 6, which allow partial execution of machine-learning 
models. Section 7 provides a short summary and discussion. 

9.2 Scalable Deep Neural Network Architectures 

Scaling DNNs, i.e., increasing their capacity, is a commonly used technique 
to control the trade-off between the performance of a DNN, e.g. accuracy, 
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and its resource requirements. The most common form of scaling is achieved 
either by adding more layers, changing the resolution of the input, or chang­

ing the network’s with, e.g. by increasing the number of filters in a DNNs 
convolutional layer, see Figure 9.1. In the following we provide an overview 
of relevant scalable DNN architectures commonly used on edge platforms. 

Figure 9.1 Illustration of commonly used approaches for DNN scaling. DNNs can be scaled 
by either (a) widening the input of the DNN, (b) deepening the DNN by adding more layers 
and residual skip connections, or (c) increasing the resolution of the feature maps by adding 
more filters. 

9.2.1 Residual networks 

Residual networks [1] have been proposed to facilitate the training of very 
deep neural network architecture. Training such architecture is often hindered 
by problems such as the vanishing/exploding gradient problem or degradation 
problems caused by the depth of the DNN [2]. ResNet attempts to address 
these problems by explicitly fitting layers to a residual mapping instead of 
the entire underlying mapping. The authors hypothesize that it is easier to 
optimize the residual mapping than the original unreferenced mapping. They 
argue that “to the extreme, if an identity mapping were optimal, it would 
be easier to push the residual to zero than to fit an identity mapping by a 
stack of nonlinear layers”. In feedforward networks, residual mappings can 
be realized by introducing “shortcut connections,” which are connections that 
bypass one or more layers. In the case of ResNet, the shortcut connection 
simply performs an identity mapping and is then added to the result produced 
by the stacked layers it bypasses. Therefore, introducing it adds almost no 
computational complexity (just an elementwise added operation). 

The standard “residual block” used by the authors in their proposed 
ResNet architectures consists of two fully convolutional layers and a bypass 

⏎ 
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connection. However, given the exploding training times for very deep neu­

ral networks, the authors also propose an alternative “bottleneck” block. It 
consists of three convolutional layers (instead of two), where the first and 
the last are 1 × 1 pointwise convolutions, leaving the intermediate layer as a 
bottleneck with smaller input/output dimensions. 

9.2.2 MobileNet 

MobileNet [3] is a class of DNNs that specifically focuses on deployment 
on edge platforms, both from a size and runtime perspective. One of the 
main features of the architecture is the heavy use of depth-separable con­

volutions, “which is a form of factorized convolutions which factorize a 
standard convolution into a depth wise convolution and a 1x1 convolution 
called a pointwise convolution”. This means that instead of performing both 
filtering and combining inputs into a new set of outputs as one operator 
(standard convolution), the operation is factorized into a separate layer for 
filtering and a separate layer for combining. The main advantage of this 
approach is that the factorized representation drastically reduces both the 
computational complexity and the size of a DNN model compared to using 
standard convolutions. 

To enable scalability, the authors introduce a width multiplier parameter. 
The role of the parameter is to thin a network uniformly at each layer. 
Furthermore, they introduce a depth scalar parameter, which is multiplied 
by the spatial dimensions of the initial input of the network and as a result 
also scales down the activation tensors of all subsequent layers. In recent 
years, the authors of the original MobileNet paper have presented two updated 
versions of the MobileNet architectures. MobileNetV2 [4] is very similar to 
its predecessors, except that it uses “inverted residual blocks with bottle-

necking features”. As in the original MobileNet architectures, these blocks 
consist of a depth-separable convolution but also include a third linear 1x1 
convolutional layer that is not followed by any nonlinearity, e.g., ReLU. The 
authors claim that “experimental evidence suggests that using linear layers is 
crucial as it prevents nonlinearities from destroying too much information”. 
In addition, the blocks introduce a shortcut connection like that of residual 
blocks. However, the authors explain that while in regular residual blocks 
the expansion layers, i.e. the high number of channels, are connected by 
the shortcut, here the bottleneck layers, i.e. the low number of channels, are 
connected. Hence the name “inverted residual block”. The advantage of this 
inversion is a much more memory efficient design. 
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MobileNetV3 [5] improves on its predecessors by introducing lightweight 
attention modules based on squeeze and excitation networks [6] in the 
bottleneck structure. Furthermore, all layers are upgraded with a modified 
version of the swish nonlinearity (h-swish), which the authors claim is faster 
to compute and more quantization-friendly. Both the swish operator and the 
squeeze and excitation layers use the sigmoid operator. Since this can be 
expensive to compute on some platforms, it is replaced by the hard sigmoid 
(piecewise linear approximation of the sigmoid function). In addition, par­

ticularly expensive layers of MobileNetV2 have been redesigned to be more 
efficient. This includes the last layers of the previous architecture, where the 
authors describe that they were able to „drop three expensive layers at the end 
of the network at no loss of accuracy.“ 

9.2.3 EfficientNet 

EfficientNet [7] is a class of eight differently scaled DNN architectures 
(B0-B7). The scaling is performed as a combination of depth, width, and 
resolution scaling, which the authors call compound scaling, and which they 
control by an additional parameter ϕ. The authors note that increasing the 
three available scaling dimensions comes at different costs which means that 
a trade-off between the parameters must be made. For example, the authors 
mention that for regular convolutional operations, doubling the network depth 
parameter will double the FLOPS, but doubling the network width parameter 
or resolution parameter will even quadruple the FLOPS. 

As their baseline network, the authors use a regular CNN (B0) tar­

geting 400M FLOPS, which the authors searched for by using a multi-

objective neural architecture search that optimizes both accuracy and FLOPS, 
and which they based on their previous work [8]. The authors usedy ew

FLOPS(m)ACC (m) ∗ as their optimization objective, where ACC (m)
T 

and FLOP  S(m) denote the accuracy and FLOPS of the model while m and 
T denotes the target FLOPS, and w = −0.007 is an additional hyperparame­

ter used to control the trade-off between the two metrics. From their baseline 
network (B0), the authors then use a two-step process to derive all seven other 
architectures (B1-B7): 

• STEP 1: assuming twice as many resources are available as a starting 
point and then do a small grid search of the three scaling parameters for 
depth, width, and resolution. 
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• STEP 2: fix the best-found depth, width, and resolution parameters as 
constants and scale the baseline mesh with different ϕ using to get the 
final set of architectural trade-offs B1-B7. 

9.2.4 Scalable weights 

Another common approach to achieve dynamic scalability at runtime is to 
adapt trainable parameters (“weights”) based on the received input. A con­

ditionally parametrized convolutional layer (CondConv) is proposed in [9] 
that can be used as a drop-in replacement for standard convolutional layers. 
Their design parametrizes the kernels of a regular convolution as a linear 
combination of n experts W1, . . . , Wn weighted by α1, . . . , αn functions of 
the input learned by gradient descent. The authors argue that “this is much 
more computationally efficient than increasing the size of the convolutional 
kernel itself, because the convolutional kernel is applied at many different 
positions within the input, while the experts are combined only once per 
input”. In conclusion, CondConv can introduce the same amount of additional 
capacity as MoE while being more computationally efficient by requiring 
only one convolution. 

Deformable convolutions [10], [11] implement the concept of dynamic 
receptive fields by sampling feature pixels during the computation of con­

volutions from adaptive locations based on the input. The offset of each 
sample is generated using an additional convolution that generates an offset 
field based on the input feature map. As a result, deformable convolutions 
generalize various transformations for scale, (anisotropic) aspect ratio and 
rotation. The concept of weight prediction, first proposed by [12] allows for 
directly modifiable weights in a feedforward network that are contextually 
modified at runtime by a second controller network. The authors propose 
this architecture as a memory efficient alternative for representing temporal 
information compared to recurrent neural networks. The idea was adapted 
to more modern DNN architectures by [13], [14]. Here, the filters of a 
convolution are dynamically generated from the input using an additional 
“filter generating network”. The two inputs of the convolution can be either 
identical or different, depending on the task at hand. 

9.2.5 Practical Considerations 

Scalable DNN architecture helps to easily adapt a network to a given set of 
resource constraints, often by simply tuning a set of hyperparameters that 
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do not require extensive prior knowledge about the internal structure of the 
DNN. This makes the architecture presented in this section ideal candidates 
for deployment on edge systems or other resource constraint environments. 
In addition, scalable DNN architectures are versatile in that they can easily be 
used in combination with other techniques such as neural architecture search, 
pruning, and quantization, which we will discuss later in this review. 

9.3 Neural Architecture Search for Resource Aware DNN 
Deployment 

The search for a feasible DNN architecture that can be deployed on an 
edge system with given resource constraints is typically formulated as a 
multi-objective hyperparameter optimization (HPO) problem [15], solving a 
black-box function that maps from a set of DNN architecture-specific hyper-

parameters to a set of target metrics such as accuracy, memory consumption, 
latency, or throughput, on which platform-specific constraints are defined. 
In this definition, sampling the black box is equivalent to training a DNN 
with a specific configuration on a given dataset. Often synonymously used 
with HPO is Neural Architecture Search (NAS). NAS describes the process 
of finding good DNN architectures in an automated, non-human controlled 
way. Although it is primarily concerned with only maximizing DNN perfor­

mance, i.e., solving a single-objective optimization problem, most concepts 
can be intuitively extended to a resource-aware multi-objective search. As a 
result, multi-objective NAS for edge platforms has recently become more 
of a focus as well, e.g. [16, 8]. There are three approaches to NAS that 
are prominently discussed in the literature: First, black-box HPO [17]-[20], 
second, differentiable NAS [21], [22] and third, zero-cost NAS [16], [23], 
[25]-[30]. Black-box HPO works reliably and can be easily extended to the 
multi-objective case, but it is also slow and often inefficient sample, requiring 
many different DNNs to be trained and evaluated. 

Differentiable NAS relaxes the optimization problem so that the archi­

tecture can be optimized as part of the regular training of a DNN. However, 
recent research suggests that differentiable NAS has stability problems and 
does not generalize well [24]. Finally, zero-cost NAS is very time-efficient 
since it does not train DNNs directly but uses an empirical surrogate model. 
As a result, it does not provide accurate information about the performance of 
an architecture, but only simple statistics derived from the surrogates [31]. In 
the following, we discuss each of the three approaches and their implications 
for resource-aware NAS. 
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(a) Blackbox Multi-Objective Optimization (b) Differentiable NAS (c) Zero-Shot NAS 
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Figure 9.2 Three types of NAS are considered in the literature: (a) For black-box multi-

objective optimization, many DNNs must be trained. However, optimisation results in a Pareto 
set of exact trade-offs between the different objectives. (b) Differentiable NAS returns only a 
single trade-off but is time and resource efficient because it optimizes the DNN during a single 
training run. (c) Zero-shot NAS allows fast DNN specialization for deployment goals, but the 
performance of the proposed trade-offs is only estimated. 

9.3.1 Black-Box Multi-Objective optimization 

The most common approach to solving HPO problems is black-box opti­

mization. A traditional approach to tackle black-box (multi-objective) opti­

mization is evolutionary algorithms (MOEA), one of the most common being 
NSGA-II [32]. As an example, [33] explore hyperparameter and compression 
parameter optimization using evolutionary algorithms for DNN deployment 
and combine it with pruning and quantization. A drawback of MOEA is that 
due to their population-based nature, they are sample inefficient, which can 
be time and resource consuming in the case of NAS, where many DNNs need 
to be trained and evaluated. 

To overcome this problem, Bayesian black-box optimization [34] can be 
considered as a more sample-efficient alternative to MOEAs. Here, cheap 
to evaluate surrogate models, usually Gaussian processes (GPs), are used to 
approximate the black-box objective functions. During optimization, for each 
trial performed, a nested optimization is performed on the GPs, which have 
been previously fitted with an acquisition function based on all trials observed 
so far. The result of this nested optimization is in turn used to propose the next 
parameterization (or set of parameterizations) to the outer optimization loop, 
which in turn evaluates them on the actual objective functions, thus repeating 
the iterative optimization process. 

Black-box optimization for HPO has also been regularly combined with 
reinforcement learning (RL). For example, [17] observed that a DNN archi­

tecture can be defined by a variable-length string, and that it is therefore 
possible to use a recurrent neural network (RNN) to generate such strings. 
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The authors call such an RNN a “controller”. By training the DNNs (child 
networks) generated from the strings emitted by the controller, accuracy on a 
data set can be obtained, which in turn can be used as a reward signal. This 
signal can then update the controller (i.e., the controller learns to improve its 
search over time through RL). 

Another approach to neural network design with reinforcement learning is 
based on using a Q-learning agent that samples a CNN topology conditioned 
on a predefined behavior distribution and the agent’s prior experience [18]. 
The authors define the layer selection process as a Markov decision process. 
The agent sequentially selects layers via an €-greedy strategy until it reaches 
a termination state. Like [17], the reward given to the agent is constructed 
from the validation accuracy of the generated network. 

In addition, the authors use a replay buffer that stores the network topol­

ogy and predict performance on a validation set for all sample models. This 
means that if an already trained model is resampled, it is not retrained, but 
the previously found validation accuracy is presented to the agent. 

A major problem with all black-box HPO approaches is that they require 
many different DNNs to be trained and evaluated, which can become a time 
and resource consuming task. In addition, black-box optimization struggles 
with large parameter spaces, as the sampling complexity increases exponen­

tially with each parameter added to the search space, an effect informally 
referred to as the “curse of dimensionality” [35]. 

9.3.2 Differentiable NAS 

Unlike Black-box HPO, Differentiable NAS [21], [22] does not search over 
a discrete set of candidates architectures but instead relaxes the search 
space to be continuous. As a result, the target architecture can be optimized 
with respect to the performance of the validation/test dataset using gradient 
descent, solving the problem of having to evaluate many different architec­

tures. Since gradient descent is more data efficient than regular black box 
search, differentiable NAS can achieve competitive performance to NAS 
while requiring much less computational resources. 

The search space considered by differentiable NAS consists of compu­

tational cells as building blocks of the final architecture. Each cell is an 
acyclic graph containing an ordered sequence of nodes. Each node is a latent 
representation, e.g. a feature map, and directed edges connecting them are 
operations that transform the latent representation. This means that each 
intermediate node is computed based on all its predecessors. 
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Differentiable NAS can be seen as a bi-level optimization problem. The 
goal for the architecture search is (a) to find architecture, i.e., a combination 
of building blocks that minimise computational complexity and (b) a set of 
trained weights associated with the architecture that minimizes the training 
loss. 

Another variant of differentiable NAS is hierarchical NAS [36], [8]. It 
not only searches at a cell structure level but also at network structure level, 
thereby formulating a hierarchical search space. The authors noticed that 
in modern CNN design the outer network level controls spatial resolution 
changes, while the inner cell level controls specific layer-wise computations. 
Regular NAS follows this principle as well but only automatically searches 
the inner cell level while the outer network level is designed by hand. This 
can become problematic for use cases which are sensitive to spatial resolution 
changes. 

9.3.3 Zero-Cost neural architecture search 

Like differential NAS, zero-cost NAS attempts to minimize the search costs 
associated with black-box optimization. However, unlike differential NAS, it 
focuses on a redundant learning strategy to minimize computational cost by 
using a well-trained weight-sharing model, i.e., a supernet from which many 
architecture variants, i.e., subnets, can be drawn at zero-cost. To find the best 
architecture α∗ under given resource constraints, a zero-cost proxy metric is 
used that can score a subnet without training and validation on a dataset. 

Several proxies have been discussed in research: [26] use the overlap 
of activations between data points in untrained networks, [27] quantify the 
expressiveness of an architecture, which they call Zen-Score, while other 
works used gradient-based zero-cost proxies such as the gradient norm to 
estimate model performance [28–20]. 

In recent research, zero-cost NAS approaches have been proposed to 
easily allow for specialization of network architectures to different target 
platforms. This allows for an efficient search of architectural variants for 
differently scaled edge systems. 

For example, once-for-all∼networks [16] provide an optimization strat­

egy tailored to a multi-objective search space with different device and 
resource constraints. To achieve this, the authors decouple network training 
and search. During the training phase, the authors train a single network 
using a technique they call Progressive Shrinking. Once the single network is 
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trained, different submodels are sampled from it and evaluated, requiring no 
further (re)training. These subnetworks can have different input resolutions, 
different kernel sizes or filters in their convolutional layers, and a different 
number of layers. 

Another example of network specialization using zero-cost NAS is Pre-

NAS [25], where the authors improve the efficiency of regular black-box 
optimization (which the authors call “one-shot NAS”) by combining it with 
zero-cost NAS. To improve search efficiency, the authors propose to construct 
a reduced (“preferred”) search space based on high-quality architectures 
selected under various resource constraints using zero-cost NAS, which is 
easier to search by black-box optimization than the original “full” search 
space. 

9.3.4 Practical considerations 

One of the biggest challenges that must be considered when using NAS as 
part of DNN deployment for embedded targets is the typically large amount of 
time required by the techniques we presented in this section. This is especially 
true for the black-box optimization which, while generally providing con­

sistently good results, requires extensive sampling of the underlying search 
space which is the most expensive part in NAS. Other techniques presented 
in this chapter, namely Differential NAS and Zero-Cost NAS attempt to 
alleviate this problem, either by relaxing the problem to be differentiable 
so that it can be solved as part of network training or by relying on cheap­

to-sample, often model-based surrogates of the expensive to sample search 
space. However, both techniques have caveats that should be considered: 
Differential NAS has been shown to have robust problems with optimal 
architectures often found to generalize poorly [24]. Furthermore, Differential 
NAS does not produce a Pareto front from which an optimal trade-off can 
be selected, but only a single architecture that is considered optimal after 
training. Many Zero-Cost NAS techniques, while allowing extremely fast 
DNN specialization for different deployment targets and resource constraints, 
report only simple statistics about found architecture candidates, not actually 
trained and evaluated networks. To summarize this section, choosing the best 
NAS strategy in the search for DNN architectures feasible for edge deploy­

ment is a trade-off between search time and the quality of the result obtained. 
For the best possible results, black-box optimization, ideally combined with 
Bayesian optimization, should be chosen, while for fast but less accurate 
results, zero-cost NAS techniques should be preferred. 
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9.4 Deep Neural Network Pruning 

A common way to achieve compression of DNN to allow its use in resource-

constrained environments is DNN pruning. Pruning is based on the idea 
that some of the trained parameters of a DNN can be removed, i.e. pruned, 
without significantly degrading the accuracy of the network. It is based on 
the understanding that most neural networks are overparameterized and have 
redundancy in their trained weights [37]. The approach is well known and has 
been discussed by several authors as early as the late 1980s [38]-[40]. 

While at first pruning was mainly proposed with better network general­

ization, less overfitting, and improved learning speed in mind, today it has 
become a popular technique to achieve DNN compression with minimal or 
no loss of accuracy. 

The simplest way to prune a DNN is to set a subset of its trainable 
parameters to zero during training resulting in sparse parameter tensors. By 
setting parameters to zero, they are removed from the scope of the optimizer 
used to train the DNN. Therefore, the removed parameters no longer affect 
the training and validation loss of the network. 

How pruning is performed during training can be roughly characterized 
by a few different parameters, which we will discuss in the remainder of this 
section. 

9.4.1 Pruning granularity 

There are two common techniques to perform DNN pruning: Unstructured 
Pruning and Structured Pruning. Their main difference is the granularity at 
which the techniques introduce sparsity into a DNN. 

Unstructured Pruning introduces sparsity by removing individual neurons 
from the parameter tensors of a DNN while structured pruning removes entire 
structures of neurons. Typically, Structured Pruning targets structures such as 
filters [41] or channels [42] in convolutional layers. However, it is possible to 
extend Structured Pruning to rows or columns of linear layers as well. 

An advantage of Structured Pruning over Element Pruning in the con­

text of DNN compression, is that pruned structures can not only be set to 
zero but can be completely removed from the parameter tensor. This is not 
possible with element pruning, which produces matrices of arbitrary sparsity. 
However, Structured Pruning also has drawbacks: Removing structures from 
a DNN is much more invasive than Element Pruning, and its implementation 
is not as simple as setting individual values to zero. In regular feed-forward 
DNNs, layers are usually connected in a sequence. Information is passed 
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through the network from top to bottom. Therefore, the output feature map 
of one layer becomes the input feature map of the next. By changing the 
shapes of the parameter tensors in these layers, the shapes of their input 
and output feature maps change as well. Therefore, removing structures from 
layers inherently means removing the data dependencies between them. This 
makes the implementation of Structured Pruning complex and requires a 
global view of the DNN structure. Structured Pruning becomes even more 
complicated in branching feed-forward networks, such as residual networks 
[1]. Here, data dependencies can span multiple layers run in parallel instead 
of just sequential layers. 

It is possible to apply Structured Pruning and Element Pruning to a 
DNN together. [43] describe how they first apply Structured Pruning to 
convolutional layers of a DNN and then apply Element Pruning to the 
remaining structures. They call this approach Hybrid Pruning. They argue 
that Structured Pruning is a coarse-grained method, while Element Pruning is 
a fine-grained one. Therefore, Element Pruning can be used to remove con­

nections that would otherwise be missed by Structured Pruning. In addition, 
Element Pruning and Structured Pruning can be used together by applying 
them to different layers or layer types in a DNN. 

9.4.2 Pruning heuristics and sensitivity analysis 

A major challenge in DNN pruning is to decide which elements or structures 
have the least impact on the validation loss of a DNN when removed. 

The most accurate approach to achieving optimal pruning would be to 
remove each structure or element of a network one by one and evaluate its 
impact on the loss. This is referred to as the oracle criterion [44]. However, the 
downside of this strategy is that it is extremely resource and time consuming. 
So much so that it is inapplicable in most scenarios. 

Therefore, other heuristics have emerged to approximate optimal pruning 
in a more computationally efficient manner. The process of quantifying 
the importance of parameter tensors of DNNs is referred to as Sensitivity 
Analysis [45]. Much research has been done in recent years to find good 
approximations for both Element and Structured Pruning techniques. In the 
following, we give an overview of some of the most used heuristics. 

9.4.3 Magnitude or threshold based heuristics 

Early work focused heavily on second-order derivative-based heuristics to 
approximate pruning. For example, [39] and later [40] propose calculating 
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saliency scores for elements to determine their usefulness. They then use 
these scores to zero out a certain number of elements that they consider to 
be the least useful. [39] call this approach optimal brain damage (OBD). 
To avoid having to compute the saliency using the oracle approach, their 
heuristic approximates the objective function of a neural network using a 
Taylor series. However, this method requires additional computation. 

As a result, more recent work has focused on simpler heuristics to approx­

imate the usefulness of the trained parameters. The most common ones use 
simple threshold functions [45], [46] They consider a parameter useful if 
its absolute value is above a certain fixed value. If instead the value of the 
parameter is below or equal to the fixed value, it is marked as a candidate 
for removal. The heuristics are generally based on the understanding that 
a higher value creates a greater activation and is therefore more likely to 
have a significant impact on a layer’s output than a smaller value. However, 
manually defining good thresholds requires extensive network analysis and 
is not intuitive. To solve this problem, most of the authors mentioned above 
approximate the distribution of values in the weight tensors of neural net­

works with a Gaussian distribution with a mean of zero. They then use the 
standard deviation of the distribution in combination with a scaling factor 
to automatically define pruning thresholds on a per-tensor basis. As a result, 
the only unknown variables remaining are the scaling factors. [45] derive 
these factors by increasing the sparsity in the layers of an unpruned baseline 
network and monitoring its accuracy changes. However, this is expensive 
because the baseline network must be trained first. 

9.4.3.1 L-Norm heuristics 
Threshold and magnitude-based approaches are not only useful for evaluating 
the importance of single parameters, but also for ranking complete parameter 
structures of neural networks. Therefore, a common way to evaluate the 
importance of such structures is to sort them by their l1-norm. [41] describe 
how they use the norm to estimate the overall size of filters in convolutional 
layers. Furthermore, using the norm also gives an estimate of how large the 
values in the resulting output feature maps will be. In addition, the l2-norm 
is sometimes considered as a means of classifying parameter structures in 
neural networks. 

9.4.3.2 Gradient Ranked Heuristics 
Another heuristic for structure pruning has been proposed by [44]. The 
authors present a parameter structure ordering heuristic based on Taylor series 



9.4 Deep Neural Network Pruning 195 

derived from the difference in loss when certain parameters are removed from 
a network. The approach is like the OBD heuristic described earlier in this 
section. This is also explicitly stated by the authors. Their resulting heuristic 
accumulates the product of the activation tensors and the gradients of the 
cost function with respect to the activation tensors. The gradients can be 
easily obtained via the backpropagation algorithm. Intuitively, the heuristic 
considers structures to be less significant if their parameters are close to zero 
and have a flat gradient. 

9.4.3.3 Activation based heuristics 
Another approach to approximate the importance of parameter structures 
is proposed by [47]. The authors analyze the sparsity of activation tensors 
during training. They do this by monitoring the average percentage of zero 
values (APoZ) found in outputs computed by rectified linear unit (ReLU) 
activation functions throughout the network. The higher the percentage of 
zero values generated by the ReLU, the less significant the structure is 
considered by the heuristic. [44] also mention the ApoZ approach in their 
paper. However, the authors caution that the approach may not perform well 
on early layers of neural networks. They note that early layers are typically 
trained to detect less defined features, resulting in denser activation tensors. 
Only for later layers, when feature detection has become more precise, do the 
activation tensors become sparse. 

9.4.3.4 Relevance-based heuristics 
Another criterion for pruning neural network structures is based on Layer-

wise Relevance Propagation (LRP) [48] originating from the field of explain­

able AI (XAI). This approach assigns relevance scores to individual neurons 
in a neural network. Traditionally LRP serves as an XAI method to highlight 
the relevant parts of a given input to generate a local explanation for interpret­

ing complex non-linear machine learning models, e.g. the relevancy of pixels 
of an input image can be highlighted in terms of a heat-map representing the 
influence of input parameters that are decisive for an image classification. 

This relevance-based pruning criterion for pruning CNNs works by itera­

tively pruning the least relevant units, i.e. weights or filters of a network. The 
relevance scores are obtained via back-propagation from the output layers 
to the input layers and are assigned to all neurons of all layers, where the 
main characteristic of LRP is the backward pass through a network that can 
be computed efficiently. The relevance scores are then used to identify the 
least relevant units, which are the ones that can be pruned to discard all 
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aspects of a network that do not contribute to the decision of a model. A 
pruned network can then be fine-tuned to recover possibly lost accuracy. 
This process is repeated until the desired level of compression is achieved. 
The LRP criterion is shown to be effective in reducing computational and 
parameter costs. Furthermore, based on experiments, the authors in [49] show 
that this pruning criterion performs consistently well or even better than 
state-of-the-art pruning criteria when model refinement and fine-tuning is 
applied. 

9.4.4 Pruning schedule 

A pruning schedule, sometimes called a pruning recipe, describes when, how 
often, and how much of a network is pruned during training. A very straight­

forward approach to schedule pruning is referred to as one­shot pruning. 
Its use has been described in early papers such as [39]. The general idea 
is to first train a network until it reaches a reasonable accuracy. Then, the 
whole network is pruned using a certain heuristic to remove the structures 
or elements with the lowest score. Based on this score, several of them are 
removed. Additionally, the authors found it beneficial to retrain the network 
after pruning. 

One-shot pruning schemes are also described in more recent papers, for 
example by [44, 45]. However, both authors also distinguish another type of 
pruning schedule. They call it the iterative pruning schedule. This approach 
focuses very strongly on the idea of pruning and retraining a network several 
times instead of just once. Therefore, not all parameters are removed at 
once, but step by step over several pruning iterations as part of training. This 
allows the network to adapt more gradually to the decreasing set of trainable 
parameters. 

Both authors also suggest specifying the number of trainable parameters 
to be pruned on a layer-by-layer basis rather than for the entire network. This 
is based on the understanding that the layers of a neural network may have 
different sensitivities to pruning. [44] show that some layers can be pruned 
much more aggressively than others before any degradation in the accuracy 
of a trained model becomes noticeable. 

An extension to iterative pruning schedules is presented by [50]. The 
authors build on the idea that the number should be gradually increased 
instead of removing a constant number of parameters in each pruning iter­

ation. They propose an algorithm that automatically increases the number of 
pruned parameters in a DNN over a range of n pruning steps based on a 
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few predefined parameters. They call this the Automated Gradual Pruning 
algorithm. They state that the intuition behind the algorithm is “to prune 
the network rapidly in the initial phase, when the redundant connections are 
abundant, and to gradually reduce the number of weights pruned each time as 
fewer and fewer remain in the network”. 

9.4.5 Practical considerations 

Pruning is a core technique when it comes to fine-tuning the size of a DNN for 
a given problem, i.e. dataset, during training. The technique has proven to be 
extremely versatile, even when combined with other compression techniques 
such as quantization or NAS. To conclude this section, we would like to 
point out some practical considerations when using pruning as part of a 
DNN deployment pipeline: First, structured pruning will lead to immediate 
performance gains because pruned structures can be transparently removed 
from tensors, resulting in fewer computations, without any changes to the 
environment used to run the DNN at runtime. Unstructured pruning, on 
the other hand, only creates sparse tensors that require support from the 
environment to be executed efficiently at runtime. Second, the choice of a 
reasonable pruning schedule is of great importance, with iterative pruning 
using Automated Gradual Pruning generally providing better results. Third, 
simpler heuristics such as L-normed-based heuristics offer a good trade-off 
between accuracy and speed, while LRP based heuristics can provide more 
informed decisions and tend to produce an overall better pruning result at the 
cost of often higher compute times. Still, the outcome of pruning using LRP 
depends highly on the network and layer types used, and multiple parameters 
need tuning to make it applicable in the general case, see [51]. 

9.5 Quantization 

One of the main methods to reduce the energy consumption of DNNs is 
to reduce their size and computational complexity using quantization [52]. 
Quantization of DNNs refers to the quantization of both the parameters 
(weights, biases, scaling factor ...etc.) and activations. DNN Quantization 
corresponds to some of or all the following benefits (depending on the model 
of quantization): 

• Reduction of the NNs’ size which reduces the required  energy to 
transmit and store the trained models when deployed on edge. 
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• Reduction in the complexity of the operations (mainly Multiply and 
accumulate MAC) leading to reduced power consumption of these 
operations, 

• Reduction in size (bit-width) of the NN parameters and activations leads 
to improved power efficiency regarding memory access, required buffers 
and moving the data around on the edge target device. 

9.5.1 Quantizers 

First, we would like to define what quantization is, its different types and 
all the relative terms. The mathematical operation maps the input space into 
quantified values in the output space and can be divided, in general, into 
uniform and non-uniform. As the name suggests, non-uniform quantization 
produces non-uniform output values which can be represented by a floating-

point and achieved using lookup tables. This is part of the model compression 
which will not be covered in this section, as it helps to reduce the model size 
for transmission or storage purposes but does lead to computational benefits 
or reduction in energy consumption. 

On the other hand, uniform quantization is the most common method used 
in DNN quantization. Here, the input space is mapped uniformly to the output 
space according to the following generic equation. 

y

where round() is a generic rounding function, s is a scaling factor, z is a 
zero-point, a and b are the minimum and maximum that define the range, and 

e  
round(x) +z, a, b , (9.1)s l xQ= c amp  

⎫
⎬ 

⎧
⎨ 

clamp(x, a, b) is a clipping function defined as follows: 

a  if  x  ≤a 
(9.2) clamp(x, a, b) =   x if  a < x < b   = min(max(x, a), b) .  ⎩ ⎭ 

b  otherwise   

The implemented Rounding has an important impact on the quantization 
procedure and results. Here we list some of the commonly user rounding 
schemes: 

• Nearest: round(x) =  lxl. 
• Round down: round (x) = lxJ. 
• Round up: round (x) = Ixl. 
• Stochastic rounding [53]: stochastic rounding rounds the values up or 

down stochastically, round  (x) =  lxJ + (p > x  − lxJ) where p is a 
random variable sampled from a uniform distribution. 
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• Adaptive rounding [54]: where each individual value is rounded up or 
down to minimize the overall loss in the network. 

Equation (9.1) defines an affine uniform quantization A.K.A. asymmetric 
uniform quantization. It can be further restricted by limiting a = 0  and b = 
2bw − 1 to produce integers with bit-width of bw. In addition to the benefits 
of reducing the operands bit-width and thus the required energy for memory 
access, the integer operations consume less energy [55] - [57] leading to even 
further energy savings. Additionally, a symmetric singed-integer quantization 
can be achieved by restricting a = −2bw−1 , b = 2bw−1 −1 and z = 0. Finally, 
we can restrict this to represent fixed-point arithmetic by limiting s to powers 
of 2. This restriction helps to reduce energy consumption further as it does 
not require any multiply or divide operations but rather only bit shifts. 

The quantization operation defined in equation (9.1) is irreversible, but an 
approximation can be achieved with: 

y y e e 
round(x)x≈x= s (xQ−z)= s clamp , a, b −z . (9.3)s 

The quantization error/noise is then measured using qe = x − x. This 
error affects the correctness of the operations, but it was found that NNs are 
resilient to such errors and the performance is negligible or can be managed 
using different methods. 

9.5.2 Granularity 

After we defined and explained quantization and rounding schemes, we will 
look at how to apply these to neural networks. The basic building block of 
NNs is the matrix multiplication A.K.A multiply-accumulate (MAC) defined −→ −→ 
as O = b + WX , where b is the bias vector, W is the weights array, and 
X are the inputs. This operation is then approximated as follows: 

→ 
O =  

−
b +WqXq , (9.4) 

where Wq and Xq are the quantized tensors w.r.t W and X . It is worth 
noting that the quantization parameters such as scaling factor, zero-point and 
range (bit-width) are set separately for the wights and activations. Equation 
(9.4) quantizes both the weights and activations it is also possible to quantize 
only the wights [58] – [59]. Weight-only quantization is generally simpler 
and easier but misses on a lot of the benefits of additionally quantizing 
the activations as the first only makes use of smaller size and less memory 
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access but still requires floating-point operations. On the other hand, quan­

tizing activations normally requires a dataset (unlabeled) to determine the 
appropriate range and scaling factors for each layer. The bias was left out of 
quantization as it normally required more bits to maintain high accuracy. E.g. 
the authors in [60] use 8 bits for the weights and activations and 32 bits for 
the bias. 

The quantizers (scale, zero-point, range, bit-width ...etc.) can be specified 
for each layer (weights and activation) separately, this is referred to as per-

layer quantization. Moreover, others have shown that reducing the granularity 
even further and performing channel-wise quantization (i.e. specifying a 
different quantizer per output channel/kernel) improves the results [61]– 
[63]. Others went beyond and quantized per-group of weights or activations 
[64]–[65]. The trade-of here is often that increasing granularity improves 
performance and accuracy but comes with an extra overhead in the form of 
extra parameters per quantizer and thus more memory access and required 
buffers. 

9.5.3 Methods 

Here, we discuss the two main categories to quantize NNs with minimal 
performance degradation and how do they compare. The first approach (Post-

Training Quantization PTQ) is simpler as it takes in a trained NN and 
performs the quantization after training, while the second (Quantization-

Aware Training QAT) is more complex as the quantization must be accounted 
for during training. 

9.5.3.1 Post-Training quantization 
Early approaches of quantizing NNs relayed on post-training quantization 
due to its simplicity. In these methods, the NN expensive computations 
(training) is performed once and then the trained NN can be quantized 
using different techniques. Using this method, NNs can be quantized to 8­

bit weights [62] and [66] or even 4-bit weights [59], [63], [64], [67] and [68] 
or a mix of the two [69] with zero or minimal degradation in accuracy and 
performance. 

Additional activation quantization is more complicated than weight-only 
quantization as it produces more errors that propagate though the network. 
E.g. In [70] the authors use 8-bit and kept the mixed activations with 
INT8/FP16 due to the high required dynamic range. Moreover, unlike weight 
quantization, activation quantization often requires training or validation 
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datasets to collect the statistics about the data to determine the quantiza­

tion range and scaling required. Yao et al. Managed to quantize the same 
large language model to 8-bit activations using Token-wise Quantization and 
knowledge distillation [69]. To determine the activation range, [63] uses 
the min/max and therefore no clipping occurs, while [63] uses Analytical 
Clipping for Integer Quantization ACIQ to clip the outliers and achieve a 
tighter range producing less overall rounding error. In [71], the authors get 
around the need for training or validation data by using distilled dataset that 
is designed to match the statistics of the original data. On the other hand, [72] 
learned a parameterized (range) activation function during training that can 
be used to clip the values. This approach, however, might not be considered 
as a post-training quantization approach as it requires changes to the training 
procedure. 

9.5.3.2 Quantization-Aware training 
In the previous section, we explained how a trained network can be quantized 
to 8-bit and even in some cases 4-bit weights and activations with minimal 
or no loss of accuracy. However, in most cases, quantizing the NNs beyond 
8-bits yields significant performance degradation. This degradation can be 
mitigated if the quantization is accounted for during training. This is com­

monly referred to as Quantization-Aware Training QAT [60], [73] and [74]. 
Simply put, the NN graph is updated with the same quantizers from Section 
6.1 into the parameters (weights, bias, . . . etc.), activations or both during 
training. This way the training of the NN will account for the quantization 
error producing more robust NNs. 

The biggest question in incorporating the quantization operation into 
training comes from back-propagation/gradient descent and its reliance on 

(a) Post-Training Quantization (b) Quantization-Aware Training 

Train NN Trained 
NN Quantize 

Val Data Training 
Data Quantize & 

Training QNN Trained 
QNN 

Training 
Data 

W Quant QW Layer 

Backward 
Trained 

QNN 

Figure 9.3 The workflow of the two main quantization methods: (a) Post-Training Quan­

tization and (b) Quantization-Aware Training (including the straight throw estimator for the 
backpropagation) 
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derivatives. Mainly, the rounding operation in these quantizers has zero 
derivatives almost everywhere. Therefore, we cannot back propagate the 
error to update the networks parameters. To solve this question, Begio et 
al. analyzed and studied four different approximations [75]. Of which, the 
most promising is the straight-through estimator [76]. This estimator is quite 
common due to the simplicity as it replaces the derivative with the identity 
derivative, and it’s proven to achieve the task of training. 

9.5.4 Practical considerations 

To make sure the review on NN quantization is comprehensive, a few 
practical considerations must be considered by the designers. 

• PTQ vs QAT: PTQ is generally preferred over QAT when the goal 
is INT8 or even sometimes INT4 due to simplicity. However, QAT 
is preferred for sensitive applications or when severe quantization is 
required. 

• Floating­point vs Fixed­point quantization: We have covered mostly 
Fixed-point quantization as it leads to reduction in model size and com­

putational requirements. On the other hand, Floating-point quantization 
is helpful to reduce the model size for compression purposes but does 
not lead to a reduction in computation requirements. This is because the 
model must be uncompressed to the original values for inference. 

• Fusing layers: The quantization operation can often be fused into the 
activation layer e.g. ReLU [63] to improve the quantization range as 
ReLU clips all the negative values anyways. Moreover, it can be fused 
into the normalization layer [69] and [77] to reduce the overhead cost as 
both operations require scaling and shifting the values. 

• Layer equalization: It is observed that quantization to <INt8 often 
leads to degradation of accuracy, especially in depth-wise convolutions 
due to the high dynamic range within the layer [78]. One method to 
compensate for the high dynamic range is to use a channel-wise quanti­

zation as mentioned earlier which introduces complexity as each channel 
will require a different scale and bias parameters. Another solution is 
to perform cross layer equalization [78], Batch norm tuning [77], bias 
correction [79] or weight factorization [80]. 

• Hyper­parameter selection: Quantization of NNs and especially QAT 
adds few more parameters that need to be set/optimized for best per­

formance (power/latency vs accuracy). This is not specific for NN 
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quantization, but it adds to the complexity for the optimization task. 
Refer to Chapter 4 for more details. 

9.6 Cascaded Processing 

In addition to the techniques mentioned above, it is also possible to reduce the 
energy footprint of a smart sensor system by introducing cascaded processing. 
Instead of using one big model, this approach relies on multiple models 
executed one after another (cf. Figure 9.4). By including exit points between 
models, the system can trigger the execution of the next one lazily, only 
using the energy needed for a particular decision. Each model in this chain 
should be designed in a way that builds upon the decision from the previous 
model(s). In this way, the processing of one model might suffice to conclude 
so that at every point, the execution may be aborted. 

C0 C1 C2 

L L 

L 

L 

L 

Figure 9.4 Example of simple cascade. Three classifiers are executed one after the other to 
classify three different labels. 

This section will cover the current most relevant literature for cascaded 
processing, starting with traditional hierarchical models and their applicabil­

ity to distributed sensor systems. Afterward, we will cover Early-Exit-NNs, 
which bring the same idea to neural networks. 

9.6.1 Hierarchical systems 

A typical example of a hierarchical system can be found in condition 
monitoring as depicted in Figure 9.5: Given a sensor system that should 

⏎ 
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C30 

LL L 
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C0 

C10 C11 L 

C20 C21 
L L 

Figure 9.5 Complex hierarchy with multiple levels. The classification flow is separated into 
different branches. 

classify the current machine status into different fault types and severities. 
The cascade’s first model could detect anomalies, classifying abnormal and 
normal behavior. As this decision can be made quickly, the model should be 
small and can be run continuously. If a fault has been found, the following 
model classifies fault types. At this point, the processing can be stopped if 
the found anomaly has been a false positive. Otherwise, the second model is 
followed by an additional model for each fault type that classifies the severity 
of each fault. In that way, the models in the severity level can be specifically 
tailored towards a distinct fault type, leading to a more efficient model for the 
individual decision. 

Building a foundation for hierarchical models, Silla and Freitas survey 
different applications for hierarchical classifications in [79]. While the pos­

sible application domains are interesting, this paper’s most relevant work is 
how the authors generalize hierarchical classification in a unified framework. 
First, they introduce a class taxonomy as a poset (C, ≺). C is a finite set 
of class concepts with a partial order ≺ over C, which is asymmetric, anti-

reflexive, and transitive. This definition matches a directed acyclic graph 
(DAG) but is often simplified to a tree structure, where each node is limited 
to one parent node.Additionally, the authors cluster models for hierarchical 
classification problems into four groups: Local classifier per node (LCN), 
Local classifier per parent node (LCPN), local classifier per level (LCL), and 

⏎ 
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global classifier (GC). LCN classifiers are found in models with a binary clas­

sifier at every node, whereas LCPN models can include multi-class classifiers. 
The LCL approach uses only one multi-class classifier per level, meaning 
no branching can be done with LCL classifiers. A GC uses just one big 
model to classify each label.Based on this definition, the authors categorize 
a hierarchical classification problem in a 3-tuple (Υ,Ψ,Φ) ,where Υ specifies 
the type of graph (DAG or Tree), Ψ whether a class label is associated with a 
single path (SPL) or multiple (MPL), and Φ the depth of labels from full depth 
(FD) to partial depth (PD). Additionally, they describe a categorization of 
different types of hierarchical algorithms as a 4-tuple (Δ,Ξ,Ω,Θ), where Δ in 
association with Ψ represents if the algorithm performs single path prediction 
(SPP) or multipath prediction (MPP), Ξ refers in line to Φ to mandatory leaf-

node prediction (MLNP) or non-mandatory leaf-node-prediction (NMLNP). 
Ω reflects the model’s ability to perform on tree or DAG-based problems as 
described with Υ. Θ reflects the classifier type (LCN, LCPN, LCL, or GC), 
as described above. 

The here described framework was initially introduced to categorize 
any hierarchical classification problem. However, for the goal of reducing 
the energy footprint of a model, the possible model structure usually boils 
down to 

(Δ,Ξ,Ω,Θ) = (MPP,MLNP, T, LCPN) . (9.5) 

In this setting, problems like the above-mentioned condition monitoring 
use case can use hierarchical machine learning to save energy. In the example, 
the no-fault label could be reached by either the first or second classifier, 
making the model MPP. Additionally, MLNP is mandatory for saving energy, 
as we want to be able to stop calculating at any helpful point in the hierarchy. 
Even though a tree model is not entirely mandatory, allowing additional links 
to nodes other than child nodes often makes no sense and just improves 
complexity. Additionally, we want to be able to tailor each classifier in the 
hierarchy to a specific task. Allowing for additional links would bypass this 
principle. An LCPN classifier is the most flexible approach for structures, 
permitting asymmetric taxonomies with branching while allowing multi-class 
classifiers at each node. 

With hierarchical predictions, another problem arises with partially cor­

rect predictions, which normally would result in a low score with standard 
metrics. In the condition monitoring example, the model might have correctly 
classified the fault but got the severity wrong. To approach this question, the 
authors recommend using the hierarchical precision, recall, and f-measure 



� � 

206 Recent Trends in Edge AI: Efficient Design, Training and Deployment 

introduced by [80], where PTi denotes a set consisting of the most specific 

classes predicted for the sample i as well as all its ancestors, and TTi the set 
holding the true most specific classes for i. Considering the ancestors of class 
labels, these measures address the problem of partially correct classifications 
in the final scores. 

| Pi∩TTi| | Pi∩TTi|i i 2·hP ·hRhP= � , hR= � , hF= . (9.6)hP +hR 
i | Pi| |TTi|i 

The usability of hierarchical machine learning for energy saving, specif­

ically for small sensor systems, has also been identified by [81] Here, the 
authors introduce a general description of a cascaded LCL model tailored 
towards lazily triggered stages. They differentiate between simple wake-up 
mechanisms, a two-stage hierarchy with only anomaly detection, and more 
sophisticated cascades. For the latter, they introduce a pass-on label, which 
a classifier can use to defer a decision. In this case, the decision is passed 
on to the next level, triggering further computations. A model’s pass-on rate 
(POR) directly influences the hierarchical metrics described above. A POR of 
1 would mean the decision is passed on to the final classifier for each sample. 
This leads to the hierarchical precision and recall metrics equaling their non-

hierarchical counterparts for the last classifier.Additionally, the authors assign 
each stage a cost measure, as more memory is needed with increasing stages. 
Combining these thoughts about POR, Cost, and hierarchical metrics, the 
authors introduce an upper bound for optimizing a hierarchy wrt. compu­

tational costs and memory. With this upper bound and cost measure, they 
carry out proof of concept with synthetic test cases to optimize the number 
of stages in different scenarios. These scenarios are compiled to include class 
distributions ranging from equal to extremely skewed, where some classes 
are more likely than others. The authors conclude that optimisation can find 
lower-cost hierarchical models for more skewed class distribution. This effect 
becomes apparent when considering the locality of the most likely prediction 
point in the hierarchy. As some labels are more likely than others, detecting 
these in the early stages can save a lot of energy. For the condition monitoring 
example, this effect can be observed for the first two classifiers. If the no-

fault label occurs most often, the hierarchy uses only the first (or, in some 
cases, the second) classifier. This leads to enormous energy savings as the 
computational complexity of each model should rise with the levels in the 
cascade. This phenomenon clearly shows the inherent data dependency of a 
hierarchical model regarding the reduction in energy consumption. The more 
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uniform the data distribution of the underlying problem is, the less effective 
a hierarchical approach becomes. 

One can also consider mixing different classifier types in the hierarchy 
to further elevate the benefits of hierarchical processing, as some decisions 
may need more complex models than others. However, with that idea in 
mind, the question of how to pick each model in the hierarchy arises. The 
authors in [82], [83] approach this optimization question with reinforcement 
learning. They train an agent to pick a model from a set of available models 
for each node in the hierarchy of an LCPN model. As the reward function, 
they use a cost measure based on the computational complexity of each 
possible model type, combined with the accuracy of the complete hierarchy. 
Therefore, the agent learns to make a trade-off between accuracy and energy 
consumption, which, in essence, leads to a multi-objective optimization prob­

lem. To improve that result, the computational complexity is replaced with 
a hardware-in-the-loop approach to accurately measure the resulting energy 
consumption during the agent’s training in [84]. While this work mostly 
validates the findings of [82], it shows slightly different behavior of the 
found agents. With real measurements, the agent picks an MLP more often, 
while the agent with the complexity approximation tends to use Random 
Forests. This behavior might be linked to compiler optimizations and caching, 
which can be beneficial for some models. This result shows that energy 
measurements should always be included to some degree when optimizing 
for a constrained device, as a theoretical measure cannot cover every possible 
factor of real-life systems. 

9.6.2 Distributed Computing 

Another area where a hierarchical model can be beneficial is distributed 
computing for IoT devices. [85] introduces a distributed hierarchical infer­

ence approach, where some nodes in the hierarchy are computed locally and 
others in the cloud. This has the benefit of saving communication costs that 
might be unnecessary. They look at a scenario with multiple connected IoT 
appliances, which all have some parts of the information needed for home 
automation. In a classic approach, all these appliances would send data to 
a central hub or cloud infrastructure at every time step, which leads to an 
immense communication overhead. However, some decisions are possible 
without knowing the context of the other devices. In the hierarchical context, 
these decisions can be made with small models running locally on the IoT 
device. If this is not possible, the devices may pass the prediction to the 
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cloud, triggering the next node in the hierarchy. The authors test this approach 
with three data sets from three application domains (urban energy demand, 
human activity, and server performance) with a decrease in system energy 
consumption of 62% for a taxonomy of MLPs.It should be noted that the 
authors used a DAG instead of a tree architecture for their models, as some 
nodes in the hierarchy connect to the same child node. This is because the 
cloud node(s) need information from multiple parent nodes because of the 
nature of IoT applications, where usually numerous sensors are required for 
a decision. Therefore, a typical hierarchy becomes a flipped tree and can only 
be described with a DAG. 

The described benefits of IoT devices are tested in a case study in [86], 
where the authors use a physical system to measure the energy consumption 
of an LCL model for human activity recognition. The model uses multiple 
different classifiers in a cascade that are partially executed on the device. 
As a novelty, they introduce an offload controller that decides if the model 
should be run on the device or offloaded to a central hub. This controller 
consists of an additional classifier that has been trained on binary labels, 
which are extracted from the original multi-class problem. In addition, the 
controller uses only the features necessary to compute the next hierarchical 
layer that might be offloaded. This means that the controller performs a 
reduced complexity pre-evaluation of the problem solved by the following 
levels to decide if the computation needs to be offloaded. The paper shows 
energy reduction of 3 times over the baseline of a purely offloaded system, 
including communication costs, while improving accuracy slightly. 

Taking the idea of split computing further, [87] introduces a dynamic split 
mechanism to split the computation between different models and a single 
DNN across multiple devices. In their proposed scenario, various IoT devices 
are connected to a hub. Based on the currently available network bandwidth, 
the introduced system can decide to hand off the computation to the hub. In 
addition, the authors train an agent with Q-learning to dynamically assign 
the network type (Wi-Fi, cellular, Bluetooth, etc.) for the data transfer of 
the remaining network layers. The authors can decrease the inference time 
by 13.5% compared to pure on-device execution, including communication 
time. However, it should be noted that no energy metrics are compared here, 
so while more time efficient, the shown approach might still draw more 
energy than pure on-device execution. Nonetheless, the approach should be 
considered when designing a hierarchical model. 
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9.6.3 Early-Exit Neural Networks 

Most hierarchies mentioned before were constructed of classical machine-

learning approaches like Support Vector Machines or Random Forests. Even 
though some architectures also used MLPs in their taxonomies, the work 
in [88] converts the concept of lazily triggered computations to Convolu­

tional Neural Networks. Like the NMLP principle for classic hierarchies, 
the BranchyNet introduced here includes exit points in the neural network 
architecture (cf. Figure 9.6). The network can stop computing if a decision 
can be made in some earlier parts of the network based on a confidence score. 
Like nodes in the classical hierarchy, the authors define a branch as a non-

overlapping subset of the complete network, with one entry point and multiple 
exit points. To train BranchyNet, the authors use a weighted formulation of 
the loss function which sums over the loss functions of each exit n with a 
weighting factor wn. In this formulation, any arbitrary loss function that uses 
a one-hot encoded output vector for the prediction and ground truth ŷ or y, 
respectively. θ describes the network’s parameter of the branch before the exit 
point n. The choice of wn influences the exit strategy of the network. Giving a 
high value for earlier exits causes more discriminative feature learning in the 
earlier branches. This leads to more early exiting but might compromise the 
accuracy. Contrarily, the network’s accuracy increases with higher weights 
for the later exits, but exiting in the earlier stages becomes rare. During 
training, the network is trained as one unit without exiting early. However, 
for the inference, the authors use the entropy of the output at each exit point 
to determine if the calculation can be stopped. The computation is stopped if 
it is lower than a threshold Tn, reducing the inference time. Again, Tn is a 
hyperparameter that influences the trade-off between accuracy and inference 
time but might also be set automatically based on experimental results. The 
authors use three basic CNN architectures (LeNet, AlexNet, and ResNet) with 
added exit points to test the approach. They sweep through various values 
for T, which allows for a trade-off analysis of accuracy vs. runtime. For all 
three basic architectures, the BranchyNet approach leads to an optimal vector 
T that achieves a 2x-6x average runtime decrease while maintaining similar 
or superior accuracy compared to the non-branched networks. In addition 
to these results, the authors also observe a decrease in cache misses with 
more aggressive values for T . This leads to the conclusion that with a smart 
branch design, this behavior could be exploited to use the cache of a system 
effectively. 
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Figure 9.6 General structure of an Early-Exit CNN. After some CNN layers, exits can stop 
the computation based on a confidence metric 

�Ny, y, θ) =  L �, y; θ . (9.7) 

A similar approach is taken in [89]. The authors also introduce exit points 
in the network, but instead of the entropy, they use a learnable decision 
function γn (σn (x)) as an exit strategy. Depending on the output of the pre­

vious CNN-layer σn, the decision function can decide to exit the execution. 
In addition, similar to mixed hierarchies with different model architectures, 
the authors propose a selection algorithm to fill branches in the early exit 
network with different architectures. They argue that easier classes might 
be classifiable with a simple AlexNet while others might need something 
more advanced like ResNet. With this approach, the authors achieve a speed­

up of 1.5x to 7.53x, depending on the acceptable accuracy degradation. For 
example, the adaptive strategy can have a speed-up of around 2x compared to 
ResNet50 while staying in the range of 1% in terms of accuracy loss. 

An additional implementation of an early exit strategy can be found in 

Lbranchynet (ˆ n=1 wn yexitn 

[90] called MSDNet. In their approach, branches are interconnected with 
a small classification network. The authors identify two problems with 
intermediate exits in standard architecture. Without any modifications, the 
early layers lack coarse-level features, which leads to worse classification 
results for earlier exists. Therefore, they introduce additional coarse features 
by adding parallel convolutional layers that calculate features on coarser 
scales. These features are concatenated with the ones from finer scales for 

⏎ 
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intermediate classification. This addition leads to a substantial increase in 
accuracy for the exists. 

The second problem is the interference of earlier classifiers with later 
ones. The authors noticed that adding intermediate classifiers for early exiting 
harms the accuracy at the final exit. Therefore, like a densely connected 
network, they add connections between earlier and later convolutional layers. 
In this way, the network should be able to forward information from earlier 
stages, which would otherwise be lost. After this change, the final exit 
becomes independent from the intermediate exits. 

To optimize Early-Exit-NNs for on-device execution, [91] introduces an 
on-device transfer learning approach to fine-tune the intermediate exits in 
the field. The authors first train a generic MSDNet with equidistantly placed 
intermediate exits. On-device, they personalize the global pre-trained model 
by training only the intermediate exits. Due to the structure of MSDNet with 
bypass connection spanning the whole network, re-training the intermediate 
exits does not affect the final exit’s performance. Therefore, they can use the 
classification result of the final prediction to teach the intermediate exists even 
if no labeled data is available in the field. They continue the personalization 
by tuning the threshold to decide if the calculation can be stopped at an 
intermediate exit. Like Multi-Objective Optimization, the authors use a small 
user-input data set to obtain a Pareto front to fine-tune the threshold. With this 
approach, the authors could measure a significant improvement in inference 
time and accuracy. 

In addition, further field testing is done in [92] with a modified version 
of BranchyNet. Instead of solely relying on the entropy to decide on the next 
branch, the authors include energy-aware criteria based on the battery level. 
Only a shallow branch is computed if the remaining capacity is lower than 
a threshold. Otherwise, the decision is based on the entropy, as described in 
the BranchyNet paper. The authors also conduct thorough energy profiling 
and hardware-aware optimization steps that are out of the scope of this work. 
Nonetheless, it shows the importance of optimising the target platform, as the 
authors can deploy their approach to a processor with just 24kB SRAM and 
128kB flash memory. In addition, they are also able to predict the battery size 
needed for their system. 

9.7 Discussion 

The highlighted literature shows that compared to flat classifiers, cascaded 
systems can decrease the latency by a substantial amount, which often 
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translates into a decrease in energy consumption. The type of hierarchy can 
vary from simple cascaded structures to DAG or tree structures with multiple 
branches. The key here is always the uneven distribution of data in real-world 
systems, where some labels are either more frequent or easier to predict than 
others. This leads to a system that can abort computation early if certain crite­

ria are met, which can be boiled down to the NMLNP property of hierarchical 
models. When interpreting nodes in a hierarchical model as sub-sets of a 
Neural Network, the NMLNP property can also be seen in early-exit-NNs, 
which also have the property to abort computation with intermediate exits. 
These architectures rely on course features computed by early CNN layers, 
which, for some labels, are enough to come to a correct prediction. Based on a 
confidence score, the system can stop computing at intermediate exits, which 
boils down to a hyperparameter optimization problem on thresholds. Depend­

ing on the thresholds, the network can trade between accuracy (regular usage 
of later exits) and energy efficiency (frequent usage of earlier exits). 
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Abstract 

RF sensing in wireless communication networks is a novel approach for 
motion detection, but it faces challenges in accurately localising motion 
which is crucial for confinement in lighting control use cases. A probabilistic 
model enables motion localisation through sensor fusion. However, in proba­

bilistic models the posterior estimations do not scale well with large networks 
as likelihoods of all possible system states need to be computed. It will be 
demonstrated that variational Bayesian techniques offer attractive approxi­

mations to the posteriors where the approximations require computational 
resources that scale with the number of nodes. This method is of general 
interest to large networks as it models nonlocal effects through localised 
updates. 

Keywords: RF sensing, sensor fusion, probabilistic models, variational 
inference, confinement. 

10.1 Motivation 

In a smart lighting system, one can control the lighting by sensing motion 
through the wirelessly connected lights (nodes) which is also known as 
RF sensing. For some background on RF sensing the reader is referred to 
Liu [1] and Wu [2]. Fluctuations in RSSI values, Received Signal Strength 
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Indicator, between nodes are strong indicators of nearby motion. For lighting 
control, the system should be able to detect human arm motions and steps as 
specified by the NEN norms [3]. As major motions generally lead to large 
RSSI fluctuations, it becomes a challenge for lighting control to sense minor 
motions within a room while not being sensitive to major motions just outside 
the room. An example situation is given in Figure 10.1. 

Figure 10.1 Downlights and indicated node pairs that are monitored for RSSI fluctuations. 
On the left a person working in an office and on the right a person walking on a corridor. 

Probabilistic hidden Markov models are popular for motion sensing for 
lighting control. Typically, parameters such as motion rate during presence, 
average duration of presence, and probability of entering a room are intro­

duced (see for example Papatsimpa [4]). These parameters can be used for 
propagating states and updating them with observations. 

For modelling the signal variations due to motions in the surroundings, it 
is natural to extend the probabilistic models by modelling crosstalk. Motion 
directly underneath a node pair is visible, but a fraction of said motion is also 
visible to nearby other node pairs. The introduction of crosstalk complicates 
Bayesian inference as the number of different presence states now scale 
with 2N where N is the number of presence areas. This essentially blocks 
the application of Bayesian inference for large networks. Another hurdle 
for large networks is the limited bandwidth for communication. In a mesh 
ZigBee network, the communication budget is 30-50 bytes per second per 
node, which limits the network size to about 50 nodes. 

The goal of this paper is to apply a probabilistic model for 
motion/presence localisation by monitoring fluctuations in RSSI values 
between nearby node pairs. Using a variational Bayesian method, one can 
approximate posteriors by maximising the so-called free energy. As we will 
see, the maximisation is an iterative process that only involves local interac­

tions. This leads to a scalable approach in which the computational power 

⏎ 
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and memory scale with the number of nodes. Moreover, the calculations 
can be distributed over the nodes themselves, enabling a truly decentralised 
approach. 

10.2 Spensor Fusion via a Probabilistic Model 

For localising motion, a probabilistic model will be constructed (see Bishop 
[5], Murphy [6] and Morey [7] for an introduction to probabilistic models). 
The probabilistic model has the fluctuation of RSSI values of the node pairs 
as observational data X. By monitoring the fluctuations in RSSI values of a 
node pair one effectively obtains a motion sensor. In the remainder of the 
article node pairs will be referred to as sensors. 

The probabilistic model contains hidden states of the physics in the 
various areas. These hidden states describe at each time instant t for each 
area: the presence s(t) and the motion m (t) . In addition, at each time instant 
the visibility of a motion from an area i to a particular sensor j is described 
by Cij (t). 

In order to simplify the calculation, one would like to make the Markov 
assumption which influences the choice for the value of the time-step. A 
simple model can be obtained by choosing the time-step to be larger than 
1 second in which case motion at time t only depends on the presence state 
at t but not on a previous motion state. As the RSSI fluctuations X(t) only 
depend on the m(t) and the probability that a motion is visible C to a sensor, 
one can write the distribution as 

P (X (t) ,m (t) , s (t) , s (t− 1) |C(t))
 

= P (X(t)|m(t), C(t)) P (mi (t) | si (t))P (si (t) | si (t− 1)) 
i 

P (si (t− 1)). 

Note that in the equation above it was assumed for simplicity that the 
presences in each area are uncorrelated. In Figure 10.2 an example of the 
interactions is given at a time instant. 

With the Markov assumption, the posterior can now be determined by 
Bayesian inference 

P (s (t) ,m (t) , C (t) |X (:t)) (10.1) 

P (X (t) |s (t) ,m (t) , C (t)) 
= P (s (t) ,m (t) , C (t) |X (:t−1)) ,

P (X (t)) 
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Figure 10.2 Bayesian network at a time instant showing the dependence between the various 
states and the sensor observations. 

where X(:  t)  denotes all RSSI fluctuations up and including t, and X(t) 
denotes RSSI fluctuations at time t. Assuming the independence of presences 
in areas one finds for each area i 

P (si (t) ,mi (t) |X (: t−1)) = P (mi (t) | si (t)) P (si (t) |X (: t−1)) 

P (si (t) |X (: t−1)) = P (si (t) | si (t− 1))P (si (t− 1) |X (: t−1)) . 
si(t−1) 

Note that the propagation of presence states involves a transition matrix 
P (si (t) | si (t− 1)). 

The posterior in Equation 10.1 will be computed at each time-step using 
variational methods (see also Attias [8] and Jordan [9]). By maximising the 
free energy one can approximate the posterior P (s (t) ,m (t) , C (t) |X (t)) 
by a probabilitty distribution q in terms of the KL-divergence DKL(P ||q). 
This yields 

P (s (t) ,m (t) , C (t) |X (t)) 
  

P (X (t) , s (t) ,m (t) , C (t))≈argmax q (s (t) ,m (t) , C (t)) log . 
q q (s (t) ,m (t) , C (t))

s(t),m(t),C(t) 

(10.2) 

For notational simplicity the explicit time-dependence will be dropped in 
the remainder. 

⏎ 
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In order to solve the equation above one often makes additional assump­

tions on the probability distribution q. However, the mean-field approxima­

tion such as q (s (t) ,m (t) , C (t)) = q (s (t)) q (m (t)) q (C (t)) is blocked 
as probability for motion during absence is zero. Zero probabilities lead to 
problems with the logarithms. Instead, we approximate q by 

 
q (s,m, C)= q (Cij |mi) q (mi|si) q (si) , (10.3)

i,j 

where q (mi = 1|si = 0)  = 0 and j refers to the sensor index. For nota­

tional simplicity the difference between the q’s such as q (s1) and q (s2) has 
been made implicit. Note that this approximation contains more distributions 
compared to the mean-field approximation; q (mi|si = 0)  has no relation 
with q (mi|si = 1). 

10.3 Update Equations 

Equation 10.2 can be solved by iteratively maximizing the lower bound 
'evidence. With each update for one of the q s the lower bound evidence gets 

increased. Please see Figure 10.3 for a subset of the network that is relevant 
for determining the states. Please note that moij is the visible motion towards 
sensor j excluding any motion from mi. 

Figure 10.3 Isolated part of the network that is relevant for determining the states. ⏎ 



      

  

  

� 

226 Scalable Sensor Fusion for Motion Localization in Large RF Sensing Networks 

In the following subsections the update equations for the various factors 
will be determined by plugging Equation 10.3 in Equation 10.2. In the 
derivation the following relation will be often employed 

� P (X|a)P (a)argmax q (a) (log  P (X, a) −log q (a)) =� y
′
′ 
e .q(a) 

′ P X|a P (a 
′ )a a 

(10.4) 
The relation can be proven by using the method of Lagrange multipliers 

and treating q (a) = 1  as a constraint (see also Arfken [10]). a 
It is instructive to work out the update equation in case a mean-field 

approximation would apply. Consider the example in Figure 10.4 and write 
q (s, t, u) as q (s) q (t) q (u). In this example the update equation for q (t) 
would be 

q (t) = argmaxq(t) 
� 

s,t,u 
q (s) q (t) q (u) log  P (X,s,t,u) 

q(s)q(t)q(u) 

= argmaxq(t) 
� 

s,t,u 
q (s) q (t) q (u) log  P (s|t)P (t|u)) 

q(s)q(t)q(u) 
� 

= argmaxq(t) 
t 
q (t) 

(10.5) 

log 
s 
P (s|t)q(s) 

u 
P (t|u)q(u) −log q (t) 

= s P (s|t)q(s) 
u P (t|u)q(u) 

� 

t 
′ s P 

y
s|t 

′ ′ 
′ 
eq(s) 

u P (t′|u)q(u) 

Figure 10.4 Example network with a mean-field assumption. ⏎ 
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In case t only takes two values (0,1) and t is the opposite value of t then 

  
q(t) � P (s|t) � P (t|u)q (t) = S log = S  q (s)log  + q (u)log  1−q(t) P (s|t) P (t|u) 

s u 
(10.6) 

where S is the Sigmoid function. 
Therefore, in order to update q (t) one only need to know the approxi­

mated posteriors of its direct neighbours. Moreover, Equation 10.5 is just a 
Bayesian inference in which the prior and likelihood are products of powers 
by how much the surroundings appear which is according to expectation. In 
the following subsection the update equations will be derived for the various 
' q s. In Figure 10.3 a part of the network is visualized which is useful when 

deriving the update equations. 

10.3.1 Update equation for q (Cij|mi = 0)  

Plugging Equation 10.3 in Equation 10.2 one finds 

q (Cij |mi = 0) = argmax q moij q (si) q (mi|si) 
q(Cij |mi=0) si,mi,moij ,Cij 

P (Xj ,moij ,si,mi,Cij )
q(Cij |mi)log 

�q(moij )q(si)q(mi|si)q(Cij |mi) 

= argmax  q(moij )q (si) q (mi = 0|si) 
q(Cij |mi=0)si,moij ,Cij 

P (Xj ,moij ,si,mi=0|Cij )P (Cij ) 
q (Cij |mi=0)log 

q(moij )q(si)q(mi=0|si)q(Cij |mi=0) 

= argmax  q (si) , q (mi=0|si) q (Cij |mi=0) 
q(Cij |mi=0) si,Cij 

P (Cij )log 
q(Cij |mi=0) 

= P (Cij ) 
(10.7) 

The result above is according to expectation as one cannot estimate 
transparency/visibility in absence of a source m. 

10.3.2 Update equation for q (Cij|mi = 1)  

Plugging Equation 10.3 in Equation 10.2 one finds 

q (Cij |mi = 1) = argmax 
q(Cij |m�i=1) 

q(moij )q (si) , q (mi|si) q (Cij |mi) 
si,mi,moij ,Cij 
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P (Xj ,moij ,si,mi,Cij )
log 

q(moij )q(si)q(mi|si)q(Cij |mi) 

= argmax  q(moij )q (Cij |mi=1)  
q(Cij |mi=1) moij ,Cij  

P (Xj ,moij ,mi=1,si=1,Cij )
log 

q(Cij |mi=1) 

= argmax  q(moij )q (Cij |mi=1) (10.8) 
q(Cij |mi=1) moij ,Cij 

q(Cij |mi=1)
logP Xj |moij ,mi=1, Cij −log 

P (Cij |mi=1)) 

q(moij =0)
P (Cij |mi=1)(P (Xj |moij =0,mi=1,Cij ))

= 
P (C′ 

ij |mi=1)(P (Xj |moij =0,mi=1,C′ 
ij ))

q(moij =0) 
C′ 

ij 

In the last line terms involving q moij = 1  can be omitted as they 
do not lead to differentiation for the different values of Cij . The result can 
be understood as a Bayesian inference where the amount of observation is 
determined by q moij = 0  . 

10.3.3 Update equation for q (m|s = 1)  

Plugging Equation 10.3 in Equation 10.2 one finds 

q (mi|si = 1)  
= max  q moij q (si) q (mi|si) q (Cij |mi)  

q(mi|si=1) j,si ,mi,moij ,Cij  

P (Xj ,moij ,si,mi,Cij )
log 

q(mo ij )q(si)q(mi|si)q(Cij |mi) 

= max  q m q (mi|si=1) q (Cij |mi)  
q(mi|si=1) j,mi,moij ,Cij 

oij  

P (Xj ,mi,Cij |moij ,si=1)
log 

q(mi|si=1)q(Cij |mi) 
q(Cij |mi)q(moij )P (Cij |mi)P (mi |si=1) P (Xj |mi,Cij ,mo ij )j,moij ,Cij q(Cij |mi) 

� ′ q(Cij |m i)q(moij )P (Cij |m i) 
′ P (m′ 

i|si=1) P (Xj |m′ 
i,Cij ,moij )m j,moij,Cij ′i q(Cij |m i) 

q(Cij |mi) 
P (mi|si=1) 

P (Cij |mi) (P (Xj |mi,Cij ,moij ))
q(moij =0) 

j,Cij q(Cij |mi) 

� ′ q(Cij |m i)P (Cij |m i) 
′ P (m′ 

i|si=1) (P (Xj |m′ 
i,Cij ,moij ))

q(moij =0) 
m j,Cij ′i q(Cij |m i) 

(10.9) 
The result above contains terms that originate from complexity 

P (Cij |mi) / q (Cij |mi). 
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10.3.4 Update equation for q (s) 

Plugging Equation 10.3 in Equation 10.2 one finds 

q (si)=argmax q moij q (si) q (mi|si) q Cij |mi 
q(si) 

j,si,mi,moij ,Cij 

P Xj ,moij , si,mi, Cij
log 

q moij q (si) q (mi|si) q Cij |mi 

∝P (si) 

j,mi,moij ,Cij 

� �q(mo ij )q(mi|si )q(Cij |mi ) 
P Xj |moij ,mi, Cij P moij P (mi|si) P Cij |mi 

q moij q (mi|si) q Cij |mi 

q(moij =0)q(mi|si)q(Cij =1|mi )∝P (si) P Xj |moij =0,mi, Cij =1 

mi,j 

q(mi|si) q(Cij |mi)  
P (mi|si) P Cij |mi  

× . (10.10) 
q (mi|si) q Cij |miCij 

10.4 Conclusions and Discussion 

In this article, a probabilistic model is developed for localising motion in 
a wireless IoT network. A hidden Markov model is employed to propagate 
presence states over time using a transition matrix, forming a new prior 
for presence at the next time instant. At each time instant, a variational 
Bayesian approach was utilised to translate sensor data (RSSI values) into 
posterior presence and motion states, accounting for potential crosstalk. A 
first preliminary result is given in Figure 10.5. 

The derived equations do not need to be applied to states in a particular 
order as each order will improve the lower bound evidence. This enables a 
distributed approach in which nodes apply asynchronous updates by taking 
information from their neighboring nodes. However, the iterations do increase 
network traffic, and it remains to be seen whether the network can handle the 
increase in communication. 

The number of iterations needed for convergence will generally depend 
on how sensitive RSSI fluctuations of node pairs are to motion in the vicinity 
as the probabilistic model handles nonlocal effects via iterations involving 
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Figure 10.5 First results for two areas being named 99 and 97. The model parameters were 
chosen such that area 99 is a corridor while area 97 is a meeting room. In the figure one can 
see that isolated sensor events of 97 before 15:49 do not lead to presence in area 97 as it is 
more likely they originated from area 99. After probablity for presence is high in area 97 then 
isolated sensor events of 97 at 15:50:15 do lead to an increase in presence in area 97. 

local updates. Future experimental studies are necessary to test the model for 
convergence and to quantify the improvements in motion localisation. 

Centralized or distributed, the number of iterations needed for conver­

gence may be reduced when considering techniques such as gradient descent. 
Using gradient descent one updates a group of states by a small amount. 
Iteratively updating (see also Kuusela [11]) may lead to faster convergence 
compared to iteratively updating each state. 

Although the use of variational Bayesian techniques led to simple update 
equations, a problem with the approach is that the obtained posteriors are 
often narrower than what would be justified. This is an effect of mini­

mizing the reversed KL-divergence. Obtaining over-confident posteriors is 
especially problematic for crosstalk parameters Cij as it highly influences 
future updates. Therefore, it is recommended to use the whole time-series 
when updating model parameters with variational Bayes. As an alternative 
one may consider in future studies expectation propagation as proposed by 
Minka [12] in which sequential updates should be feasible. Similarly, it would 

⏎ 
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be of interest to benchmark the obtained iterative algorithm with message 
passing algorithms such as RxInfer [13]. 
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Abstract 

In modern computer vision tasks, the ability to identify and track objects 
across different scenes and environments has become important for numerous 
applications, especially in transportation. Inspired by this need, we propose 
a method that leverages a multi-step process focused on extracting and using 
object features for object re-identification.The proposed pipeline includes 
the following steps: detecting an object, converting its features into a vector 
embedding, storing this embedding in a vector database, and then querying 
the database to find the same or similar objects based on their feature 
embeddings. This approach enables us to identify the same object across 
different images or cameras, even in varying locations. This is essential in 
scenarios like Vehicle Re-Identification. For such scenario, implementing this 
process on edge devices is crucial. Therefore, ways to tailor the pipeline and 
its outputs for edge devices are outlined. The paper details the pipeline’s 
structure along with the experimental setup demonstrating its application, 
particularly in vehicle re-identification. The pipeline achieves 70-80% re-

identification precision when dealing with vehicle images from our network 
cameras and above 70% Rank-1 accuracy when dealing with a CityFlow 
video track scenario. 

Keywords: vehicle re-identification, feature extraction, re-identification 
pipeline, computer vision, traffic monitoring. 
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11.1 Introduction 

Object recognition in photos and videos has long been a key area of research, 
with significant advancement driven by computer vision [1]. Initially, image 
classification addressed the question, “What is in the image?” followed by 
object detection answering, “Where and what are the objects?”—largely 
thanks to Convolutional Neural Networks (CNNs) and their variants [2][3]. 
This paper focuses on object re-identification, which is a sub-problem of 
image retrieval. Object re-identification aims to distinguish instances of the 
same class, such as vehicles and persons (as illustrated in Figure 11.1), across 
different scenes despite changes in conditions like scene, lighting , or object 
pose [4][5]. However, truly impactful re-identification research in 2024 must 
support edge computing. 

Because of the increase in processing latency and big data, edge com­

puting is becoming essential for real-time re-identification, especially in 
applications like traffic monitoring, where network cameras should transmit 
only processed results [6][7]. The volume of available video footage, and the 
influx of sensory data have made the large-scale accumulation of big data 
inevitable [8]. This is why fully automated systems are needed for processing 
data and re-identifying objects in smart cities. Manual processing by humans 
is not feasible, especially when real-time decisions are required. We propose 
a pipeline to handle these tasks of efficiently processing live video feeds and 
identifying objects across multiple scenes. The novelty of this research lies 
in the integration of state-of-the-art methods into a unified pipeline, tested on 

Figure 11.1 Re-identifiable classes in smart city environments. ⏎ 
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real-world vehicle re-identification scenarios that fit into smart city initiatives 
and traffic management using edge computing solutions. 

11.2 Related work and state of the art 

11.2.1 Object detection 

CNNs have been incredibly useful in computer vision tasks, including object 
detection. YOLO - the “You Only Look Once” model is one of the best 
performing and regularly updated choices. The latest YOLO v8 version has 
shown significant improvements in accuracy and speed [9], which is crucial 
for real-time applications like ours. 

11.2.2 Object feature extraction 

Feature extraction maps an image from its colour space to a higher-

dimensional feature space [10]. Before feature extraction, multiple pre­

processing stages are usually employed: normalization, thresholding, bina­

rization, resizing and others. We can expect a model to extract colour, texture, 
shape, motion and localization features. A model learns intra-class variations 
as features when training a model on objects of one class like face features in 
the case of facial recognition. 

As of 2024, CNNs became the predominant choice in object feature 
extraction thanks to their strong representation power and their ability to learn 
deep invariant embeddings [11]. 

11.2.3 Vehicle re-identification 

There are multiple benchmarks for Vehicle Re-ID. MBR4B-LAI model [12] 
tops the VeRi-776 benchmark, “A strong baseline” model [13] tops the 
CityFlow benchmark and the VehicleNet model [14] is best at the VeRi 
benchmark. We pay particular interest to [14] by Zheng et al. because of the 
baseline model that is applicable to all types of object re-identification and 
feature extraction. In [15] the same author first introduces us to their baseline 
model and its architecture and demonstrates its capabilities specifically in 
pedestrian re-identification. In further papers, however, Zheng et al. demon­

strate tailoring of this baseline to vehicle re-identification [16] and person 
re-identification [11]. We underline this baseline models usefulness by the 
versatility of its use in publications, its open code base and customizability 
and its entry into most benchmarks. The model is successful in Rank1 
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precision, according to the benchmark results on Papers with Code [17]. The 
model is implemented in Pytorch and is based on ResNet50 pre-trained on 
ImageNet, although this backbone is customizable. We use the surrounding 
project code for this model available on [18]. The author has provisioned 
tools to train, finetune, test and visualize the results of the inference process. 
We further refer to this model as “baseline model”. 

11.2.4 Available datasets 

The VehicleID introduced in [19] has each image associated with a vehicle 
ID. It is the dataset with one of the biggest unique ID collections and features 
pictures with different resolutions and quality of visibility as well as vehicles 
in motion state. Vehicles are mostly seen, however, from the front and the 
back only. The VeRi-776 was introduced in [20]. Each image is attached with 
vehicle ID, bounding box, type, colour, brand. The dataset has a smaller set 
of unique id’s compared to the VehicleID, but has better quality pictures, 
better visibility and vehicles from all angles not just back and front. The 
CityFlow dataset introduced in [21] is a traffic camera dataset consisting of 
synchronized HD videos from 40 cameras. The quality of images is high, and 
vehicles can be seen from many angles. The difference between this and the 
previous two widely used datasets can be seen in Figure 11.2. 

Figure 11.2 The difference between the distribution of vehicles for the (from the left) 
VehicleID, VeRi and CityFlow datasets. ⏎ 
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The VehicleX synthetic data can supplement these three datasets. It con­

tains generated images with domain adaptation from VehicleID, VeRi-776 
and CityFlow [22]. 

11.2.5 Edge implementation 

Requirements for a real-time system include implementing a network that 
follows the edge-computing paradigm. The edge-computing paradigm means 
that the video analytics run directly on the device and only the processed 
results and analytics are transmitted. [6] have developed a pilot project 
where they use mobility trackers using live CCTV feeds, with twenty sensors 
deployed over the city with the objective of citywide traffic monitoring in 
real-time. The devices had the ability to transmit the outputs either over 
Ethernet or LoRaWAN networks and had two main components: 1.) an 
NVIDIA Jetson TX2 high performance and power efficient embedded com­

puting device with special units for accelerating neural network computations 
used for image processing and running Ubuntu 16.04 LTS and 2.) a Pycom 
LoPy 4 module handling the LoRaWAN communications. 

11.3 Proposed methodology 

We propose a sequence of processes for object re-identification in the context 
of a smart city environment. It takes in video frames from camera x, detects 
the vehicles in the frames, crops images of the vehicles and saves them, turns 
the images into feature embeddings and saves them in a vector database. The 
same process is repeated for a different camera y ... z, so that vehicles can be 
re-identified from camera x to y ... z or vice versa. This has been illustrated in 
Figure 11.3. 

Figure 11.3 The proposed structure of the re-identification pipeline. ⏎ 
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During development, we split the pipeline into two parts – Vehicle 
counting and tracking and Vehicle Re-Identification. 

11.3.1 Vehicle detection, tracking and counting 

First step in the larger pipeline is object detection. We receive the videos 
from a network camera, detect the vehicles, get their bounding boxes and start 
tracking them. We use the YOLO v8 model for detection and the ByteTrack 
tracking package [23] to assign IDs to vehicles and track them through 
consecutive frames. 

Further we establish counting criteria for incoming and outgoing cars (for 
example entries and exits in an intersection). This can be done with the built-

in functions of ByteTrack, for example, drawLine - counting when a car drives 
past a drawn line as seen in Figure 11.4. The count, entry and exit times of 
cars should be continuously logged. 

Before testing re-identification, verifying the accuracy of the vehicle 
counting step is essential. However, as this falls outside the paper’s scope, 
we have intentionally excluded these sections. 

Figure 11.4 The implementation of the counting lines and ByteTrack in cameras (from the 
left, upper row) 1.,3. and (lower row) 2. 

11.3.2 Vehicle feature extraction and storage 

Consequently vehicles should be cropped out of the frame. Then the re-

identification model will turn the object features into n-dimensional vectors 

⏎ 
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that consist of natural, real or complex numbers, where one number represents 
a feature or a part of a feature [24]. 

We require a Vector database, so vectors can be stored and queried 
efficiently [25]. The database must contain cosine similarity search comple­

mented by metadata filters. The cosine similarity function is widely used and 
requires an input of at least two unit-length normalized vector inputs to output 
a vector distance [24]. We aim to store data in the form of 

Key:Value = ObjectId:ObjectFeaturesVector 

while more fields should be easy to add. 
For this we have chosen LanceDB – an opensource database for vector 

search, built for efficiency in handling vector data and integration with Python 
[26]. It is flexible in saving and querying data. 

We also introduce the following points of action: 

11.3.2.1 Datasets 
We create our own “real-world” dataset for testing from footage we have 
gathered from our network cameras. In our custom dataset we aim to collect 
images of as many vehicles as the limited service-road traffic flow allows 
us to. We also aim to have a similar number of images per vehicle (i.e. 4-6 
images, not more or less). These shots should be evenly distributed between 
far, medium and close distance and low, medium and high-resolution images 
respectively. 

We will also use the three widely used and public datasets that we’ve 
discussed in 2.4, to see which fits best for our real-world data and then 
combine the best performing standalone dataset with the Vehicle X synthetic 
data. 

11.3.2.2 Training hyper-parameters 
The training parameters and their default values are found in [27], including 
Backbone, Learning rate, Warm epochs, Batch size, and Erasing probability. 
To further explore the model’s performance, we conducted experiments by 
varying additional hyperparameters, specifically: 

• Colour jitter: enabled or disabled; 
• Size of the last linear layer: 256, 512, or 1024; 
• Cosine learning rate: enabled or disabled; 
• Stride: 1, 2, or 3. 
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These variations were designed to evaluate the potential impact of these 
hyperparameters on training outcomes. 

11.3.3 Edge device considerations 

While the pipeline has been tested on a desktop computer with an 8GB 
GPU, this setup provides a rough estimate of the computational load and 
performance we might expect on edge devices like the NVIDIA Jetson series 
[28]. Current work suggests that despite differences in power consumption 
and architecture, the constraints with desktop testing can offer insights for 
edge deployment that we wish to implement in the future. 

11.4 Experimental settings 

11.4.1 Receiving video from a Network camera 

Figure 11.5 The same car visible in our network cameras (from the left) 1., 2. and 3., 
respectively. 

To record “real-world” footage for the dataset we’ve envisioned in section 
3.2.1, we will use 3 AXIS P1427-LE Network cameras [29] that record 
footage from the same service road and a parking lot. We are receiving the 
video in 1280×960 resolution with ∼ 2 fps. The view from the cameras 
illustrated in Figure 11.5. are summarized in Table 11.1. 

When a vehicle is at the gates, camera 1 and 2 will see the car from the 
opposite sides (front and rear). Camera 3 is located deeper into the territory 
and generally sees the path of a vehicle driving down the service road with 
the gate in a far distance. 

⏎ 
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# Altitude 
(Above 
ground) 

Table 11.1 The 3 network cameras used 

Optimal Focal zone 
(Position, distance from 

cam.) 

Direction Sides of car seen 

1. ∼ 3m  centre of the frame, 4m 

2.  ∼ 3m further up the road from cen­

tre, 5-6 m 

3.  6-8 m Wider area around centre, 6-8 
m 

→  Front, Back, Sides and 
roof (for lower cars) 

←  More from the front and 
the back, but skewed sides 
and roof are visible 

←  front/back and roof of the 
car visible well, sides in 
poor quality 

11.4.2 Vehicle re-identification 

11.4.2.1 Testing and data annotation 
We have chosen the following datasets to conduct our experiments on. 

• Benchmark datasets. By using the three benchmark datasets we dis­

cussed in section 2.4, we can access reliable test data, standardize our 
test metrics and evaluate the re-identification model itself. 

• CityFlow test track video. We test the whole re-identification part of 
the pipeline and simulate an intersection scenario where we are re­

identifying vehicles with CityFlow test tracks. We will be using the 
scenario Nr. 1 (intersection S01) in this dataset, to re-identify vehicles 
from camera 1 to camera 4 [21]. There are around 2000 frames in each 
video and 91 unique vehicles seen. Both cameras point to the same 
intersection but from vastly different locations. 

• Custom test data. We have recorded footage from 3 of our cameras. 
All of them cover overlapping sections of a service road inside a closed 
territory. The vehicles were cropped from these videos and saved into 3 
folders, each for its own camera. This dataset contains 70-100 images 
from each camera, with ∼ 25 unique vehicle identities. We will use this 
data to, first and foremost, test the generalisation of our trained models 
to the actual data that we will use this pipeline on. 

11.4.2.2 Saving the feature extractions 
We will experiment with four methods (See their comparison in Table 11.2) 
for dealing with cropping vehicles from the frame and saving them into the 
database: 

⏎ 
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1. Basic Frame­by­Frame Saving: In this method, a feature extraction of 
a vehicle is saved in every frame a vehicle is detected. These vectors are 
saved separately under the same vehicle ID in the database. Hence, there 
are multiple feature embeddings for the same vehicle. 

2. Vector Summing: Instead of storing every feature vector separately, we 
maintain a single vector per vehicle. Each new embedding for a vehicle 
is summed with the existing vector, and the result is divided by the total 
number of updates, averaging the embeddings over time. This process 
keeps track of how many times the vector has been updated by adding 
an additional field in the database. 

3. Zone­Based Saving: The frame is divided into zones using a grid, and 
a vehicle’s feature embedding is saved once per zone it passes through. 
The zones can be seen illustrated blue in Figure 11.6. Typically, this 
results in 4-6 saved vectors per vehicle, depending on its trajectory as 
opposed to many more vectors when saving in each frame. Each instance 
of feature extraction is stored as a separate vector under the same vehicle 
ID. 

4. Zone­Based with Vector Summing: Similar to the previous method, 
but here we apply vector summing. The vehicle’s vector is summed for 
every frame in which a vehicle has changed zones. 

Figure 11.6 The implementation of the saving zones (drawn as blue rectangles) as seen on 
the CityFlow test track video. ⏎ 
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Table 11.2 Vehicle Cropping and Saving Strategies 

Method Number of saved Saving Embedding management 
vectors strategy 

Basic Multiple (all Per Frame New vector for each detection 
frame-by-frame frames) 
saving 
Vector Summing 1 Per Vehicle Sum and average of all 

vectors 
Zone-Based 4-6 (based on Per Zone New vector for each detection 
Saving zones) in new zone 
Zone-Based with 1 Per Vehicle Sum and average for each 
Vector Summing detection in new zone 

11.5 Results 

This section discusses the results of the experiments. 

11.5.1 Performance metrics 

• Rank­1, Rank­X Accuracy: Measures the proportion of examples for 
which the predicted label matches the single target label (Rank-1) or any 
of the top X predictions match the label (Rank-X) [30]. 

• mAP (Mean Average Precision): Average precision (AP) is the average 
of accuracy values at all rankings where relevant objects are retrieved, 
and mAP - the average of all APs provided [31]. 

• Micro Precision and Micro Recall: Calculated by aggregating true pos­

itives, false positives, and false negatives across every query (instance) 
and doesn’t consider possible class over/under representation [32]. 

• Macro Precision and Macro Recall: Precision and recall calculated 
separately for each class and then averaged, giving equal weight to all 
classes regardless of their size [32]. 

• Validation Loss: A measure of how well a model is learning during 
validation step of training. For training we use Cross Entropy Loss and 
Triplet Margin Loss together (summed). 

11.5.2 Dataset generalization 

We aim to find the benchmark dataset, that makes the baseline model gener­

alize best on our own recorded data. For this we will use the Rank-1 accuracy 
metric as described in section 5.1, that has been averaged from 3 tests on our 
custom dataset. 

⏎ 
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Table 11.3 Testing on our custom dataset 

Training dataset Veri Vehicle-ID CityFlow 

Averaged Rank­1 accuracy, % 65.81 44.85 65.44 

Figure 11.7 Model loss values during training on the VeRi dataset. We find values plateauing 
after 20 epochs. 

We use the assumed default training parameters as seen in [27]. 
Table 11.1 indicates that training the baseline model on the Veri dataset 

provides the best result (we compare values at epoch 19. to reduce training 
times as depicted in Figure 11.7). Even if the difference between VeRi and 
Cityflow datasets is insignificant, visually the vehicles seen in the Veri dataset 
resembles our collected data more. 

11.5.3 Hyper-parameters 

We have trained the model on all combinations of the hyperparameters that 
we have outlined in section 3.2.2 over 15 epochs and recorded their loss 

⏎ 
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Table 11.4 Validation results during training 

values. Training the model for 36 times in total, consisting of 540 epochs. 
The rest of the training parameters have been left with the default values. The 
10 entries with the lowest validation loss value we showcase in Table 11.4. 

The parameters that appear to have the greatest impact are Stride, Linear 
Layer Size, and Colour Jitter. Colour Jitter was enabled in 6 out of the 10 best 
results, Stride was set to 1 in 7 of the top results, and the Linear Layer Size 
was set to 256 in 9 out of the top 10 results. This highlights the significance 
of these parameters in achieving best performance.We will further train the 
model with a stride of 1, number of linear layers of 256 and color jitter 
enabled. 

11.5.4 Performance on the VeRi-776 benchmark 

We use the VeRi-776 dataset as a benchmark. We compare the results of our 
improvements to the unmodified baseline model. 

In our experiments, we initially trained the baseline model using the VeRi 
dataset. As shown in Table 11.5 we used the default training hyper-parameters 
and evaluated the model’s performance over 20 and 50 epochs. The model 
trained on 50 epochs outperforms the one with 20. 

Training the model with the updated parameters of stride, linear number 
and color jitter (see Section 5.3) demonstrates further improvement on the 
benchmark. 
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Table 11.5 VeRi Trained Model comparisons on the VeRi-776 benchmark 

Model Rank­1 Rank­5 Rank­10 mAP 
 Baseline trained on Veri, 19th epoch 93.80 97.61 98.74 68.96 
 Baseline trained on Veri, 49th epoch 94.04 97.49 98.80 69.4 

Model with updated parameters 95.47 97.62 98.51 71.70 
 trained on Veri, 49th epoch 

Model with updated parameters 95.83 98.09 98.87 73.64 
 trained on Veri and VehicleX, 49th

epoch 

Lastly, we conducted additional training by incorporating the VehicleX 
synthetic data into the training process. 

All together our efforts have increased mAP by 4.24% and Rank-1 by 
1.79% from “Model trained on Veri, 49th epoch” to “Model trained on Veri 
and VehicleX, 49th epoch with updated parameters”. 

11.5.5 Re-identification testing on test data from our cameras 

In this section we test the model performance on the test data gathered from 
our network cameras. 

11.5.5.1 Camera to camera re-identification 
Table 11.4 contains the Micro and Macro precision values and table 5.5 
contains the Micro and Macro recall values (see the description of these 
metrics in section 5.1), when re-identifying from a query camera x (rows) 
to gallery camera y (columns). 

True Positives 
Micro Precision = � � (11.1)

True Positives + False Positives 
N

1 True N Positives i
Macro Precision = 

N True Positives i + False Positives i 
Pa . 

i=1 

(11.2) 

True Positives 
Micro Recall = � � (11.3)

True Positives + False Negatives 
N 

True Positives i1
Macro Recall = 

N True Positives i + False Negatives i 
Nat 

i=1 

(11.4) 
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Table 11.6 Precision when re-identifying from a query camera to a gallery camera 

Table 11.7 Recall when re-identifying from a query camera to a gallery camera 

Where: N is the total number of classes, 
True positivesi are the number of correct predictions for class i, 
False negativesi are the incorrect predictions for class i. 
Judging by the precision and recall values we can establish the following 

conclusions: 

• The model generalizes reasonably well to our custom testing data 
• The percentages and differences in micro/macro  values suggest the 

model may be overfitting to certain well-represented vehicle identities in 
camera 2 and hints at difficulty in recognizing rare vehicles elsewhere. 

• Overall, it seems the model can generalise camera 3. feature extractions 
the best against all scenes but has trouble generalising camera 1. and 2. 
feature extractions against each other. 

⏎ 
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Table 11.8 Macro, micro precision and recall when re-identifying from a query camera to a 
gallery of two cameras 

Cameras Micro Precision, Macro Micro Recall, Macro 
% Precision, % % Recall, % 

1 → 2,3 73.39 80.63 73.39 74.96 
2 → 1,3 75.81 67.09 75.81 59.38 
3 → 2,1 85.71 89.21 85.71 88.17 

11.5.5.2 Sets of cameras 
We can even out the results of the different cameras if a car has passed through 
at least two cameras, which has allowed us to gather more data in the database 
of any given car. Let’s use a test, where we query vehicles of one camera from 
a gallery of two cameras. The cameras column specifies the camera x (query), 
who’s images are queried in the camera y,z (gallery) images. 

Table 11.8 shows that re-identification for vehicles that have passed 
through at least two cameras is more reliable. Camera 3 shows the highest 
performance with both micro and macro values exceeding 85%, indicating 
strong generalization across vehicle identities. In contrast, re-identifying from 
camera 2 to cameras 1 and 3 results in the lowest macro recall (59.38%), 
suggesting difficulty in retrieving true matches for less represented vehicle 
identities. Overall, the model performs well, but the noticeable drop in macro 
values for camera 2 queries points to possible need to ease class imbalance in 
the future. 

In practice the results may indicate that cameras that have a slightly 
zoomed out or aerial view of the roads or intersections (Camera 3) can 
produce feature extractions that generalize better than cameras that see the 
vehicles up close. It can also be observed that camera 2 had a 100% re-

identification precision when querying against camera 3, which could be 
explained by the fact that both cameras 2 and 3 had similar angles with only 
height varying. What is harder to conclude is why the same was not true 
for camera 3 querying against camera 2. Similarly, it can be observed that 
cameras 1 and 2 have opposite viewpoints, so that even if the car went back 
and forth through both cameras, each camera would only have a flipped image 
of what the other camera has. This explains the poorer performance between 
camera 1 and 2. 

11.5.6 Testing the whole re-identification part of the pipeline 

We test our model on the CityFlow video tracks - re-identifying vehicles 
from (intersection) S01 traffic camera 4 to camera 1 To make the process 

⏎ 
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Table 11.9 Testing methods of the re-identification pipeline on CityFlow video tracks 

Test scenario Basic Vector Zone-Based Zone­Based with 
Frame-by-Frame Summing Saving Vector 

Saving: Summing: 

Rank­1 65.52 62.78 72.90 74.13 
accuracy in 

% 
Test 1107.80 1085.30 330.12 328.90 

duration in 
seconds 

as close to real world as possible we will use the Rank-1 accuracy to measure 
the accuracy of the pipeline, since in a scenario like this we simply care for 
whether the vehicle has been re-identified correctly or not. As mentioned in 
section 4.2.2 , we test the 4 approaches of capturing the feature embeddings 
and saving them into a database. 

Overall, the tests on CityFlow video tracks show that capturing vehicles 
in distinct zones improves both accuracy and efficiency, as clearly illustrated 
in Table 11.7. 

11.6 Future research 

Although this paper proposes a complete pipeline for object re-identification 
on edge devices, multiple areas remain for future research. First, optimizing 
the pipeline for specific edge devices like the Nvidia Jetson by profiling 
performance and applying techniques such as model pruning, quantization, 
or TensorRT for efficient inference. Additionally, fine-tuning models trained 
on public datasets with our in-house data could reduce distribution shifts and 
improve real-world performance. Finally, a more in-depth analysis of feature 
vectors is needed to better understand which components are relevant for 
re-identification accuracy and which are redundant. 

11.7 Conclusion 

In this paper, we presented a multi-step pipeline for object re-identification, 
focusing on real-time applications using edge devices. The pipeline handles 
object detection, feature extraction, and matching through a vector database, 
demonstrating reliable vehicle re-identification across various scenes. Per­

formance dynamics were evaluated by comparing different datasets, models, 
pipeline processes. The authors observed the position and angle of cameras 
significantly influencing the accuracy of vehicle re-identification, with higher 
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or wider vantage points producing better feature extractions for generalization 
across scenes. 

The findings demonstrate that while we successfully constructed an 
object re-identification pipeline by combining state-of-the-art methods, its 
effectiveness and constraints are highly dependent on the specific applica­

tion scenario. Re-identification performance is influenced by factors such 
as the suitability of training data for real-world generalization, the model 
training approach, and the careful tuning of hyperparameters. For vehicle 
re-identification, it is crucial to consider where and when the vehicles are 
detected, the characteristics of the road or intersection, and the specific 
features of the camera recording the footage. From this, we can conclude 
that achieving high performance in vehicle re-identification requires not only 
advanced methodologies but also scenario-specific adaptations in data prepa­

ration, model optimization, and detection configuration. We also conclude 
that obtaining multiple embeddings of the same object in different poses and 
locations help re-identifying it later. 
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Abstract 

As devices become smarter, embedding intelligence in microcontrollers and 
constrained environments is critical. Optimising machine learning models 
for these tiny devices requires balancing software efficiency, such as accu­

racy, with hardware constraints like memory and power. We introduce a 
TinyMLOps-based framework for optimising models across the cloud-to­

device continuum. In our approach, cloud resources handle heavy tasks like 
data labelling and model training, while microcontrollers gather real-time 
metrics on efficiency and hardware utilisation. Then, some repositories man­

age models and metadata identified during the optimisation phase, including 
performance metrics collected directly from the target devices, thus ensuring 
an accurate exploration of the model space in real-world conditions. Using 
tools such as MicroPython and MLFlow, our framework enables seamless AI 
deployment on resource-constrained devices, providing a scalable solution 
for the future of edge AI. 

Keywords: MLOps, edge AI, edge computing, model deployment, AI 
workflow, real-time metrics. 

12.1 Introduction 

Artificial intelligence (AI) is becoming an invaluable companion in everyday 
life, present in wearables, smartphones, cars, and homes. We use AI to 
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write, compose music, and edit pictures, making access almost effortless. 
However, this can obscure the real challenges of deploying AI models, 
especially on devices at the edge of the network [1]. These devices include 
single-board computers (e.g., Raspberry Pi, Coral Dev Kit, NVIDIA Jetson 
boards), which support full-fledged operating systems (OS) like Linux but 
are costly and energy-intensive. In contrast, microcontrollers (MCUs) offer 
lower computational power but are significantly cheaper and less demanding 
regarding energy and hardware resources. MCUs are ideal for specialised, 
real-time tasks in IoT environments but require adapted methodologies for 
their management [2]. The absence of a full-fledged OS and the con­

strained computational environment demand adjustments in orchestrating AI 
workflows on such devices. 

In this context, the TinyMLOps methodology presented in [3] can be 
fundamental in designing, deploying, and monitoring AI capabilities on 
constrained devices. From an operational standpoint, US-based companies 
like Roboflow [4], Edge Impulse [5], and Neuton.ai [6] provide platforms 
for designing, optimising, deploying, and executing AI pipelines at the net­

work edge. While Roboflow focuses on computer vision problems, primarily 
supporting single-board computers, Edge Impulse specialises in creating and 
deploying machine learning models on resource-constrained devices like 
MCUs, making it ideal for IoT applications. However, it requires hardcod­

ing models into firmware, updated via Over-the-Air (OTA) updates, which 
reduces flexibility in real-time scenarios. Similarly, the Neuton TinyML 
platform, provided by Neuton.ai, leverages a no-code approach to gener­

ate ultra-compact neural networks, optimising resource use for constrained 
devices. Its patented framework incrementally builds neural networks neuron 
by neuron, resulting in models significantly smaller than those from other 
frameworks. It enables deployment on devices with as little as 8-bit capacity, 
making it highly suitable for diverse IoT applications. 

This paper presents a TinyMLOps framework architecture designed to 
streamline AI workflows on MCUs, enabling seamless model deployment 
without embedding the model in the firmware. We describe the frame­

work’s components, their role in supporting the methodology, and the various 
actors involved, from data labelling to model design, optimisation, firmware 
engineering, and operations. Furthermore, we provide a set of candidate state­

of-the-art technologies that can be adopted to implement the framework and 
demonstrate its real-world feasibility. 

The rest of the paper is structured as follows. Section 12.2 gives an 
overview of the TinyMLOps methodology, then Section 12.3 presents the 
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framework architecture by describing all the components. Section 12.4 pro­

vides a technological landscape for the framework. Finally, Section 12.5 
concludes the paper. 

12.2 TinyMLOps methodology 

The TinyMLOps methodology [3] evolves the MLOps methodology [7] to 
bring AI workflows and models to the edge and far edge of the network. 

Figure 12.1 The TinyMLOps Loop [3]. 

TinyMLOps particularly tackles the adaptation, deployment, and moni­

toring of models even on low-end MCUs (e.g., Raspberry Pi Pico, ESP32, 
Arduino, and STM32 families). 

The TinyMLOps approach is illustrated as a simple loop, as depicted in 
Figure 12.1. 

In more detail, the TinyMLOps loop starts with the TinyML circle 
(on the left side, highlighted in blue, Figure 12.1). It proceeds through a 
series of iterative steps involving collaboration between data scientists and 
operations engineers (on the right side highlighted in green in the Figure 12.1) 
to optimise and deploy AI models on edge devices. The steps are briefly 
introduced as follows. 

• Plan: data exploration and feature engineering to prepare and optimise 
data for model development; 

• Create: model training and feature adaptation tailored to the problem 
space; 

• Adapt & Optimize: the trained model is adapted and optimised for 
the target computing platform, typically through techniques such as 
quantisation and pruning; 

⏎ 



258 A TinyMLOps Framework for Real­world Applications 

• Verify: ensures model compatibility and executability on the target 
platform, confirming that all operations are supported; 

• Package: the model is compiled or converted into a deployable format 
(e.g., TFLite) suitable for execution on edge devices; 

• Release: the model is deployed into the device memory, making it ready 
for inference; 

• Configure: run-time parameters may be adjusted based on platform- and 
application-specific requirements (e.g., detection threshold); 

• Monitor: ongoing real-time surveillance of the model’s performance 
and health, ensuring its reliability post-deployment. If the model behaves 
unexpectedly, it triggers a new iteration of the entire loop. 

This closed-loop process facilitates seamless adaptation, deployment, and 
monitoring of TinyML models, ensuring efficient execution on resource-

constrained edge devices. 

12.3 A TinyMLOps framework architecture 

As discussed above, the TinyMLOps methodology encompasses multiple 
abstract phases to deliver an efficient pipeline for deploying and maintaining 
machine learning models on edge devices. To implement these phases in real-

world applications, we need to translate them into concrete components and 
pipelines within a software framework architecture. Figure 12.2 illustrates 
this architecture, which is divided into two sections corresponding to the two 
circles of the TinyMLOps loop (Figure 12.1). The left side (in blue) represents 
the components required for handling the TinyML-specific tasks, while the 
right side (in green) focuses on the components involved in the methodology’s 
operations phase. 

Figure 12.2 TinyMLOps Framework Architecture. ⏎ 
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Starting from the TinyML part, we can distinguish three main pipelines: 
the firmware engineering pipeline, the data engineering pipeline, and the data 
science pipeline, which are introduced as follows: 

• firmware engineering pipeline: managed by firmware engineers, pro­

duces the various firmware versions for the edge devices supported by 
our framework. These firmware binaries are organised and stored in the 
Firmware Repository, ready for deployment. For example, one firmware 
might be based on MicroPython1, compiled for ESP32 and equipped 
with libraries tailored to the target application. 

• data engineering pipeline: managed by data engineers, provides a 
UI through the Labelling Platform for labelling data and storing the 
information (e.g., labels, metadata) in the Data Repository. This repos­

itory plays a crucial role, as it is accessed during model training and 
validation. 

• data science pipeline: managed by data scientists, which offers the 
possibility to design, develop, and test models, as detailed below. 

Models are initially created using a Notebook environment (e.g., Jupyter 
Notebooks, VSCode) where scientists can define the computing pipeline, the 
model architecture, and the relevant hyperparameters ranges based on the tar­

get metrics they aim to optimise (e.g., model size vs. accuracy). Additionally, 
they can specify the desired hardware platform for deployment, ensuring the 
model aligns with the constraints and capabilities of the chosen edge device. 

At this stage, the Optimization Engine generates and manages various 
parameter combinations to explore and optimise the search space. In our case, 
this process is handled through a metaheuristic approach, ensuring effective 
exploration and solution space optimisation. This includes not only the hyper-

parameters of the models but also factors such as hardware configurations, 
allowing for an optimal balance between performance metrics (e.g., model 
size, accuracy, latency) and resource constraints. 

The combination of parameters and the model definition (e.g., code) is 
passed to the Model Trainer component, which trains the model using data 
fetched from the Data Repository. However, the trained model may not yet be 
fully compatible with the target hardware platform. To address this, the model 
is further processed by the Model Conversion component, which applies 
various techniques such as quantisation, pruning, and other optimisations to 
ensure the model is adapted for efficient execution on the specific hardware 
platform. 

1 https://micropython.org/ 

https://micropython.org/


260 A TinyMLOps Framework for Real­world Applications 

At this stage, it is essential to evaluate the model’s performance. To effi­

ciently manage the artefacts (i.e., model binary files), along with associated 
parameters (e.g., data used to train and model hyperparameters) and metrics, 
we rely on the Experiment Tracker to handle the storage of data and metadata 
in dedicated internal repositories, accessible via APIs. 

Based on the metrics we aim to measure and the target hardware platform, 
the model can be deployed in the appropriate computing environment: a 
cloud-based Test Sandbox for software metrics (e.g., accuracy) and physical 
Test Devices for hardware-specific metrics (e.g., latency, memory usage). 
This approach ensures a clear understanding of the model’s performance in 
real-world environments, as testing is carried out on actual computing units. 
This provides insights into software and hardware efficiency, allowing for 
more accurate metrics assessments. 

The collected metrics are then returned to the Optimizer Engine, where 
they are used to further refine the hyperparameters, model configuration, and 
hardware selection by triggering new iterations. 

This continuous feedback loop allows the system to iteratively improve 
the model, ensuring optimal performance and deployment on the target 
edge devices. All tested models, along with their associated parameters 
and metrics, are stored in the Experiment Tracker. This comprehensive 
tracking provides valuable insights into how models can be further opti­

mised for the specific application and platform. This is beneficial as it 
allows for easy access, tracking, and comparison of different model iter­

ations, ensuring that the most effective model can be quickly identified 
and deployed. Additionally, this centralised storage facilitates collaboration 
between teams, improves reproducibility, and supports ongoing optimisation 
efforts by making historical data readily available for analysis. 

Once the best model is identified, fully optimised, and validated, it is 
promoted from the Model Repository inside the Experiment Tracker to the 
Production Model Repository, making it ready for deployment on production 
devices. This transition marks the shift from development and testing to the 
operational phase, managed by Operations Engineers. From the Production 
Model Repository, the model is deployed to Production Devices, typically 
(far-)edge devices operating in a live environment. Operations Engineers 
oversee this deployment, ensuring the model performs reliably and efficiently 
in real-world conditions. 

Throughout the Operations phase, continuous monitoring is crucial. 
Operations Engineers may continue to observe the model’s performance, 
gathering insights such as real-time metrics, latency, and memory usage using 
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the Monitoring component. If any issues arise or further optimisations are 
needed, the model can be updated or refined through subsequent iterations, 
with performance feedback potentially being routed back into the develop­

ment process to trigger new rounds of optimisation and improvements via 
the Experiment Tracker. This ongoing cycle ensures that the model remains 
efficient and effective as it operates on resource-constrained edge devices, 
seamlessly fulfilling the principles of the TinyMLOps methodology. 

12.4 Technology Overview for TinyMLOps Adoption 

Adopting the TinyMLOps methodology into real-world scenarios requires 
integrating a wide range of cutting-edge technologies that allow us to tackle 
the different challenges of deploying machine learning models on resource-

constrained devices in the edge and far-edge of the network. The current 
landscape, driven by open-source innovation, encompasses platforms and 
tools that ease data management and versioning, model design, development, 
optimisation, and monitoring in environments where computational power 
and storage are limited. 

Starting with the firmware engineering pipeline, several tools are avail­

able to support the early-stage development and production deployment of 
machine learning models on hardware-constrained devices. On the hard­

ware side, embedded platforms such as Arduino, ESP32, Raspberry Pi 
Pico, ARM, and STM32 are widely adopted. These platforms are typically 
paired with development environments like Mbed OS, PlatformIO, ESP-IDF, 
and STM32Cube, which aid in firmware development, sensor integration, 
and more. For software, frameworks like TensorFlow Lite for Microcon­

trollers [8] and pure C/C++ code (e.g., code generated by STM32Cube.AI), 
along with a Real-Time Operating System (e.g., FreeRTOS), simplify model 
deployment on embedded devices. However, since the model is embedded 
within the device’s firmware, updating it typically requires a complete flash. 
On the same side, MicroPython offers an alternative solution by enabling 
the creation of firmware that exposes a Python interpreter running on the 
constrained device, effectively functioning as a Hardware Abstraction Layer 
(HAL)[9]. This approach decouples the machine learning model from the 
underlying hardware and dependency libraries, allowing for the deployment 
of only a Python script and associated binary files without the need for a 
full firmware flash. The device can initiate updates through a simple HTTP 
request, significantly streamlining the process and making it more flexible 
and efficient. 
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For the data engineering pipeline, tools like Label Studio, Universal 
Data Tool, or Computer Vision Annotation Tool (CVAT) are critical for 
labelling and annotating complex datasets, ranging from images to time-

series sensor data. These labelled datasets are managed using tools like 
Pachyderm, which combines scalable data storage with version control, mak­

ing it ideal for tracking large volumes of data throughout different iterations 
of the machine-learning pipeline. Object storage solutions such as MinIO or 
AWS S3 are often employed to store these datasets, ensuring scalability and 
accessibility during model development with a simple and standardised API. 
Alternatively, it is possible to integrate, via APIs, existing platforms like Edge 
Impulse or Roboflow to exploit their data labelling functionalities. Based on 
cost constraints, privacy, and use-case requirements, it is possible to choose 
one solution or the other. 

Lastly, the data science pipeline relies massively on cloud-based tools 
to design, develop, evaluate, and optimise machine learning models. Kube­

flow, a powerful open-source framework, is crucial in orchestrating machine 
learning workflows, from data preprocessing to model training. By leverag­

ing Kubernetes for scalable and efficient workload management, Kubeflow 
standardises the MLOps process, streamlining the entire model development 
lifecycle. It natively integrates with platforms such as Jupyter Notebooks and 
VSCode, providing collaborative environments for interactive model devel­

opment and pipeline processing. A core feature of Kubeflow is its Pipelines 
component, which automates end-to-end workflows by structuring them as 
Directed Acyclic Graphs (DAGs). Each pipeline component is encapsulated 
in a Docker container, ensuring modularity and enabling integration with 
various tools and libraries. These pipeline steps can include tasks such as 
data preprocessing, model training, and evaluation. 

A key step often incorporated is hyperparameter optimisation, which 
determines the best hyperparameter configuration for a given model. Katib, a 
component of Kubeflow, streamlines this process by supporting both standard 
and advanced search techniques, ensuring optimal performance for the model 
and hardware platform. This approach allows for co-design between software 
and hardware, optimising both simultaneously to target the deployment envi­

ronment. This stage also often involves conversion tools to export models in 
TensorFlow Lite and ONNX (Open Neural Network Exchange) formats to 
enable optimised evaluations for edge devices. Such models can be stored in 
an Experiment Tracker, like the MLFlow Tracking, along with their metadata 
to study and supervise the optimisation process properly. 
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Before the deployment in production environments, models are evalu­

ated in Test Sandboxes using Docker-based technologies like Seldon Core, 
KServe, or BentoML. For tests on Test Devices, models can be deployed 
using OTA updates by replacing the firmware or using MLFlow Tracking 
APIs by downloading models into device flash memory. Performance metrics 
are logged in the Experiment Tracker (MLFlow Tracking), enabling a feed­

back loop for subsequent iterations of the model optimisation. MLFlow also 
offers the Model Registry, a repository for models that have reached maturity 
for production deployment. Using some internal labels, it is possible to tag 
models for the target device or deployment scenario. Then, the model can be 
deployed via OTA updates or via the MLFlow APIs. 

Finally, tools like Prometheus and Grafana enable real-time monitoring 
of the production devices, providing detailed insights into hardware (latency, 
memory usage, and CPU load) and software performance metrics (errors, 
crashes, anomalies). Prometheus collects and stores time-series data from 
the devices, while Grafana visualises this information through customisable 
dashboards by also enabling webhooks to trigger new optimisation iterations 
automatically. 

This integration allows operations teams to proactively track the health of 
models and devices, ensuring that any performance issues can be addressed 
promptly to maintain optimal efficiency and reliability in the deployed 
system. 

12.5 Conclusions 

The ubiquitous presence of AI in everyday aspects of our lives is deeply 
transforming how we approach the lifecycle of models. From the initial 
model design to the deployment on production devices, multiple steps must 
be completed, many of which are often taken for granted. Every phase (e.g., 
data collection, data labelling, model training, model optimisation) involves 
complex processes that need to be carefully orchestrated to ensure optimal 
model performance in real-world scenarios. 

In these settings, the TinyMLOps methodology clearly defines the high-

level steps that must be tackled. Building on this foundation, we propose 
a software framework architecture streamlining these processes along the 
cloud-to-thing continuum. Our framework enables the design, development, 
and deployment of machine learning models while managing hardware 
constraints effectively. By integrating real-world tools like MicroPython 
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for lightweight and simple HAL and MLFlow for experiment tracking 
and deployment, the framework addresses key challenges in scaling AI 
applications to tiny devices, such as resource management and deployment 
complexity. Additionally, it enhances adaptability and scalability across 
diverse platforms, ensuring that models perform efficiently even in the most 
constrained environments. 
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Abstract 

Transfer learning and self-learning are well known techniques that can sep­

arately improve probabilistic models. In this article it is investigated how to 
combine both methods in a single approach enabling transfer learning over 
different environments in which self-learning models are deployed. It is found 
that such learnings can be enabled through prior optimisation. 

Keywords: probabilistic models, Bayesian, online learning, self-learning, 
prior optimisation, transfer learning. 

13.1 Motivation 

Probabilistic models are of interest for constructing classifiers or estimating 
parameters (see e.g. Murphy [1]). Examples of such applications are image 
classification in cameras and noise level estimation in radar sensors. These 
sensors are often deployed in diverse environments. This means that the 
underlying model could benefit from self-learning. Baye’s rule offers such 
a method 

P (X|θ)P (θ)P (θ | X) = , (13.1)
P (X) 

where θ are the model parameters, X are the observations, and P(θ) is the  
prior distribution. Note that the observations X may also contain feedback 
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Figure 13.1 On the left-hand side a prior was sent to various diverse environments where 
in each environment a posterior was estimated. On the right-hand side the question is how to 
choose the prior for a new unknown environment when sensor events from other environments 
are known. 

and interactions from users. A self-learning example is a motion sensor that 
self-learns its false positive rate. 

The prior distribution is our initial expectation on the parameters prior to 
the observation of new data. When no historical data is available, an expert 
choice should be made for the prior. However, in some situations data may 
be available from other diverse environments. The question here is how to 
choose a prior for a new unseen environment when data is available from 
other diverse environments. This problem is illustrated in Figure 13.1. 

In our motion sensor example, it may be believed that sensors in some 
applications have a false positive rate of once per week while in other 
applications the false positive rate is once per month. Note that for a new 
sensor deployment one cannot simply take an average of the posteriors from 
different environments as each posterior represents a different deployment: 
some posteriors may be very concentrated around a particular value which 
may slow down adaptation to a new environment and posteriors for different 
environments may have seen different amount of data (how to average that?). 
Moreover, averaging different posteriors is fundamentally wrong; similarly, 
one cannot take the average of an apple and an orange. 

To solve this problem Xuan [2] discusses a graphical model containing 
common and custom nodes. A challenge with such an approach is that the 
graph itself will also change as more data becomes available. Similarly, Suder 
[3] splits up the parameter space into common and custom parameters. A 
challenge with this approach is how to decide which parameters are common 
or which ones are not. Pautrat [4] discusses the grouping of similar environ­

ments, each having their own prior. A challenge with such an approach is 
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how to decide on the number of groups and when to decide on forming a new 
group when a new environment is substantially deviating. 

Although the posteriors are fundamentally different for different environ­

ments, knowledge from different environments is still useful for determining 
an optimal prior for a new environment. Although the environments may be 
substantially different there is one aspect that they share in common which 
is the prior from which the probabilistic model could have started. This 
commonality offers an opportunity for transfer learning and it will be studied 
in this article. 

13.2 Prior Optimisation 

A choice for prior is similar to a choice for model. When having a set of 
models Mi then the probability for a model to hold given the data is given 
by (see e.g. Murphy [1]) 

P (X|Mi) P (Mi)P (Mi|X)= . (13.2)
P (X) 

If a prior is parametrized through a hyperparameter μ then the best 
hyperparameter can be selected through 

argmaxμP (X|μ) P (μ) . (13.3) 

In some cases, there may be no direct expectations for P (μ) as given 
in Equation 1.3 but there may be prior expectation for parameter θ. In those 
cases, an effective prior on μ can be derived. Prior to the knowledge on the 
prior P (θ) we take P (μ) to be uniform (first line equation below right-hand­

side). The probabilities for observing a distribution P (θ) from μ is simply the 
product of P (θi | μ) weighted by the amount P (θi)Δθ (second line involves 
a product integral) 

P (μ | P [θ]) ∝ P (P [θ] | μ) 
P (θi | μ)P (θi)∆θ = lim 

∆θ→0 
i 

= exp  dθP (θ) log  P (θ | μ), (13.4) 

where in the last step the Geometric integral relation from Volterra was used. 
Note that the same result can be obtained by using variational Bayesian 
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approximation. A variational approximation of a posterior is given by 
y ed 

P (μ | X) ≈ argmax dμ q (μ) logP (X | μ) − log q(μ) .q(μ) P (μ) 

(13.5) 
Using the prior P (θ) for updating our knowledge on P (μ) gives 

  
P (μ | P [θ]) ≈ argmax dμq(μ) dθP (θ) log  P (θ | μ) − log 

q(μ) 

P (μ)q(μ) 
∝ exp dθP (θ) log  P (θ | μ), (13.6) 

where in the last line we assumed the initial prior P (μ) to be flat. Equation 
1.4 gives for the effective prior P (μ) 

d 
exp dθP (θ) log  P (θ | μ)

P (μ | P [θ]) = d d (13.7)
dμ ' exp dθP (θ) log  P (θ | μ ' ) 

In Equation 1.3, X contains all of the available data. It will be assumed 
that captured diversity in environments is representative for the underlying 
population of environments. The known environments are allowed to have 
different amounts of observations. As the known environments are assumed 
to be representative, an optimal prior for known environments will be an 
optimal prior for a new unknown environment. 

Taking the logarithm of Equation 1.3 and labelling data from environment 
i by Xi one finds 

μ=argmaxμ [ logP (Xi|μ) +logP (μ)] . (13.8)i 

Using 

d P (θ|X)logP (X) =  dθ q (θ) logP (X | θ) − log , (13.9)
P (θ) 

with d 
dθ q (θ) = 1, (13.10) 

one finds 

μ ≈argmax dθiP (θi | Xi, μ) log P (Xi | θi) 
μ 

i

P (θi | Xi, μ)− log + log  P (μ) . (13.11)
P (θi | μ) 
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In case the posterior for an environment cannot be exactly determined one 
can approximate by (see Attias [5], Morey [6], and Tran [7]) 

q (θi)
μ ≈argmax max dθiq (θi) log P (Xi | θi) − log 

μ q(θi) P (θi | μ)
i 

+ log  P (μ) (13.12) 

Note that q (θi) approximates the posterior for each environment i in 
terms of the reversed KL-divergence. The reversed KL-divergence may lead 
to modes in q (θi) introducing errors. For this reason the posterior q (θi) 
should have sufficient freedom to describe all typical groups of customers. 

It is of interest to study the optimal prior in case of a single deployment 
(or in the limit that all deployments have the same environment) and for P (μ) 
being constant. If one has conjugate priors then one can iteratively solve 
Equation 1.11 by choosing at each iteration the prior P (θi|μ) to be equal to 
the posterior from the previous iteration P (θi|Xi, μ). In the limit of conver­

gence, the logarithm containing ratio of posterior over prior will vanish and 
the posterior P (θi|X, μ) will strongly peak around μ= argmaxθi 

P (X|θi). 
In other words, in absence of any prior belief then the best prior for a new 
environment that is the same as the existing environment is a strongly peaked 
function around the most likely parameters (as expected). 

Note that strongly concentrated priors delay learnings from new data. 
Peaking of priors is reduced when a belief for P (μ) is included and when 
known environments are diverse. 

13.3 Example Categorical Distribution 

For categorical distributions the conjugate prior is a Dirichlet distribution 
of which its hyperparameter is often denoted by α instead of μ that was 
used in this paper upto now. Given applications i some observed categories j 
and assuming a flat prior such that the last term logP (μ) in Equation 1.11 
disappears one obtains 

Γ ( j αj ) j Γ (αj +nij )
α = argmaxα log � . (13.13)i Γ ( j αj +nij ) j Γ (αj ) 

Consider the following example. In a first application one encounters 
1000 items of category 0 and 2 items of category 1 while in a second 



272 Transfer and Self­learning in Probabilistic Models 

application one encounters 10 items of category 0 and 2 items of category 
1. Using the equation above one finds the optimal prior to be a Dirichlet 
distribution with α=(5.8, 0.41). If the previous two applications are random 
draws from an underlying population of applications, then the obtained 
Dirichlet distribution would be optimal for a new application. The ratio of 
the hyperparameters indicates the expected ratio of classes, the sum of the 
hyperparameters is an indicator for the knowledge strength. 

Consider now another example in which one encounters in the first 
application 50 items of category 0 and 3 items of category 1, and in the 
second application 5 items of category 0 and 20 items of category 1. In 
this example the optimal hyperparameters for the Dirichlet distribution are 
α=(0.87, 0.60). The low numbers indicate a lack of knowledge which 
is expected given the large differences in observations between the two 
applications. 

13.4 Conclusions and Discussion 

Self-learning probabilistic models are useful for learning context and thereby 
self-learning increases performance in diverse environments. Similarly, trans­

fer learning can help to use learned knowledge from one environment for 
another environment. In this article these two aspects are integrated into a 
single approach by optimising the prior. 

It was found that an optimal prior can be obtained by maximising a 
sum of evidences over environments. The amount of data per environment 
is allowed to vary. In order to optimise the prior, observations from different 
environments need to be shared. For cameras this means sharing of images, 
for radar sensors it means sharing of radar signals. Sharing of sensor events 
may involve privacy aspects. 

Although the approach leads to the best (or most optimal) prior one does 
need to realize that this approach carries the risk of overfitting. The situation 
is similar to variational Bayesian methods that yield the "best approximated" 
posterior which in reality may be far away from the true posterior. 
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Abstract 

Using convolutional neural networks (CNN) to discover sensor data pat­

terns help predict upcoming failures in industrial machines. Traditionally, 
this pipeline is deployed on the cloud as deep neural networks have high 
computational requirements. Alternatively, an on-device deployment to make 
decisions locally for this pipeline could lower the energy requirements by 
not sending the sensor data back and forth to the cloud. However, this is 
challenging from an edge deployment perspective due to the limited com­

putational resources and energy budget. To approach this issue, we propose a 
hierarchical architecture that leverages multiple smaller networks dividing the 
bigger problem into smaller sub-problems in a divide and conquer approach. 
With this architecture, we achieve a 9x reduction in energy consumption 
going from 0.045J per inference for a non-hierarchical CNN classifier to 
0.005J. At the same time, our approach delivers low latency with comparable 
accuracy to the baseline, while running completely at the edge. 

Keywords: convolutional neural networks (CNNs), convolutional neural net­

works (HiCNNs), Case Western Reserve University (CWRU), multiplication 
addition computations (MAC), neural network architecture search (NAS). 
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14.1 Introduction and Background 

With the advancement of Industry 4.0, leveraging data-driven methodologies 
like machine learning to discover faults in industrial machine sensor data has 
gained rapid momentum. In this regard, fault classification using machine 
sensor data can be interpreted as a multifaceted task including feature extrac­

tion, detection, and classification of the specific fault type. The fundamental 
structure of these approaches typically involves acquiring signals in the form 
of sensor data from the machinery under monitoring followed by data explo­

ration, which means that the acquired data is analysed to identify potential 
anomalies or deviations concerning data conformity. 

This genre of manual feature extraction involves mathematical techniques 
like Fourier transform to extract relevant information from the sensor data for 
effective fault detection [3]. These methods compose features by exploiting 
randomness and dynamic changes in time-series signals, capturing informa­

tion related to the frequency domain [8]. Later the machine learning classifier 
is selected and trained on this feature set to distinguish between different 
fault types finally. Conventionally, this entire pipeline would be deployed 
on energy-hungry cloud services, and the inference results are received back 
at sensor nodes [10]. Traditional rolling-bearing fault classification methods 
rely not only on manual feature extraction but are also time-consuming due 
to the sending and receiving of data. Deploying machine learning models 
directly on sensor devices enhances security by restricting the need for data 
transfer. Unlike the power-intensive cloud alternative (Figure 14.1), it reduces 
inference overhead and contributes to model efficiency [7]. 

Model efficiency bridges the gap between machine learning research 
and practical applications. This is particularly important for ultra-low-power 
wireless sensors, where maximizing battery life is critical to deploy them 
in remote areas without direct access to power. However, the challenge lies 
in developing energy-efficient algorithms that maintain accuracy. Increasing 
the energy efficiency of an algorithm, in general, impacts the performance 
aspect of the algorithm due to a trade-off between performance and energy 
efficiency [9]. 

In this work, we contribute a novel meta-structure to CNNs we call 
Hierarchical CNN (HiCNN) that splits the classification into multiple sub-

decisions. This process aims to reduce computational requirements per 
decision while achieving on-par classification performance in comparison to 
standard non-hierarchical classifier (flat). HiCNN utilizes training of CNN 
architectures to reduce feedforward computations during on-device inference 
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and solve classification tasks. Feeding extracted features to subsequent clas­

sifiers helps reduce error propagation from higher to lower class hierarchies 
and removes the need for more convolutional and dense layers in lower 
classifiers. The primary goal of HiCNN is to capitalize on the real-time 
accurate results offered by CNNs while simultaneously reducing storage 
requirements and computations while running inference on-edge devices. 
Due to HiCNN’s low computational requirements, it holds potential util­

ity for deployment in remote environments constrained by limited power 
resources (e.g., undeveloped regions, forest locations, or geographically 
isolated industrial machinery). 

14.2 State of the Art 

In the following, we discuss related fields, starting with introducing the 
dataset used in this work, followed by further approaches to solving the clas­

sification problem behind it. We then discuss other approaches to reducing 
energy consumption and different hierarchical approaches. 

14.2.1 Experimental setup 

Our target application area is condition monitoring, so we are using the well-

studied Case Western Reserve University (CWRU) Bearing dataset [8]. The 
bearing dataset is acquired by the electrical engineering laboratory of CWRU 
and recorded using a 2HP motor connected to a dynamometer via a torque 
transducer/encoder. It has 4 operating modes of machines based on different 
operating powers, 4 fault classes, and 3 severity classes. The bearings used 
in this test support the motor shaft and have been artificially damaged at 
different locations with fault depths ranging from 0.007” to 0.021”. The 
vibration data included in the CWRU dataset is collected using single-axis 
accelerometers with a sampling rate of 12kS/s (fan-end). 

14.2.2 Related work 

From an industrial condition monitoring perspective, [8] highlights a key lim­

itation: mode partitions designed for multi-mode processes often exhibit high 
specificity to a particular process and dataset. Therefore, achieving model 
generalization becomes imperative. In a similar attempt [1] used Autoen­

coders to generate compressed feature representations from raw data utilizing 
the encoder-decoder arrangement and eliminating manual feature engineering 
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Figure 14.1 HiCNN distributed architecture with a divide and conquer approach of solving 
the classification task, with D0 node refering to no-fault class and S1,S2 and S3 nodes refers 
to the end of classification. 

to classify fault classes in the CWRU dataset. However, this approach’s com­

putational demands present a significant challenge for energy-constrained 
edge device deployment. This is because architectures of autoencoders are 
potentially like CNNs including many stacked conv layers [4]. Similarly, 
in [11], the authors devised a 3-step classification system using three Deep 
neural network stacks of Auto Encoders to feed relevant features to the 
classes. 

The first DNN stack facilitates mode partition for the different types of 
modes in the CWRU (Case Western Reserve) dataset. In contrast, the second 
DNN stack pursues feature extraction, and the third stack is proposed for 
severity classification. However, all these hierarchical approaches focus only 
on getting a good prediction accuracy of the fault classification results and 
lack an optimized energy-efficient approach. 

⏎ 
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Decreasing energy consumption of feedforward neural networks during 
inference is an active research direction, and key techniques to achieve 
this include pruning the architecture, Network Architecture Search (NAS), 
and quantization. Pruning aims to reduce energy consumption by removing 
unnecessary neurons before deployment. This is done by assigning scores 
to each neuron removing the ones with the lowest scores and subsequently 
fine-tuning the architecture. Depending on the type of scores, different prun­

ing methods are realized ranging from e.g. relevance-based to unstructured. 
Expanding on the concept of reducing computations caused by redundancy 
in neural network architecture [5] performed redundant kernel removal in 
filters of CNN layers using unsupervised clustering by leveraging the mean 
instead of individual weights of created centroids to decrease total MACs. 
However, it is important to remember that different clustering algorithms lead 
to different assumptions when creating clusters [7]. 

Alternatively, NAS a vital field in TinyML ([8]) research, offers diverse 
approaches for selecting classifiers. In general, NAS searches for an optimal 
network architecture. For this certain metrics are used based on metrics like 
relevance, accuracy, or confidence scores, but mostly it is just the accuracy 
score. For efficient architectures multi-objective optimization is used, opti­

mizing for accuracy and energy consumption simultaneously. In this case, 
surrogate metrics like inference time, memory consumption, or model size are 
used. NAS also utilizes evolutionary algorithms and reinforcement learning 
to explore and identify efficient neural architectures. 

Meanwhile, employing quantization to reduce neural network weight 
and activation representations from 32-bit floating-point to 8-bit integers (or 
lower) yields a notable decrease in model size and increased computational 
efficiency. ([2]) utilized entropy constraints calculated for clusters of param­

eters by balancing the compression rate and resulting model performance in 
a relatively smooth and error-tolerant landscape by quantizing weights based 
on their distance from clusters. However, this technique requires a careful 
induction of heuristics to balance the performance of the model and the 
magnitude of quantization in the architecture. 

[10] proposed a hierarchical taxonomy of mixed classifiers to address 
the limitations of single-classifier systems. The approach dynamically selects 
classical machine-learning classifiers based on performance metrics such 
as accuracy and energy efficiency. However, this method exhibits potential 
drawbacks: 1) Reliance on Feature Engineering: The effectiveness of the 
methodology is dependent on feature engineering tailored to specific clas­

sifier types. 2) Feature Set Selection which is meticulous and often requires 
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domain expertise and empirical evaluation. Therefore, we are interested in 
CNN-based architecture that can deliver good accuracy with less energy 
consumption. 

14.3 Hicnn Approach 

HiCNN framework introduces training in a staged architecture featuring 
anomaly detection as the parent classification task, instilling a top-down clas­

sification approach. The training process leverages a hierarchical approach, 
where each deeper hierarchy classifier is trained on the features forwarded 
from the mode partition classifier. The methodology is summarized and 
divided into three parts in the following sub-sections. 

14.3.1 HiCNN training 

Notably, despite potentially having more parameters than the benchmarked 
baseline CNN approach, HiCNN achieves significant energy savings during 
inference on edge devices by selectively activating only the relevant CNN 
networks based on the detected anomalies and fault type. This allows for 
further optimization of overall architectures for task-specific computational 
complexity. This happens because task-specific training of the CNN networks 
enables us to deactivate redundant parameters/parts of the network that are 
not required to achieve the desired inference result. Generally, the depth 
of CNN strengthens the CNN architectures ([6]), making them capable of 
finding intricated patterns in input data. At the same time, the width aspect of 
a layer would increase the capability to detect and extract features from input 
data. This increases the computational demand as the size of the architecture 
increases. By introducing HiCNN, we introduced a distributed approach to 
solving the task without the direct need to eliminate the parameters. The 
trade-off between the size of architecture and energy efficiency is tackled 
using a one-classifier per node approach. This helps scale down the network 
size without eliminating parameters just by training the network. As part of 
the black-box approach, HiCNN is trained so that its inherent structure only 
activates the necessary sub-classifier. 

In hierarchical sensor data, obtained from different operating modes of 
industrial machines errors from early classification stages can propagate 
and be amplified through the network, resulting in unreliable overall accu­

racy. Hence, we devised an automatic feature forwarding to overcome this 
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problem which eventually also contributes to reducing energy consumption. 
HiCNN improves adaptability to varying machine conditions and eliminates 
reliance on manual feature engineering. This is achieved by defining and 
training three individual CNN architectures node-wise within a hierarchical 
tree structure. During the training, learned features from the classifiers in 
the initial hierarchy are forwarded to the lower classifiers. This approach 
ensures that the relevant feature vector is forwarded to the appropriate fault 
mode, thus preserving overall classification accuracy/performance. The CNN 
architectures of HiCNN are trained on raw data, and the deeper architectures 
are trained on features produced by CNN architectures lying in the earlier part 
of the hierarchy (Figure 14.1). As part of our empirical findings, a filter size of 
5 in the initial conv layer of classifier C2 (Figure 14.2) ensures the availability 
of enough samples to train the classifiers located lower in the hierarchy. This 
type of feature for- warding of HiCNN helps us lower the total computations 
required by HiCNN during classification as we eliminate the need for more 
conv layers as classification progresses to a deeper hierarchy. 

14.3.2 Feature forwarding 

As part of the HiCNN approach, anomaly detection functions as an event trig­

ger within the HiCNN framework, prioritizing energy efficiency throughout 
its hierarchical structure by initiating classifications solely upon successful 
fault identification. The anomaly node architecture consists of four layers: 
one Conv1d (Convolutional 1-dimensional) layer, one max pooling layer, 
one batch normalization layer, and one full-connected layer. However, due 
to simpler task complexity, a classifier with one Conv1D layer is sufficient 
to perform the classification. This Conv1d layer consists of only one filter 
and a kernel size of 80. HiCNN architecture prioritizes anomaly detection 
by placing it as the parent classifier at the top of the hierarchical struc­

ture. This prioritization stems from data-dependent task complexity. [11]. 
Consequently, the HiCNN architecture employs a simple, single-layer CNN 
classifier for anomaly detection. This classifier acts as a gatekeeper, triggering 
further classifications only when an anomaly is identified. This approach is 
crucial for optimizing computational efficiency. By identifying anomalies 
early on, the HiCNN architecture avoids redundant computations in the 
lower levels of the hierarchy. In contrast, the baseline classifier continuously 
performs computations even in the state of no anomaly. This approach leads 
to unnecessary calculations and inefficient use of resources. This helps us 
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activate only a leg of the HiCNN architecture (Figure 14.2) ultimately helping 
to avoid using all the weights of trained architecture during inference as is the 
case with baseline CNN architecture. 

14.3.3 Baseline CNN and Hierarchical CNN 

This subsection differentiates Baseline and HiCNN algorithms. A flat clas­

sification approach is represented by a single complex multilabel classifier 
responsible for classifying all classes at once. We constructed a baseline 
convolutional neural network (CNN) with a flat classification structure. 
This model is iteratively fine-tuned to achieve robust performance, yielding 
approximately 97 % accuracy on the test dataset. Subsequently, this base­

line classifier serves as a benchmark for comparison against a hierarchical 
classification approach. 

The baseline model (Figure 14.2) requires a computationally inten­

sive architecture to accommodate the one-hot encoded representation of 28 
classes. This single architecture incorporates six convolutional layers and five 
dense layers, independently managing the classification task while demon­

strating noteworthy performance. However, the baseline approach does not 
optimize for computational efficiency. 

Figure 14.2 Baseline Architecture vs HiCNN architecture, indicating towards flexible archi­

tectures and number of layers used. The HiCNN architectures are used with different filter size 
and filter numbers. 

On the other hand, as illustrated in Figure 14.1, if the initial mode 
corresponds to M1, only classifier M1 would be activated. Subsequent sever­

ity class determinations follow the same principle. This inherent flexibility 
enables the hierarchical model to manage complex classification problems 
by using specialized classifiers at each node. The training process within 
the HiCNN follows a node-wise approach, beginning with the Anomaly 

⏎ 
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node (Figure 14.1). This hierarchical strategy involves the fine-tuning of 
classifiers at each level of the HiCNN architecture after each training epoch. 
Employing specialized architectures for each classification task, every com­

ponent is individually trained and fine-tuned. The initial architecture focuses 
on fault detection, followed by mode partitioning, fault classification, and 
severity classification. HiCNN promotes energy efficiency while preserving 
flexibility by adjusting layer- specific hyper-parameters, such as filter count 
and dimension. 

By controlling these parameters, we can regulate the volume of data 
propagated to the severity node, thus influencing the overall computational 
complexity of the HiCNN model. [13] To propagate relevant features to 
deeper nodes (i.e., severity classification), the mode partition CNN classifier 
at hierarchy level two is designed with two outputs. During training, a custom 
loss function outputting zero is employed for the first convolutional layer 
of mode classifiers (Figure 14.1) responsible for feature output. The overall 
accuracy of the HiCNN model is heavily influenced 

by the quantity of data samples provided to the Mode partition node. 
For training, individual architectures are connected in a distributed, tree­

like structure (Figure 14.1) using conditional logic (if-else) and then used to 
perform final inference on the test dataset. Beginning with the first instance of 
the test dataset, HiCNN dynamically selects the subsequent classifier based 
on predictions from the preceding stage. This process continues until a leaf 
node is reached, signaling the termination of the classification process. Edge 
devices offer limited memory space and the size of trained tensorflow models 
is large enough not to be able to be deployed on them. Tensorflow-Lite (TF-

Lite) is a library offered by tensorflow to downscale the model’s optimum 
to be deployed on edge devices. Therefore, to perform inference on edge 
using HiCNN, initial thirty-one classifiers were converted to TF-Lite format 
to downscale. Conditional logic (if-else) is again utilized to run hierarchical 
inference on the edge device. 

14.4 Evaluation 

In this section, contents are divided into two following sub-sections to discuss 
experimental setup and measurement. 

14.4.1 Experimental setup 

As part of the data pre-processing pipeline, a custom data generator class is 
created to partition the dataset into 60:20:20 ratios for training, validation, and 
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testing. Before evaluation, input features were scaled to have zero mean and 
unit variance. A 512-sample window for training the HiCNN is determined 
to be optimal for balancing classification accuracy and latency, an important 
hyper-parameter for balancing energy efficiency and performance within the 
HiCNN architecture. 

Table 14.1 Comparison between Baseline and HiCNN 

Algorithm Accuracy Current drawn(mA) 

Baseline 98% 368.8 
HiCNN 95% 50.8 

The window size used to train the HiCNN is critical for model per­

formance optimization, as an inappropriate window size could adversely 
affect the generalization capabilities of classifiers in HiCNN due to the 
smaller number of data samples available for model learning leading to 
underfitting. Notably, while reducing the window size to 256 samples does 
impact HiCNN’s classification accuracy (approximately 70 % performance), 
its energy efficiency remains the same. The smaller size of input samples 
to the initial architecture means the input fed to the following architectures 
would be scaled down proportionally due to the smaller kernel size of feature 
forwarding conv output layers, leading to a proportional reduction in perfor­

mance due to underfitting in deeper models of hierarchy but no change in 
energy consumption while running inference. 

14.4.2 Measurement 

All the classifiers of HiCNN are trained utilizing TensorFlow 2 libraries. 
Subsequently, the trained models are deployed to a Raspberry Pi using the 
Tensor-Flow lite library [12] for inference. A dedicated hardware setup 
is employed for precise energy consumption measurements, incorporat­

ing a data-logging multimeter. This configuration allowed for the ongoing 
measurement of electrical current consumption during the classification pro­

cess recorded at 100 millisecond intervals. To account for the influence 
of background processes and sensors, the baseline power consumption of 
Raspberry Pi-2b is established during idle operation. This baseline power 
is then subtracted from the power consumption recorded during inference, 
yielding energy in Joules per inference, expressed in Joules. The Raspberry 
Pi is powered by a 5V DC power supply, with the multimeter interfaced 
for data acquisition (Figure 14.3). LabVIEW orchestrated the triggering of 

⏎ 
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Figure 14.3 Energy measurements setup using Raspberry pi connected to multimeter. 

classifications while simultaneously capturing current readings (in amperes) 
and corresponding timestamps (in milliseconds). The hyper-parameter win­

dow size 512 in HiCNN further guarantees HiCNN’s energy efficiency 
regardless of the model’s generalization capability. This could be beneficial 
for transfer learning applications. As a result, energy consumption stays 
constant with these variations. This occurs because the baseline algorithm 
performs unnecessary computations for non-anomaly cases, unlike HiCNN. 

The HiCNN architecture achieves a test accuracy of approximately 95%, 
slightly lower than the baseline model’s 98 %. However, HiCNN exhibits 
significant efficiency gains. TensorFlow Lite conversion and evaluation on 
desktop and Raspberry Pi reveal considerably faster inference times for 
HiCNN (380 microseconds vs. 1980 microseconds). Additionally, HiCNN 
demonstrates lower current draw (0.38 amperes vs. 0.46 amperes), (Fig­

ure 14.4 and Table 14.1) and reduced inference time (12 seconds vs. 86 
seconds) for the classification task, consuming 197.8 Joules with baseline 
algorithm vs 22.8 Joules for HiCNN. This, along with lower energy per 
decision (0.002 joules vs. 0.0455 joules), translates to lower current draw 
and latency for HiCNN during every inference. 

⏎ 
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Figure 14.4 Current consumption during inference for Baseline algorithm vs Hierarchical 
algorithm indicating towards low latency inference by HiCNN. 

14.5 Conclusion and Future work 

The HiCNN framework demonstrates promising results in attaining energy 
efficiency. It achieves up to 80% reduction in computational overhead 
compared to the baseline classifier according to per-decision energy con­

sumption. This efficiency gain is attributed to controlled computations, 
ensuring decreased energy consumption with architectures devised per task 
complexity. 

These results emphasize the potential of algorithmically optimized 
approaches for embedded systems, enabling near-real-time monitoring with 
improvement in response latency. HiCNN is more suited to hierarchical 
datasets and even though HiCNN requires more memory, the reduced matrix 
operations could be accredited to the selective portions of the HiCNN net­

work active during inference. A potential limitation arises when low data 
volume is propagated to lower hierarchical levels. This can lead to insufficient 
training data for severity classification, increasing the risk of model overfit­

ting or underfitting in subsequent models due to inherent model complexity. 
Whereas HiCNN energy efficiency is completely independent of sample 
size, the energy consumption of the baseline model is independent of the 

⏎ 
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window size till a threshold. The Baseline algorithm’s performance remains 
relatively stable despite changes in the number of input neurons unless it 
drops significantly below a threshold, such as 64 neurons. Future research 
directions should include a comparison with manual feature engineering. 
Investigating the performance of HiCNN against methods employing manual 
feature extraction could provide insights into error propagation trade-offs. 
Another strategy could be hybrid cloud/edge deployment, which could help 
explore the potential benefits of partial algorithm/architecture deployment 
across cloud and on-device environments. 
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Abstract 

The paper aims to present an AI-based Automated Optical Inspection (AOI) 
software for both digital and wooden industries developed within the EdgeAI 
project. Current approaches rely on centralized solutions, where the compu­

tation is performed inside the inspection machine itself. Instead, we present 
algorithms that work at the edge to give rise to competitive solutions to 
existing ones. In particular, we experiment with two different tasks of defect 
identification: detecting the defect position within a wooden panel by using 
YOLO, in which a 96% accuracy is reached. Secondly, concerning the digital 
industry, we perform a two-step classification between defective and non-

defective microchips and then between four possible defect classes in their 
surface exploiting a ResNet network and obtaining a 97% accuracy. We also 
exploit explainability tools to understand which parts of the images caused the 
model’s decision. After developing the AI models we port them to two less 
power-consuming edge devices, Nvidia Orin Nano, and Nvidia Orin AGX, 
observing unchanged performance. 
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15.1 Introduction 

The paper aims to present an AI-based AOI software developed within the 
EdgeAI project for defect detection of the PCBAs used in the digital industry 
to be implemented at the edge with the main expected outcome of being 
a viable and cost-effective solution for the inspection of many industrial 
products, not only digital boards. In particular, these algorithms are at the 
core of the AOI solution shown in Figure 15.1 where visual testing is done 
at the edge and learning in the cloud. This solution, as illustrated in [1], can 
reduce purchase and power consumption costs without increasing latency. 
Indeed, in this architecture, learning is done on the cloud but several tests 
suitable for highlighting groups of defects can be performed in parallel by 
competing boards thus decreasing latency. 

A solution similar to the one adopted in the EdgeAI project has been 
proposed by Advantech where the NVIDIA board is replaced by the MIC-72 
but without discussing the algorithms used in practice for defect detection. 
On the contrary, several algorithms have been proposed in the literature to 
manage the abovementioned problems using GPUs. From the literature, we 
found that these are mainly optimized versions of the DL-powered YOLO 
algorithm [2]. The mAP (mean Average Precision) of the latest proposed 
algorithms goes beyond 99%, i.e. 99.17% in [3], 99.5% in [4] , and 99.71% 

Figure 15.1 An AOI solution consisting of an edge board for testing and a GPU server for 
learning. ⏎ 
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in [5]. However, this comparison is only indicative since the mentioned 
precision values were not achieved using the same data set. Also, it is not 
shown the performance degradation passing from a solution implemented on 
GPUs to real testing done using edge devices. 

The feasibility of implementing YOLO-based algorithms for edge tests 
has been recently shown in literature, for example, in the YOLO implemen­

tation on NVIDIA Jetson TX2 illustrated in [6] which is characterized by 
satisfactory precision performance, that is, mAP0.5 = 98%. This is a relevant 
starting point for our implementations aiming at solving two open problems: 

• To what extent very accurate algorithms can be implemented for edge 
tests using more performant NVIDIA boards, such as JETSON ORIN, 
for the quality control of PCBAs to be used in applications where the 
constraint of near-zero defects is required 

• How to implement such algorithms on less expensive boards such as 
STM32 

We decided to conduct experiments on wood and digital industries prod­

ucts which are also cases of study in the context of EdgeAI project. We 
start by performing wood defect detection on a publicly available dataset. 
Secondly, considering the absence of a significant dataset on defective PCBAs 
(which are the main focus of the project), we conducted preliminary experi­

ments on advanced packaging microchips. Finally, we export the models into 
edge devices comparing the performance of the ported models in terms of 
latency, power consumption, and accuracy. 

15.2 Related Works 

Wood Defect Detection 

The idea of an AI-based detection of wood superficial imperfections was 
introduced several years ago. For example, [7] tried to catch the presence of a 
defect in Pinus lumber. The dataset was small and composed of 400 training 
images and 100 test images, two different learning approaches were used: 
Neural Networks and Support Vector Machines. Even if these algorithms are 
pretty simple, interesting results were achieved, with a 97% accuracy. In [8] 
this problem was faced by using a cascade of Adaboost classifiers. First, he 
tried to detect the presence of blue stain, then of decay, and finally of cracks. 
The experiment was conducted on a limited collection of about 100 images, 
which presented 300 examples of defects and the best result obtained was a 
12% error rate. Subsequently, [9] decided to exploit a VGG16 model for this 
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task, obtaining really high performance on a 6 common defects dataset. They 
also performed data augmentation on the original 1200 available pictures and 
trained a Mix-FCN model that achieved a 91% pixel accuracy. 

A direct application of the above-mentioned YOLO architecture was 
instead done by [10], who aimed to distinguish among 4 different typologies 
of defects, obtaining an 88% mAP. Furthermore, [11] proposed a modified 
version of YOLOv7 for wood floor small defect detection which reaches 
a 94% mAP. Similarly, [12] showed that a backbone-modified version of 
YOLOv7 reached an mAP of 81% on our same public dataset. 

In summary, wood defect detection is a big challenge considering the 
various shapes, positions, and possible combinations of the existing industrial 
defects, which could worsen the performance of a model trained to catch only 
a part of them. Hence our goal is to exploit state-of-the-art error detection 
methods in order to increase the amount of defects that our model is able to 
spot, without penalizing reliability and above all inference time, which is a 
crucial parameter in industrial world applications. 

Chip Surface Defect Detection 

The detection of surface defects in chips is crucial for ensuring high-quality 
production in the semiconductor industry. Historically, methods for detecting 
these defects relied on image processing techniques. For example, 

[13] used a combination of grayscale transformation, mathematical mor­

phology, and pattern recognition to detect defects on printed circuit boards, 
achieving high detection speed. Similarly, [14] employed filtering methods 
with Support Vector Machines to classify defects. These methods are fast but 
often struggle with generalization across different defect types due to their 
reliance on manually set parameters. 

Deep learning has become increasingly popular in recent years and to 
address this limitation its advancement has introduced more robust methods 
for defect detection. Most modern techniques are divided into three cate­

gories: classification, segmentation, and object detection. For instance, [15] 
utilized an improved Spatial Pyramid Pooling Network (SPPNet) for defect 
classification, while [16] applied a 3D convolutional neural network (CNN) 
to classify defects on wafers. Object detection networks, such as Faster R­

CNN and YOLO, are increasingly favored due to their speed and accuracy. 
For example, [17] used Faster R-CNN to detect multiple types of defects in 
steel and concrete structures, while [18] enhanced YOLOv3 with a Group 
Pyramid Pooling module for rapid detection of PCB surface defects. 
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Moreover, other deep learning-based techniques such as the SSD (Single 
Shot MultiBox Detector) and its variants have been explored for defect 
detection. [19] proposed an SSD-based method that utilized shallow features 
to detect smaller defects, although it faced challenges in detecting finer 
details. Later improvements such as DSSD [20] (Deconvolutional Single Shot 
Detector) achieved better detection accuracy by incorporating deconvolution 
layers to add more contextual information, although at the cost of increased 
processing time. 

To tackle the problem of small object detection, [21] proposed using 
YOLOv3 with multi-scale feature maps, but it showed limited effectiveness 
for small defects due to insufficient deep feature extraction. An improvement 
came with the introduction of YOLOv4, which balanced speed and accuracy 
better than previous models. However, small object detection remained a 
challenge. In response, [22] developed SO-YOLO, a modified version of 
YOLOv4, aimed at detecting small-scale chip defects by improving shallow 
feature fusion. This approach achieved superior performance with an 86% 
mAP, surpassing YOLOv4 and even YOLOv5. 

The continuous evolution of deep learning methods has also seen the 
integration of attention mechanisms to improve defect detection. For exam­

ple, [23] proposed a weakly supervised detection framework to predict the 
location and probability of defects using a small dataset, achieving 99.5% 
accuracy. 

These approaches underscore the ongoing challenges in defect detection, 
particularly for small objects, and highlight the importance of balancing 
accuracy with inference speed in real-world industrial environments. 

Deployment of AI Models at the Edge 

Deploying AI models at the edge has become an increasingly popular solution 
due to its ability to bring computation closer to data sources, reducing latency 
and reliance on centralized infrastructure. 

In edge computing, AI models are deployed on local, resource-

constrained devices, such as edge boards or embedded systems like Nvidia 
Orin Nano or Orin AGX. These devices are capable of executing complex 
deep learning models directly at the point of data collection, enabling faster 
response times and reducing the load on cloud services. This approach is 
especially beneficial in industrial settings where real-time defect detection is 
crucial, such as quality control in manufacturing, where any delay in detecting 
defects can result in significant costs. 
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One of the key challenges in deploying AI models at the edge is the 
limitation of computational power and energy resources. Models need to be 
optimized to balance inference accuracy with speed while keeping resource 
consumption in check. Techniques such as model quantization, pruning, and 
using more efficient architectures like YOLO for object detection and ResNet 
for classification have proven effective in ensuring that edge devices maintain 
high performance without compromising on precision. The deployment of 
these models allows for effective parallel testing of multiple samples, leading 
to decreased latency compared to centralized processing, where communica­

tion delays and network reliability can introduce bottlenecks. Moreover, edge 
deployment supports data privacy and security by processing data locally, 
which is often a requirement in industrial settings. 

15.3 Spotting Defects in Wood Industry Products 

15.3.1 Defect Detection Dataset 

First, we try to identify the exact position of a defect within an image of a 
wooden panel. To do so, we exploit a publically available dataset containing 
a total of 20275 images: 1992 images of sawn timbers without any defects 
and 18283 timber images with one or more surface defects. On average, there 
are 2.2 defects per image, while only 6.7% of images contain more than three 
defects. The highest occurrence of defects is 16 defects per image. The dataset 
includes the following wood defects: 

1. Live Knot: A portion of a tree branch incorporated into the trunk, 
appearing as a circular or oval area of darker wood. Live knots are solid 
and firmly attached but may cause irregular grain patterns. 

2. Dead Knot: Similar to a live knot, but from a non-living tree. Dead knots 
result from a branch that died and fell off, leaving a void filled with resin 
or bark, often differing in color or texture from the surrounding wood. 

3. Knot Missing: The absence of a knot where one would typically be 
expected, leads to a more uniform wood appearance. 

4. Knot With Crack: A knot that contains a crack or split within it. 
5. Crack: A separation or break in the fiber structure of the wood. 
6. Quartzity: The presence of quartz or silica deposits in the wood, 

appearing as small, translucent or whitish mineral inclusions. 
7. Resin: The presence of sticky or resinous substances, occurring natu­

rally or due to injury or stress, often appearing as pockets or streaks of 
amber-colored substance. 
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(a) Examples of wood defects (b) Distribution of defects in the dataset 

Figure 15.2 Visual representation of wood defects and their distribution. 

8. Marrow: Soft, spongy tissue found in the central portion of the tree 
trunk, lighter in color and softer than the surrounding wood. 

9. Blue Stain: A bluish discoloration caused by fungal or bacterial growth, 
leaving pigments that produce a blue or grayish tint in the wood. 

10. Overgrown: Abnormal growth of wood fibers, resulting in irregular or 
distorted patterns, often due to hormonal imbalances or stress on the 
tree. 

Some examples of the defects are shown in Figure 15.2 a while their 
distribution can be observed in Figure 15.2 b. It’s important to underline the 
considerable unbalance between the classes, where the first two are dominant 
with respect to the other eight. Considering that our main concern is to spot 
defective elements rather than understanding their nature and that this class 
imbalance, together with the innate similarity between defects, makes it hard 
to distinguish among all of them, we decide to combine all of them under a 
general ’Defect’ class. 

15.3.2 Experiments and Results 

The object detection model we decided to exploit is YOLO[24]. This model, 
whose name stands for You Only Look Once, was revolutionary in the field 
of object detection since it was able (starting from its first release) to output 
both ROIs (Regions of Interests) and their classification after just one forward 
pass of the input image through the network. In our case, we finetuned one of 
the last available releases of YOLO, which is YOLOv8, in its medium version 

⏎ 
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Figure 15.3 YOLOv8 architecture. 

(around 26 million parameters). In general YOLO architecture (fully shown 
in Figure 15.3)is made up of three main blocks: 

• Backbone → This is a CNN whose main role is feature extraction. It 
is composed of several stages which progressively reduce the spatial 
resolution while increasing the number of channels. Each of them relies 
on the so-called C2f block, which is in turn based on the Darknet 
Bottleneck, made up of 2 convolution blocks and a skip connection. 

• Neck → This block aggregates information from different stages in order 
to improve the capacity of the model to recognize objects of different 
sizes. It is also based on the C2f block. 

• Head → This component processes the aggregated features coming from 
the neck passing them through convolution blocks responsible for the 
final predictions of both bounding box and classes 

We trained the model for 100 epochs and in terms of results, a 95% 
precision and a 94% recall are obtained, while the mAP50 reached a 96% 
value. Some of the predictions on the validation set are shown in Figure 15.4 
while the progress of the abovementioned metrics during the training, as well 
as the loss functions on train and validation, is shown in Figure 15.5 

⏎ 
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Figure 15.4 Example of prediction on validation set. 

(a) Losses on train and validation sets (b) Precision, Recall and Mean Average Precison 

Figure 15.5 Training metrics of YOLOv8 model. 

15.4 Spotting Defects in Digital Industry Products 

In this section, we focus on the identification and classification of chip surface 
defects. Given the challenges associated with acquiring a comprehensive 
dataset, we employed the one introduced by Wang et al. [25], which, despite 
its modest size, provides valuable insights into the defect detection process. 

⏎ 

⏎ 
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15.4.1 Defect Detection and Classification Dataset 

The selected dataset includes a total of 2763 images of chip surfaces, where 
2000 images do not contain any defects, and 763 images present one among 
four possible defects. We implemented a two-step classification approach, 
aimed to streamline the industrial process and enhance the efficiency of 
quality control. The initial phase involves a binary classifier designed to 
quickly and accurately filter out defect-free chips. This step serves as a 
critical screening process, ensuring that only chips identified as non-defective 
continue through the subsequent stages of the industrial process. By doing 
so, we effectively reduce the computational load and focus further inspection 
efforts only on potentially problematic chips. This approach is particularly 
valuable in high-throughput manufacturing environments, where minimizing 
delays and optimizing resource allocation are crucial. For the chips flagged 
as defective in the first step, a more granular analysis is then conducted in the 
second step. This phase involves classifying the specific type of defect present 
on the chip surface. The detailed classification not only aids in determining 
the exact nature of the defect but also provides essential insights that can be 
used for root cause analysis. In particular, the dataset contains the following 
defect classes: 

• NO_DIE (6b) represents a unique defect scenario where the actual error 
lies in the absence of the soldered chip: the chip is missing on the sub­

strate. The absence of a chip can be attributed to manufacturing faults, 
such as misalignment during the chip placement process or incorrect 
soldering. These errors can occur due to equipment malfunction, human 
error, or process inconsistencies. 

• DIE_INK (6c) includes chips with internal ink stains: these defects 
can arise from ink deposition errors or contamination during the man­

ufacturing process. Detecting and classifying these internal defects 
is essential for ensuring the integrity and reliability of the chip’s 
functionality. 

• DIE_BROKEN (6d) involves chips with visible breaks or fractures along 
their edges. These breaks can occur during the manufacturing process 
or as a result of external factors. Detecting and accurately localizing 
these broken edges is crucial for quality control and identifying potential 
manufacturing issues. 
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(a) DEFECT_FREE (b) NO_DIE (c) DIE_INK (d) DIE_BROKEN (e) DIE_CRACK 

Figure 15.6 Defect-free chip and four common chip surface defects 

Table 15.1 Distribution of the dataset 

DEFECT_FREE NO_DIE DIE_INK DIE_BROKEN DIE_CRACK 

2000 100 135 42 486 

• DIE_CRACK (6e) represents chips with cracks occurring internally 
within the chip structure. These cracks can stem from stress during fabri­

cation, handling, or environmental factors. Detecting and characterizing 
these cracks aids in identifying structural weaknesses and preventing 
potential chip failures. 

The distribution of the different classes in the dataset is the following (1): 

15.4.2 Experiments and Results 

The model we used to perform classification is ResNet [26], in particular 
the version 18 layers deep (namely ResNet-18). It introduced the innovative 
concept of “skip connection", which connects the activations of a given layer 
to further layers by skipping some intermediate layer, thus alleviating the 
issue of vanishing gradient. The binary classifier was trained for 70 epochs 
and obtained a 94.5% accuracy and 94% recall, precision, and F1 score. The 
progress of accuracy and loss function on train and validation is shown in 
Figure 15.7 a 

As regards the second phase classifier, it was trained for 80 epochs 
obtaining 97% accuracy, 87% recall, and 89% F1 score, as shown in 
Figure 15.8 a 
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(a) Loss and accuracy on train and validation sets (b) Confusion Matrix: 0 Defect 
Free - 1 Defective  

Figure 15.7 Metrics’ trends during training and test result.  

(a) Loss and accuracy on train and validation sets (b) Confusion Matrix: 
0 NO_DIE - 1 DIE_INK - 2 DIE_BROKEN - 3 DIE_CRACK 

Figure 15.8 Metrics’ trends during training and test result 

15.4.3 XAI Analysis: insigths into ResNet-18 using Grad-CAM 

Explainable AI methods, often referred as XAI, are essential for enhancing 
the transparency and interpretability of deep learning models by provid­

ing insights into their decision-making processes. Grad-CAM (Gradient­

weighted Class Activation Mapping) [27] visualizes the regions of an input 
image that most influence the model’s predictions by highlighting the gra­

dients flowing into the convolutional layers, thus allowing us to identify the 
specific areas of the chip surface on which the model focuses. Below, we 
provide examples of the Grad-CAM results for each defect class: 

• NO_DIE: The activation maps effectively highlight the missing chip 
region, providing a clear indication of the defect (Figure 15.9 a). 

⏎ 

⏎ 
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(a) NO_DIE (b) DIE_INK (c) DIE_BROKEN (d) DIE_CRACK  

Figure 15.9 Grad-CAM activation maps for different chip surface defect classes.  

• DIE_INK: The maps emphasize the  areas surrounding ink stains, 
accurately identifying the relevant regions for defect classification 
(Figure 15.9 b). 

• DIE_BROKEN: It’s the least represented class and in fact the maps show 
some uncertainty in pinpointing the exact broken regions, reflecting 
challenges observed in the confusion matrix and indicating potential 
areas for model improvement (Figure 15.9 c). 

• DIE_CRACK: The activation maps clearly outline the crack, demon­

strating the model’s proficiency in localizing and detecting this defect 
(Figure 15.9 d). 

15.5 Porting of the Models on Edge Devices 

Porting AI models to edge devices is a critical step in realizing efficient, real-

time solutions, especially in industrial settings. The edge devices used in this 
study include Nvidia Orin Nano and Nvidia Orin AGX, which are specifically 
chosen for their balance between computational power and energy efficiency. 
The process of porting models, such as YOLO for defect detection and 
ResNet for classification, involved converting the models to ONNX (Open 
Neural Network Exchange) format to ensure they could run efficiently on 
these resource-constrained devices while maintaining high accuracy. ONNX 
provides a unified format that allows models to be optimized for different 
hardware platforms, making them more portable and reducing dependency 

⏎ 
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on specific frameworks. By converting to ONNX, we were able to leverage 
hardware acceleration features available on our tested edge devices, in which 
we observed improved inference speed and reduced latency. 

The deployment tests demonstrated that both devices could perform real-

time inference, with the Orin AGX showing a higher throughput due to 
its superior GPU capabilities. However, the Orin Nano, being more cost-

effective and energy-efficient, also provided satisfactory performance for 
applications where slightly lower throughput was acceptable. The deploy­

ment experiments showed that the models could achieve near-identical 
accuracy compared to their performance in a centralized server environment, 
proving the viability of using edge devices for industrial defect detection. 

In addition, an important aspect of edge deployment is ensuring low 
latency and robustness under varying conditions. The edge devices managed 
to maintain high accuracy with inference times well within the acceptable 
range for real-time operations, demonstrating their suitability for on-site, 
autonomous quality inspection. By processing data locally, the system also 
ensures data privacy, which is crucial in industries dealing with sensitive 
information, such as PCB industries that deal with pre-production boards. 

Overall, porting the models to edge devices proved successful, providing 
a viable solution for decentralized, real-time defect detection in industrial 
applications. The performance metrics, as shown in Tables 15.2 and 15.3, 
highlight the trade-off between inference speed and power consumption for 
each device. The Orin AGX, with its higher power consumption, offers 
better inference times, while the Orin Nano provides a more energy-efficient 
alternative suitable for less demanding applications. The use of powerful yet 
efficient edge devices like the Orin Nano and Orin AGX resulted in a system 
capable of high performance under the constraints typical of edge computing 
environments. 

Table 15.2 Performance of Nvidia Orin Nano for model deployment 

Model Inference Time (ms) Power Consumption (W) 

Chip Defect/No Defect 25.1 11.2 
Chip Defect Classification 64.5 13.4 
Wood Defect Classification 72.3 14.2 

Table 15.3 Performance of Nvidia Orin AGX for model deployment 

Model Inference Time (ms) Power Consumption (W) 

Chip Defect/No Defect 22.0 15.6 
Chip Defect Classification 44.4 21.5 
Wood Defect Classification 50.4 22.5 

⏎ 

⏎ 
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15.6 Conclusions and Future Works 

In this paper, we presented an AI-based Automated Optical Inspection solu­

tion designed for both the digital and wood industries, focusing on defect 
detection at the edge. Through a series of experiments, we explored the 
application of YOLOv8 for wood defect detection and ResNet for chip 
surface defect classification. The results demonstrated that our proposed 
approach achieved high accuracy, precision, and recall, proving the effec­

tiveness of deep learning models in industrial defect detection tasks. We also 
presented an explainability analysis of the ResNet prediction, which can help 
in understanding the region of the image that led to the model’s decision. 

Moreover, by porting the models to edge devices such as the Nvidia Orin 
Nano and Orin AGX, we successfully validated the feasibility of running 
these complex models in a resource-constrained environment without com­

promising performance, enabling real-time defect detection. We showed that 
the edge deployment maintains unvaried the accuracy of the models while 
reducing latency and power consumption, which are critical aspects in the 
industrial setup. 

Future works will focus on several aspects to enhance our solution, for 
example: 

• The next step involves integrating our solution into a real-time indus­

trial setup. This will involve testing the models in environments where 
objects move on conveyor belts, and high-speed cameras capture images 
of products for defect detection. Such real-world trials will help assess 
the models’ ability to handle real-time constraints, such as varying 
lighting conditions, motion blur, and differences in defect types and 
positions. By doing so, we aim to further optimize the system for 
seamless operation in an actual production line. 

• While our models achieved high accuracy, future efforts will focus on 
enhancing the quality of training data. This involves not only increas­

ing the quantity of data but also ensuring that it represents a wide 
range of defects across different types of products and environments. 
High-quality, diverse data is critical for improving the generalization 
capabilities of the models, reducing false positives and negatives, and 
adapting to unseen defect types. In particular, augmenting the dataset 
with hard-to-detect defects and edge cases will be crucial for improving 
the system’s robustness. 

• Facing directly the PCB issue by generating  a dataset suitable for 
detecting defects in these boards, either real or synthetic. Successively, 
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testing both the one-stage and the two-stage solution presented in the 
paper. In particular, in the second case, we imagine a first model able 
to detect each PCB internal component (i.e. resistors, capacitors...) and 
then several “expert" classifiers that will be able to decide whether a 
component is correctly mounted or not. 

• We aim to explore multi-task learning approaches where the models 
can detect and classify defects from multiple industries simultaneously, 
improving the efficiency and flexibility of the AOI system. 
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Abstract 

This work-in-progress paper explores the integration of human cognition 
and interaction models into industrial automation systems. We begin by 
examining how human cognitive patterns can be applied to the development 
of conscious agents within these systems. From an interaction standpoint, we 
analyse the dual role of humans as both users and workers within automated 
environments. The convergence of these perspectives enables the creation of 
intelligent, multi-agent systems where humans function as equal agents. Such 
systems are characterised by true flexibility, as each component can inde­

pendently assess its capabilities and collaboratively plan actions to achieve 
both collective (external) and individual (internal) goals. We present two case 
studies to illustrate these concepts: The first case study examines a distributed 
vertical farm, where modules must coordinate their energy consumption, 
demonstrating steps towards cognitive reasoning in machines. The second 
involves the automation of a cruise ship’s HVAC system, where agents (cabin 
units) negotiate a temperature setpoint based on human behaviour (user­

focused scenario). 

Keywords: multiagent systems, human-computer interaction, computational 
rationality, reconfigurable manufacturing systems. 
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16.1 Introduction 

Flexibility and reconfigurability are essential for driving automation pro­

cesses based on demand. These characteristics are applicable across a range 
of domains, including building automation (e.g., HVAC systems, lighting 
control), pharmaceutical production, smart factories, and other manufacturing 
systems. 

Reconfigurability is also critical in situations such as changing energy 
consumption targets, emergency scenarios, equipment upgrades, or the intro­

duction of new workers who need time to reach full capacity while produc­

tion targets remain unchanged. Similarly, adapting to external factors, such 
as increased HVAC demands—ensures that system goals are met without 
compromising productivity, even when resources are limited. 

The dynamic requirements in these contexts arise from both internal 
and external factors. The internal ones are related to business processes and 
goals, liveness, and safety properties of the systems concerning with respect 
to their momentary conditions. External, in turn, are often influenced by 
general economic and environmental conditions. These requirements can be 
introduced during runtime or can be pre-defined. 

Internal and external requirements can conflict, even if initially they 
appear aligned. For example, a predefined internal goal of meeting the 
minimal production output might contradict a dynamic external demand to 
reduce energy consumption. One solution would be to set priorities among 
requirements, while another approach involves optimising the performance 
of the system to balance competing needs. 

Pre-programming for such optimisation is possible, but as systems grow 
in complexity, maintaining them becomes increasingly effort-intensive. A 
more scalable solution involves creating multi-agent systems (MAS), where 
each agent “knows” its capabilities, can “perceive” and adapt to changing 
goals. 

In this paper, we propose a MAS framework based on self-conscious 
intelligent agents motivated by human cognition and capable of perceiving 
humans as equals. 

16.2 Related Research 

The concept of multi-agent systems (MAS) is not new, nor is the idea of 
conscious machines (both can be found in research and sci-fi novels). MAS is 
a system that involves multiple intelligent agents that interact with each other 
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and solve a set of problems. In this paper we consider the industrial applica­

tion of MAS, meaning that our agents are control programs for processes and 
devices in an industrial automation setting. Thus, for example, [1] discusses 
the use of agent technology in smart grid automation using the standards 
IEC 61499 and IEC 61850, [2] develops the idea of intelligent mechatronic 
components, and [3] uses an agent-based approach to model the dynamics of 
liquid goods logistics and energy efficient sensors usage. 

While we refer the reader to [4] for the introduction of MAS, the works 
on the second concept we discuss here in more detail. 

One way to bring consciousness to machines is to implement a belief­

desire- intention (BDI) model [5]. In the BDI model, intentions are primarily 
perceived as elements of partial plans of action (although it is argued that BDI 
models do not include a built-in capacity for “lookahead” type of planning 
[6]). It reflects how humans reason and form intentions based on their goals 
and the information they have. In this model, belief represents the agent’s 
perception of the environment, desire refers to the goals the agent wants to 
achieve (which can be organised hierarchically, although this is not always 
necessary), and intention is the agent’s commitment to a specific course of 
action based on a plan. 

The BDI model has its limitations, and a series of works tackles them. For 
example, 

[7] complements the reasoning of BDI agents about time with reasoning 
in time, making the model suitable for dynamic environments. Then, the 
BDI model does not describe the communication between agents within the 
context of MAS, which is partially dealt with in [8] where LORA (the logic of 
Rational Agents) allows reasoning about interaction and incorporates action 
logic. An important extension of the BDI model is [9]. The author integrates 
a decision-theoretic planning framework into BDI and proposes the concept 
of bounded rationality. In this approach, the agent’s decision-making is based 
on utility maximisation while also considering cognitive and environmental 
constraints, making it a more realistic model of rational behaviour under 
limitations. 

Computational rationality [10] is based on the core ideas of bounded 
rationality. In addition to the mentioned constraints (cognitive, environmen­

tal, etc.), it considers the computational cost of the decision-making process. 
A solution to a computation rationality problem is optimal with respect to 
the trade-offs between the quality of decisions and the cost of computation. 
In [10], the authors highlight that in many cognitive science frameworks, 
decision-making is often modelled with two distinct levels, i.e., the higher 
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rational level which defines goals and strategies, and the lower mechanistic 
level which focuses on the implementation or on how the agent uses its 
cognitive mechanisms (e.g., perception, memory) to approximate or achieve 
these goals in practice. Computational rationality, in turn, treats information-

processing limitations (finite memory, time, or computational resources) as 
integral parts of the model of rational behaviour. Unlike traditional models 
of rationality, which assume agents have unlimited cognitive capacity, com­

putational rationality integrates computational and information-processing 
constraints directly into the definition of rational behaviour. 

The framework offers a structured way to explore how behaviours arise 
from cognitive mechanisms that are tailored not just to the environment, 
but also to the cognitive structure of the mind. Within this system, optimal 
behaviour is understood as the result of executing the best possible program 
suited to a given environment. This behaviour represents the machine’s upper 
limit of performance under the given conditions. 

The primary focus of [10] is how individual agents make decisions, so, 
although in the context of MAS, other agents can be viewed as the envi­

ronment of individual agents they perceive, there is no specific focus on the 
interaction between agents, including scenarios where a human is perceived 
as an agent. In [12], the authors, in turn, lay the concept of computational 
rationality as a foundation for a theory of interaction within the domain of 
human-computer interaction (HCI). 

While modelling the interaction between a computer and a human (e.g., 
through a graphical user interface or other means), the modeller must guess 
human reactions and encode them into a set of rules. This is a nontrivial task 
as users often deviate from the standard behaviour, which requires machines 
to be flexible in their replies. 

In the industrial automation world, the problem is especially acute as 
the mental states of both human workers and human users are subject to 
change. Depending on the length of the collaborative production scenario, it 
can further alter and require a rapid, safe, and performance-optimal response 
from the machine. While [12] does not tackle industrial automation scenarios 
per se, it argues that computationally rational agents can successfully interact 
with humans. 

The core idea is that interactive behaviour results from a control policy 
that is optimally adapted to users’ preferences and constraints. These con­

straints arise both from the internal environment (cognitive limits) and the 
external environment (the interaction context). Interaction, therefore, is seen 
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as the rational outcome of these bounded choices. By utilising approximate 
optimization techniques like reinforcement learning (RL), hypotheses about 
user goals and processing limits can be generated, allowing for adaptable 
strategies. The theory also allows the machines to generate explanations of 
human actions, i.e., answer “why?” and “what if?” questions, which allows 
them to be more adaptive. The need for adaptiveness is also motivated by 
the fact that individuals often distribute cognitive processing across their 
environment to optimise the use of their mental and cognitive resources, this 
is known as the adaptive distribution of cognition [13]. 

The works discussed provide a foundation for exploring computational 
rationality as a framework for agent interaction. Notably, we do not differ­

entiate between human and machine agents in our approach. This leads us 
to our central question: “If we develop intelligent agents that approximate 
human cognition, can we integrate humans into the system as equal agents?” 
Our research objective is to create a multi-agent system (MAS) interaction 
framework that allows agents to be dynamically added or removed while 
pursuing both individual and collective system goals. This framework should 
have adaptable communication strategies to prevent using inefficient meth­

ods of problem-solving (e.g., becoming trapped in local optima [13]) when 
evidence suggests a better approach exists. 

The central point in the agent architecture we envision is a self-awareness 
layer (or if we follow terminology from [12], the internal environment). 
Suppose we aim to avoid hard-coding production recipes or human-machine 
interaction. In that case, the control program should be able to “reflect” on 
itself and “decide” how its capabilities and limitations fit into the current 
set of system goals. For instance, consider an agent which is a program that 
controls a robotic arm. It can make the arm move and perform grip physically, 
but if it lacks awareness of these capabilities and is asked to retrieve a book 
from a shelf, the agent might respond that it cannot perform the task. One 
might argue that a self-awareness layer can be easily generated since an agent 
is a control program with the code often known. 

Surely, if the agent is a white box and the control program is deterministic, 
one can very well predict its future behaviour knowing, for example, its 
execution traces. However, this luck is rare, and agents can be represented 
by a neural network or other machine learning models. 

The next point is that to achieve the full coverage of the environment 
relevant to the agent, it needs to learn not only its own capabilities but also 
how they fit into the whole system and, hence, what other agents do. Thus, 
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Figure 16.1 Ontology showing the interaction of two agents. Assume-Derive phases are 
shown for Agent 1. 

they need to observe the behaviour of other agents, assume what they could 
do with respect to the current goals, and derive their behaviour based on this 
knowledge and their goals. The assume-derive model is shown in Figure 16.1. 

16.3 Interaction Framework 

In this section, we outline the framework within which we can achieve the 
integration of human cognition principles into the MAS system in a way that 
a human is treated as an equal agent. It consists of four layers: automation, 
self- awareness, high-level agent communication, and the highest level where 
the user specifies the system goals. Each layer at any time must ensure safe 
operation and pass formal checks when necessary. For each of the layers, in 
addition to their description, we also name the major problems to be solved. 

16.3.1 Layer 1: Automation 

We work with industrial automation systems; thus, our first layer is the layer 
of pure automation control programs. We can operate out of the idea that 
our low-level control programs are smart and can rewrite their sequence of 
actions, and such work is being carried out. However, at this stage, we assume 
that they operate with a set of atomic operations that can be activated in any 
order by a scheduler from the higher level (e.g., using OPC UA). An atomic 
operation has a common definition and different specifics depending on the 
implementation of the automation system. Commonly, an atomic operation 
is a single action performed by a machine that starts in the safe state of the 
system and leaves the system in a safe state ready for next allowed actions. 

⏎ 
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Figure 16.2 Interaction framework. 

Consider having a drilling machine with a rotating table. Atomic operation 
“perform drilling” in addition to lowering the drill machine and turning it on 
for a defined amount of time, will also include checking if there is a workpiece 
underneath it. The same suffices with any other process constraints; for 
example, if there is a constraint on the maximum water temperature in the 
tank, the operation “heat” will not turn on the heater if the temperature has 
reached its maximum level. 

An automation system can be represented as PLC control code with 
a human-machine interface (HMI) and in this case, we must interface the 
automation program directly, e.g., by sending data and events to function 
blocks, in case it is implemented in IEC 61499. Another option is to send the 
sequences of actions to the manufacturing execution system (MES), which 
has the set of possible actions defined. Thus, this level directly executes the 
commands from the upper layer and reports on the results of the operations 
performed back to the top. The PLC code can also be organised in a way that 
supports the MAS paradigm on this level to ease the debugging process. 

⏎ 
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16.3.2 Layer 2: Self-awareness 

Self-awareness is one of the core layers of the framework, where the concept 
of an agent is introduced. As highlighted in Figure 16.2, the automation layer 
only implements control and equipment-specific safety constraints. The self-

awareness layer, in turn, defines which automation operations can be grouped 
into a wholesome entity together with environmental observations specific 
to the operations. The grouping can be obvious, e.g., a conveyor belt or a 
robot arm can be self-sufficient agents. On the other hand, if the robot arm 
is installed on AGV, a composite agent can represent the whole assembly. 
Another way to define agents is by following the control loops of the system. 
Thus, having a vertical farming module with lighting and watering systems, 
the lighting agent would be capable of adjusting the light according to 
the lighting schedule and, for example, the PAR (Photosynthetically Active 
Radiation) sensor. The watering agent then is responsible for the regulation 
of the water flow depending on the watering schedule and a water flow sensor 
that detects clogs in the pipes. 

The self-awareness layer can be developed through RL methods. For 
example, using data from factory processes, an offline RL method can learn 
the system’s dynamics and generate an optimal control policy based on past 
experiences. In this approach, agents are trained to become aware of their 
capacities through iterative learning and feedback [14]. 

If a digital twin or a simulation model of the process is available, such 
development can be supported by a closed-loop system, comprising two 
main components: a modelling toolbox and a controlling toolbox. In [15], 
the modelling toolbox allows the creation of a plant model that simulates 
various system components or the entire system, which, in our case, would 
transform into a simulation of the controller actions and environmental 
response. Meanwhile, the controlling toolbox, originally, is a collection of 
autonomous agents that interact with the plant model using reinforcement 
learning algorithms, which would be replaced by the “consciousness” of the 
agents being trained. 

The main function of this layer is to provide specific to the request 
available abilities and skills of the agent to the upper layer with the data 
needed for scheduling and planning and to translate these results into a 
sequence of atomic operations. The definition of appropriate reward functions 
for training the self-awareness layer to choose suitable capabilities is then 
necessary to keep the agents from “overthinking”. 



16.3 Interaction Framework 317 

One interesting challenge in self-awareness is the possibility of discov­

ering skills that were not demonstrated in the self-learning process. Assume, 
we have a conveyor belt, which is controlled by the motors and set to move 
workpieces with some fixed speed. Can the speed be changed to achieve 
production or energy consumption system goals? Whether the agent can 
discover new skills safely during the runtime is one of the research questions 
related to this layer. 

Another challenge, stemming from the fact that the self-awareness of our 
agents is remote from their physical abilities, is how the self-awareness layer 
can adjust to the change of equipment executing approximately the same 
skills and actions. The advantage of our framework is that the upper layers 
do not have to be aware of such changes, while the self-awareness layer will 
have to perform self-discovery. 

16.3.3 Layer 3: High-level communication and coordination 

In this layer, agents communicate and coordinate the completion of tasks 
to achieve the goals passed down from the upper layer, thus we outline the 
following main functions of the level: 

Goal selection. On the top level, the goals can be determined for the whole 
system (e.g., total energy consumption must be X) or for the subsystems 
(e.g., the human in the packaging unit should be protected from burning out). 
Agents must be able to select which goals are theirs to complete and which 
are for the other agents. Goals can also be adopted from other agents when 
they determine that assistance is needed. 

Agents’ collaboration. Agents should be able to group (or “team up”) to 
collaboratively achieve the goals if needed. For example, for a human not to 
get a burn-out in the packaging unit, probably, a conveyor belt should work 
slower after lunch and an AGV should pick the packed products faster to 
keep the workspace of the human clean. For this, agents (1) must assume the 
goals of other agents, as precisely as they can, (2) assume their common and 
individual goals, and (3) derive their action based on the requirement inferred 
using this information. We call these two phases the “Assume” phase and the 
“Derive” phase (Figure 16.1). Reasoning can help with the Assume phase, 
where an agent can analyse the trace of decisions of other agents and find 
their motivation (for example, in [16]). This will allow agents to plan their 
actions in the context of plans of other agents. 
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Dynamic optimal policy determination. Some agents might have several 
goals to satisfy, which, in turn, can be contradictory and belong to different 
groups of agents. An agent must be able to find an optimal course of action. 
A crucial part of this decision-making process is evaluating utility [12]. The 
utility of an action is not limited to the immediate reward it brings but 
also depends on the future rewards that can be expected when the same 
policy is followed over time. By considering both short-term and long-term 
outcomes, agents can make decisions that optimise their overall performance 
in achieving individual and system-wide objectives. 

External environment update handling. Agents can be sprouted and 
destroyed dynamically, depending on the momentary requirements, which 
they should be able to communicate and, thus, perceive when they are notified 
about the same events from the other agents. The reconfiguration in this case 
must happen automatically with as little downtime or human intervention as 
possible. 

Communication with humans. Agents that interact with humans should 
have the mechanisms to assert the same aspects of the human internal 
environment as they do when communicating with nonhuman agents. 

In the implementation of the framework for this layer, we also consider a 
time aspect of the decision-making. If finding an optimal action plan takes a 
significant number of resources (time, computational power, etc.), the heuris­

tics are to be used. Also, here, we solve the problem of the cost of changing 
the plan if a new better option is found. For instance, if midway through the 
plan execution, the resources are already spent, this layer estimates whether 
replanning is beneficial. 

16.3.4 Layer 4: System goals 

Mainly the goals sprout from the requirements for the system, about which we 
talked in Section I. Different formulation languages are possible, for example, 
various temporal logics, diagrams, or natural language, which is becoming 
more possible with the development of LLMs. This layer is also the place for 
enlarging the vocabulary of the system, for example, if the goal is “to keep 
power consumption at 80% from maximum consumption during the nearest 
month”, the system should at least know what power consumption is. LLMs 
and users play a key role in vocabulary and semantics enrichment. 

The requirements the system should satisfy may have a time interval, 
for example, different production scenarios of the island-based factory might 



16.4 Case Study 319 

follow different production recipes, however, the general liveness and safety 
requirements for the production may remain. One important note is that we 
do not differentiate here goals for machines and goals for humans within the 
production. Human workers or users participate in goal distribution on the 
same level as nonhuman agents do. The difference shows only in the way the 
goals are communicated to a human as special interfaces are required for the 
purpose. 

16.4 Case Study 

As a leitmotif for the framework trials, we chose the topic of energy con­

sumption, since, in large productions, being able to reduce it even for a 
small fraction of the total leads to a significant impact on sustainability and 
production costs. Our case studies explore different parts of the framework 
implementation starting from communication between the control loops of 
the assembly, where each of them can straightaway decide on energy con­

sumption to indirect interaction with humans and agents that influence the 
energy consumption of the main consumers but not decide on it straight away. 

16.4.1 Vertical farming module 

Our first case study is on the optimisation of the energy consumption of a ver­

tical farming module. Figure 16.3 shows the prototype module implemented 
at the Aalto Factory of the Future and its overall architecture. Our automation 
code runs on two M251 PLCs to which both digital and analogue sensors and 
actuators connect. This layer connects to the business logic via OPC UA. The 

Figure 16.3 Vertical farming module and its controller architecture. ⏎ 
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business logic layer is placed on the industrial PC, while it is also possible to 
develop it in the cloud. 

Our high-level logic employs the MAS concept. Each agent here is 
responsible for calculating the consumption of a single control loop, where 
a control loop is composed of an actuator and the environmental response 
on the action of the actuator, for example, pump–water level. The whole 
module itself can also be an agent in case there is more than one. In this 
case, it becomes a composed agent, incorporating a set of agents—control 
loops. Agents communicate with each other to converge on the best individual 
power consumption values, given the total target power consumption of the 
system. 

In this example, we explicitly specified the self-conscious layer by 
inputting the characteristics of the actuators controlled during the exper­

iments, namely LED lights of the vertical farming module. We have 
also experimented with setting up communication between different agents 
through distributed optimisation methods (for details, see [16]). 

16.4.2 HVAC system of a cruise ship 

Another case study we have in progress is the energy consumption of a cruise 
ship. Here, several cabins connect to one Air Handling Unit (AHU) and 
several AHUs connect to a diesel engine. In HVAC, the parts that consume 
the most energy are the fans that drive the air inside the main ducts and 
the chiller that cools it down to a set temperature. The only way we can 
influence the energy consumption decision is by adjusting the temperature 
set points in the cabins. Thus, lowering the cabin temperature would mean 
that the corresponding valve for fresh air intake should open more, which 
decreases the pressure in the main air duct, making the main fan increase 
power consumption to stabilise the pressure, which also makes the chillers 
cool down a larger air volume. 

Since the solution should be flexible (extendable to various actuator types) 
and scalable (more cabins can be connected to air ducts/more AHUs, diesel 
engines in the system), we define each cabin, each AHU, and each diesel as 
an agent. This relieves us from the need to explicitly encode the physics of 
the process (unlike in the first case study) and AHU “learns” its dynamics 
of power consumption based on the traces of the simulation model using RL 
methods. One of the research questions here is how to dynamically generate 
not only the agents but also the correct way of communication between them. 
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Another angle of this study is incorporating users’ patience into the 
system. The energy reserves are restricted on the cruise ship. Suppose that 
a lot of people set the desired temperature below some minimum. In that 
case, there is a chance that the diesel engines will not be able (within 
safety boundaries) to provide enough energy for the ship infrastructure and 
the HVAC system. This means that the temperature set point should be 
adjusted automatically; however, this works up to a point where people do 
not massively complain. 

16.5 Discussion and Conclusion 

While extensive research has been conducted on isolated issues in MAS and 
HCI, little attention has been paid to the design of intelligent systems as 
a whole, especially, from the industrial automation perspective. This paper 
outlines the foundational problems and research questions aimed at shaping 
machine consciousness, enabling agents to understand one another as well as 
communicate effectively with humans. 

We hypothesise that the implementation of such an architecture leads to 
emergent behaviours akin to needs and motivations for the system itself. As 
individual agents become more aware and coordinated, the factory’s oper­

ations could form a collective consciousness, transforming the production 
process into something that responds naturally to the environment rather than 
following pre-set instructions. This represents the basis of a truly reconfig­

urable and flexible factory—one where manufacturing as a service becomes 
an inherent response to the factory’s needs, rather than an artificially imposed 
command structure. 

Future work will involve a deeper analysis of the solutions proposed 
for each layer of the system, with special emphasis on the communication 
aspects, both within the machine agents and between agents and human 
workers, which involves exploring how intelligent agents can effectively 
communicate and collaborate with humans. 

Furthermore, experiments will be conducted in environments with 
static and dynamic actuators, including mobile workstations, AGVs, and 
reconfigurable factories. This framework will also have applications in 
energy communities, where negotiation and flexibility with human input 
is vital, especially for systems without plug-and-play capabilities, like 
HVAC. 
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Abstract 

The exponential growth of IoT networks necessitates a paradigm shift 
towards architectures that offer high flexibility and learning capabilities 
while maintaining low energy consumption, minimal communication over­

head, and low latency. Traditional IoT systems, particularly when integrated 
with machine learning approaches, often suffer from high communication 
overhead and significant energy consumption. 

This work addresses these challenges by proposing a neuromorphic 
architecture inspired by biological systems. To illustrate the practical appli­

cation of our proposed architecture, we present a case study focusing on 
water management in the Carinthian community of Neuhaus. Preliminary 
results regarding water consumption prediction and anomaly detection in 
this community are presented. We also introduce a novel neuromorphic 
IoT architecture that integrates biological principles into the design of IoT 
systems. This architecture is specifically tailored for edge computing sce­

narios, where low power and high efficiency are crucial. Our approach 
leverages the inherent advantages of neuromorphic computing, such as 
asynchronous processing and event-driven communication, to create an IoT 
framework that is both energy-efficient and responsive. Moreover, we show 
that not only is the architecture neuromorphically inspired, but it can also 
be partially realized, especially at the edge, by neuromorphic hardware. 
This case study demonstrates how the neuromorphic IoT architecture can 
be deployed in a real-world scenario, highlighting its benefits in terms of 
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energy savings, reduced communication overhead, and improved system 
responsiveness. 

Keywords: IoT, edge computing, neuromorphic computing, deep learning, 
machine learning. 

17.1 Introduction and Background 

The exponential growth of the Internet of Things (IoT) networks necessi­

tates a paradigm shift in how these systems are designed and deployed. 
Traditional IoT systems, especially those integrated with machine learning 
techniques, often face significant challenges, including high communication 
overhead, increased energy consumption, and latency issues [1]. As IoT 
devices become more prevalent, particularly in edge computing scenarios, the 
need for architectures that balance flexibility, learning capability, and energy 
efficiency becomes critical. These issues are exacerbated when machine 
learning models are employed, as they typically require substantial compu­

tational resources. The challenge lies in creating an IoT architecture that can 
efficiently process data at the edge, with minimal energy consumption and 
latency, while still providing the flexibility and learning capabilities necessary 
for complex tasks such as anomaly detection and prediction. 

This paper addresses these challenges by proposing a neuromorphic IoT 
architecture inspired by biological systems, specifically tailored for scenarios 
where low power consumption and high efficiency are essential. Neuro­

morphic computing is an innovative approach in computer engineering that 
designs computational systems inspired by the architecture and functionality 
of the human brain and nervous system [2–4]. This brain-inspired computing 
method offers significant advantages, including [5], [6]: 

• Energy Efficiency: Traditional deep learning models may require up to 
20 MW of power, while the human brain operates on just about 20 W, 
highlighting the potential for substantial energy savings. 

• Latency: Neuromorphic systems excel in parallel processing, allowing 
for faster computations and reduced latency. 

• Safety & Security: These systems enhance reliability by using redun­

dant and analog components, mimicking the robustness of biological 
neural networks. 

• Reduced Costs and Waste: By leveraging materials that mimic biolog­

ical processes, neuromorphic computing can lower production costs and 
minimize environmental impact. 
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These benefits point towards a new computing paradigm that could 
revolutionize how we approach computational tasks. The primary objective 
of this study is to propose a neuromorphic IoT architecture that integrates 
principles from biological systems into the design of IoT systems. This 
architecture is intended to offer significant improvements in energy efficiency, 
communication overhead, and system responsiveness. Additionally, we aim 
to validate the effectiveness of this architecture through a case study on water 
management in the small city Neuhaus, Austria, demonstrating its practical 
application and potential benefits. 

17.2 Neuromorphic IoT Architecture 

17.2.1 Design principles 

The proposed neuromorphic IoT architecture is inspired by the efficiency of 
biological systems, particularly human nervous system, which have evolved 
to process information with minimal energy consumption and high respon­

siveness [6]. The key features of this architecture include: distributed control 
and learning, prediction instead of commands and reservoir computing. 

17.2.2 Hierarchical distributed control and learning 

Control and learning in an IoT network are distributed across various nodes, 
allowing the system to leverage locally available information for decision-

making where it is most effective. This architecture is tailored for edge 
computing environments, prioritizing low power consumption and high effi­

ciency. By processing data at the edge, the system can make real-time 
decisions without the need for constant communication with centralized 
servers. 

In practice, different machine learning models are deployed across var­

ious layers of the IoT architecture: the device, or edge layer, fog layer, and 
cloud layer. At the edge layer, rapid decisions are made, such as automatically 
shutting off a water pipe in case of damage. The fog layer allows for more 
sophisticated decisions by integrating data from nearby devices to improve 
local water management. At the cloud layer, data from IoT devices and the 
internet is aggregated to manage overall water resources and address disaster 
scenarios. 

We propose that higher architectural levels use predictions instead of 
commands, similar to the human visual [7] and motor systems [8]. In fog 
and cloud, models of water predictions on regional and global scales are built. 
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The model predictions are sent to lower levels, while error corrections are sent 
from lower to upper layers. Unlike federated learning [9], which relies on a 
single global model for all devices, this approach utilizes local machine learn­

ing models to make decisions based on locally available information. This 
strategy reduces communication overhead, latency, and energy consumption. 

Neuromorphic Reservoir Computing is particularly well-suited for 
edge implementation due to its low computational overhead, which results 
in reduced energy consumption, and its ability to harness underlying physical 
processes for computation. Neuromorphic reservoir computing is a computa­

tional framework inspired by the brain’s neural networks, particularly suited 
for processing time-series data and performing complex pattern recognition 
tasks [10–12]. This approach is based on the concept of a “reservoir,” which is 
a recurrent neural network with fixed, randomly initialized connections. The 
key idea is that the reservoir can transform temporal input data into a higher-

dimensional space, where the information is easier to analyse and predict. The 
advantage of this method lies in its simplicity: only the output layer is trained, 
while the reservoir itself remains unchanged. This reduces the computational 
burden associated with training deep neural networks. 

In Figure 17.1 the analogy between human nervous system and the 
proposed IoT architecture is depicted. 

Figure 17.1 Analogies between human nervous system and the proposed IoT architecture. ⏎ 
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Figure 17.2 depicts the black-box view of the overall system. The IoT 
network receives inputs from the environment (such as sensor signals like 
water consumption measurements, weather data, and other internet-sourced 
data) and executes commands on the environment (e.g., opening/closing 
pipes, issuing alarms, etc.). 

Figure 17.2 Black-Box view of the IoT network and the environment. 

Using hierarchical distributed control and learning with predic­

tion/correction feedback loops, we can minimize communication overhead 
and energy consumption. Information is primarily processed where it is avail­

able; only predictions and corrections are communicated, not commands. A 
mathematical framework for this approach is provided by Friston’s active 
inference and free energy principle [13], [14]. 

17.3 Free Energy Principle 

Friston’s free energy principle [13], [14] is a theoretical framework from 
neuroscience, which posits that the brain minimizes a quantity called free 
energy to maintain a stable internal state and make sense of the world. This 
principle is derived from thermodynamics and statistical mechanics, and it 
explains how biological systems (like the brain) resist disorder (entropy) by 
maintaining an internal model of the environment. In our case, each level of 
the IoT hierarchy has its own world model that is updated based on inputs 
from the next lower level. Active inference has also been applied to IoT 
in [15]. 

The free energy principle can also be broken down into terms involving 
surprise and approximation errors. 

F = DKL(q(s) p(s | o)) − log p(o) (17.1) 

⏎ 
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Where: 
DKL(q(s) p(s|o)) is the Kullback-Leibler (KL) divergence between the 

recognition density q(s) and the posterior distribution p(s|o), which measures 
how different the brain’s internal model is from the real posterior probability 
of hidden states s given observations o. The hidden state, s, is a vector 
representing the state of the environment in each IoT layer. The observations 
o are vectors of measurements (over time) from the environment and signals 
from the lower layers. 

log p(o) is the log-evidence or surprise associated with the sensory input 
o. The brain aims to minimize surprise (unexpected sensory states). 

To reduce free energy, the brain does two things: 

Perception: Adjusting its internal model (recognition density q(s)) to match 
sensory input better. This helps reduce the Kullback-Leibler divergence 
(KLD), which improves the accuracy of its beliefs about hidden states. 

Action: Taking actions to influence the environment in a way that makes 
sensory input more predictable, thus reducing surprise log p(o). 

In our setup, each hierarchy level of an IoT network creates its own 
internal model of the environment, updates the model according to sensor 
inputs from lower layers, and performs actions on the lower layers to reduce 
discrepancies between the model and the environment. 

The free energy principle enables more autonomy for each layer, as it 
places fewer constraints on the internal model of each layer compared to, for 
example, reinforcement learning (RL), which assumes that agents maximize 
expected rewards. Furthermore, it also requires less communication over­
head, since information is signaled to other layers only when the differences 
between predictions and actual measurements exceed a certain threshold. 

17.4 Asynchronous Processing and Event-driven 
Communication 

Unlike traditional computing systems, which rely on a global clock, the 
proposed architecture processes information asynchronously. This allows 
for more efficient use of resources, as computation only occurs when 
necessary. 

In biological systems, communication between neurons occurs only when 
a certain threshold is reached, triggering a spike of activity. This principle is 
applied in the proposed architecture to reduce unnecessary communication, 
thereby lowering energy consumption and latency. 
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17.5 The Role of Thresholds in Hierarchical IoT Model 

In hierarchical models, each layer generates predictions based on the lower 
layer’s output, with higher layers handling more abstract representations. 
Thresholds, in this context, can refer to parameters that decide: 

• Uncertainty bounds: Determining when prediction errors (discrepan­

cies between predicted and observed states) should trigger adjustments 
in the model or action. 

• Signal passing thresholds: Deciding when sufficient confidence is 
achieved in a layer to propagate the information upward or downward. 

In active inference framework agents (IoT layers) continuously minimize 
their variational free energy (a measure of surprise or uncertainty about 
sensory inputs) by updating beliefs or performing actions. Key to this process 
is minimizing prediction errors through updating the generative model 
(beliefs about the world) or by acting to bring sensory inputs in line with 
predictions. 

• Perception: Update internal states to minimize prediction error. 
• Action: Perform actions to reduce the discrepancy between expected 

and actual sensory inputs. 

17.5.1 Setting adaptive thresholds using prediction errors 

In active inference, prediction error (the difference between the predicted 
input and actual sensory input) drives updates to beliefs or actions. To adap­

tively set thresholds at different hierarchical layers, you can allow thresholds 
to be modulated by the magnitude of prediction error and the precision 
(inverse uncertainty) associated with each layer’s predictions. 

1. Prediction Error Calculation: At each layer Li, prediction error is 
computed as: 

Ei = inputi − predictioni (17.2) 

where Ei is the prediction error at layer i, and inputi is the input to the 
layer (could be sensory data for the bottom layer or output from the 
previous layer). 

2. Precision­Weighted Prediction Error: To adaptively set thresholds, 
weight the prediction error based on the layer’s precision Πi which 
represents the inverse of uncertainty:

 Ei = Πi · Ei (17.3) 
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Here, Ei is the precision-weighted prediction error. 
3. Adaptive Threshold Adjustment: Let the threshold at layer Li denoted 

τ i be adjusted based on the running average or variance of predic­

tion errors at that layer. For example, using an exponentially weighted 
moving average (EWMA): 

τi(t+ 1) = α · τi(t) + (1− α) · |Ei| (17.4) 

where α is a smoothing factor, controlling how quickly the threshold 
adapts to changes in prediction error magnitude. 

4. Hierarchical Precision Tuning: Active inference frameworks often 
adjust precision at each layer based on uncertainty in the environment. 
If a lower-level layer exhibits high variability (uncertainty), precision 
at higher levels may be reduced (lower confidence in predictions), 
increasing tolerance for prediction errors. 
We can compute adaptive precision Πi at each layer based on past errors: 

1 
Πi = (17.5)

σ2 + βi 

where σ2 is the variance of prediction errors at layer Li, and β is a small i 
constant to avoid division by zero. 

5. Threshold Propagation Through Layers: In a hierarchical model, the 
adaptive thresholds τ i can also be influenced by errors at neighboring 
layers. For instance: 

τi = f(Ei−1, Ei+1) (17.6) 

where τi is set adaptively based on errors in both the layer above and 
the layer below, helping each layer balance local and global model 
adjustments. 

17.5.2 Incorporating actions into threshold setting 

Active inference involves both belief updates and action selection. Thresh­

olds can be adapted based on both the perceptual prediction errors (used to 
update internal beliefs) and the action outcomes (used to reduce discrepancy 
between predicted and actual sensory inputs). 

For example: 

• If actions reduce prediction error, thresholds may decrease, indicating 
higher precision in predictions. 

• If actions increase prediction error, thresholds may increase to allow 
more flexibility in updating the generative model. 
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17.5.3 Optimizing thresholds using free energy minimization 

In active inference, the agent seeks to minimize free energy, which com­

bines prediction error and model uncertainty. Thus, thresholds τi can be 
adaptively set by minimizing the total free energy at each hierarchical level. 

The free energy at each layer i can be expressed as: 

1 2Fi = Eix + H(Πi) (17.7)
2 

where H(Πi) represents the entropy or uncertainty in the precision at that 
layer. Minimizing Fi can help set optimal thresholds at each layer by 
balancing prediction accuracy and uncertainty. 

17.5.4 Threshold setting summary 

To adaptively set thresholds in hierarchical layers using active inference: 

1. Monitor prediction errors at each layer. 
2. Adjust thresholds based on the precision-weighted errors. 
3. Tune precision and thresholds across layers by minimizing free energy 

and propagating uncertainty estimates. 
4. Use feedback from action to refine thresholds. 

This approach aligns with the active inference principle of reducing 
prediction errors while accounting for uncertainty in a dynamic environment. 

17.6 Implementation 

To implement the proposed architecture, we developed a neuromorphic IoT 
framework that integrates neuromorphic devices for data processing. These 
devices are deployed on edge devices, which are responsible for collecting 
data, processing it locally, and making decisions in real-time. The framework 
is designed to be modular, allowing for easy integration with existing IoT 
systems and flexibility in terms of the types of sensors and devices used. 

Auto Regressive Integrated Moving Average (ARIMA) is a classical 
model used for time-series forecasting, which combines autoregression, 
differencing, and moving average components. Both moving average with 
threshold comparison, as required in each layer of our IoT architecture, and 
ARIMA can be realized using neuromorphic computing. Moving average and 
threshold comparison can be implemented in following way [16], [17] (see 
Figure 17.3): 
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Figure 17.3 Memristor implementation of moving average and threshold comparison. 

The implementation consists of the following components: 

1. Memristor Array for Moving Average: 

• The inputs are weighted by the conductance of each memristor. 
• By applying voltages (input signals) across memristors with differ­

ent conductances, a weighted sum of the inputs can be computed. 
Since the conductance (inverse of resistance) of the memristor 
changes based on the applied voltage, it represents the weight 
of each input in the moving average. The total output current 
represents the weighted sum (i.e., the moving average). 

2. Threshold Comparator: 

• A reference memristor holds the threshold value. 
• The output current from the memristor array (moving average) is 

compared to the current through the threshold memristor. 

3. Output Decision: 
The difference in the currents between the input memristor and the 
threshold memristor can be calculated using a current subtractor cir­

cuit or a differential amplifier. This will output a current (or volt­

age) proportional to the difference between the input signal and the 
threshold. 

⏎ 
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17.7 Case Study: Smart Village Water Management 

17.7.1 Context and objectives 

The municipality of Neuhaus in south-eastern Carinthia, Austria, on 
the Slovenian border with 1015 inhabitants (as of 1 January 2024, 
https://www.statistik.at) and an area of 36.34 kmš offers a unique opportunity 
to apply the proposed neuromorphic IoT architecture in a real-life scenario. 
Like other similarly structured micro-communities, Neuhaus is facing the 
typical problems of rural areas in Central Europe: declining population 
figures combined with shrinking financial and human resources and new 
challenges due to climate change. Water management is of crucial importance 
in this region, as efficient utilization of water resources is essential for both 
environmental sustainability and economic viability. In the last two years, 
Neuhaus was confronted with a period of drought in the summer of 2023 and 
enormous amounts of rain, flooding, and landslides in August 2024. Both 
have a negative impact on financial resources and the quality of life in the 
region. 

In order to overcome these challenges and reduce the administrative 
expenses, the municipality decided back in 2020 to replace all 377 water 
meters in the municipality with smart meters. The water meters have to 
be replaced every 4 years anyway for calibration reasons, so the one-off 
additional costs were limited. A municipal LoRaWAN radio network was set 
up for data transmission. LoRaWAN fulfils the required criteria for long range 
in rural areas, low energy consumption of battery-operated smart meters, 
and low installation and operating costs. The first automatic meter reading 
took place in September 2021. In addition to the water meters, the reservoirs 
of the three separate water supply systems, in which the spring water is 
collected, were equipped with solar-powered level and flow meters. A total 
of around 560 LoRaWAN sensors are currently installed in the municipal 
area. In addition to the water meters, these include weather stations, road 
temperature sensors, snow depth gauges, and indoor CO2 sensors, for. In 
July 2022, the research cooperation between the municipality of Neuhaus 
and the University of Applied Sciences FH Campus Wien was launched. 
The aim of this cooperation is to do research on IoT solutions for small 
municipalities. This gives us access to all measurement data of the LoRaWAN 
sensor network. Instead of simulated laboratory data, we can work with real 
data, coming from a lossy IoT network. The first project realized as part 
of this collaboration was a water management system for real-time water 

https://www.statistik.at
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balances tailored to small communities with their limited resources. It has 
been in operation since July 2023 and is used by the municipality. 

In the present case study, we extend this system to include predictions 
and alerts. The problems we are facing are typical for IoT sensor networks. 
We have limited edge devices (our battery-powered water meters) and an 
unreliable network with very limited data rates. Typically, the transmission 
of water meter data occurs once daily to save battery power. An immediate 
message should only be sent in the event of an exceptional incident, e.g. a 
burst pipe after the meter. So, the decision must be made locally at the edge 
device. And, since these devices are battery-powered, they are also limited in 
their processing power and memory. The objectives of this case study are to: 

1. Predict water consumption patterns in the community. 
2. Detect anomalies in water usage that may indicate leaks or other issues. 
3. Demonstrate the effectiveness of the proposed architecture in reducing 

energy consumption, communication overhead, and latency. 

17.7.2 Data collection and preprocessing 

Data on water consumption were collected from various sensors deployed 
throughout the community. These data included hourly and daily water usage 
statistics, from the smart meters, as well as information on environmental 

Table 17.1 Input and output information available at each IoT layer. 

IoT 
Layer 

Input from layer 
above 

Other Inputs Output to layer 
above 

Time and 
space scale 

Edge Local water 
consumption 

Actual water 
consumption of 

Difference 
between expected 

Seconds/Local 
(household) 

threshold each household average local 
water consumption 
and the threshold 

Fog Regional water 
consumption 

threshold 

Regional water 
supply, Regional 

water pipe 

Difference 
between expected 
average regional 

Days/Regional 

connection map water 
consumption and 

the threshold 
Cloud - Time, date and 

season, weather 
Output to human: 

statistics, 
Months/Global 

information from predictions and 
internet, water 

supply 
alarms over global 
water consumption 

⏎ 
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factors such as temperature and humidity, which may influence water con­

sumption patterns. The data were preprocessed to remove noise and fill in 
missing values due to losses in the LoRaWAN network before being fed into 
the neuromorphic IoT framework. The following table shows the input and 
output information available at each IoT layer (see Table 17.1). 

17.7.3 Prediction models and performance 

To evaluate the effectiveness of the proposed architecture, we compared 
the performance of several machine learning models in predicting water 
consumption. The models used included a Multi-Layer Perceptron (MLP), 
Long Short-Term Memory (LSTM) network, Auto Regressive Integrated 
Moving Average (ARIMA) model, and Random Forest. The mean absolute 
percentage error (MAPE) was calculated for each model to assess their 
predictive accuracy. 

(17.8)  
n

1  
MAPE  = 

n 

yi − yi 
yi

i=1 

Where: 
yiis predicted value for ith data point 
yi is actual value for ith data point 
N is the number of observations 
The results (see Table 17.2) indicate that the Random Forest model 

performed the best in terms of hourly prediction accuracy, with a MAPE of 
26.05%. For daily predictions, the LSTM model achieved the lowest MAPE 
of 4.87%. 

Overall, the ARIMA model achieves quite good performance in both 
hourly and daily water consumption prediction. 

ARIMA (AutoRegressive Integrated Moving Average) is a classical 
model used for time-series forecasting, which combines autoregression, 
differencing, and moving average components. 

Table 17.2 Hourly and daily prediction errors of different algorithms. 

Algorithm Hourly Prediction MAPE [%] Daily Prediction MAPE [%] 

MLP 41.10 5.05 
LSTM 33.51 4.87 

ARIMA 30.06 5.18 
Random Forest 26.05 5.40 

⏎ 
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Reservoir computing can approximate ARIMA by leveraging its ability to 
model nonlinear relationships and memory of past inputs, which are essential 
components of ARIMA models. In particular, the recurrent nature of the 
reservoir allows it to capture the autoregressive and moving average aspects 
of the time series, while the nonlinear transformation within the reservoir 
can approximate the differencing and other complex relationships present 
in ARIMA models. The equivalence of reservoir computing to nonlinear 
vector autoregression (NVAR) is rooted in the way both models handle 
temporal data [16], [17]. NVAR is a statistical model that predicts future 
values of a time series based on past values, accounting for possible nonlinear 
relationships between variables. Reservoir computing, by transforming input 
sequences into a dynamic state within the reservoir, effectively performs a 
similar operation to NVAR. It creates a nonlinear mapping of past inputs, 
which can then be used to predict future values. This equivalence is partic­

ularly useful because it shows that reservoir computing can be viewed as a 
form of nonlinear autoregression, with the reservoir acting as the nonlinear 
transformation that enables the prediction of future states based on past data. 
This understanding opens up the possibility of using reservoir computing 
as a powerful tool for time-series prediction, where traditional methods like 
NVAR are used. 

In summary, by exploiting the equivalence between reservoir computing 
and nonlinear vector autoregression, reservoir computing can be effectively 
used to approximate the behavior of ARIMA models, offering a powerful 
alternative for time-series forecasting that is particularly well-suited to han­

dling nonlinear and complex patterns in the data. Neuromorphic reservoir 
computing is particularly interesting for IoT networks due to its low computa­

tional overhead and wide range of possibilities for physical implementations. 
In this way, not only is the IoT architecture neuromorphically inspired, but 
it can also be partially realized, especially at the edge, by neuromorphic 
hardware. 

17.7.4 Anomaly detection 

Anomaly detection is a critical aspect of water management, as it allows for 
the identification of unusual patterns in water usage that may indicate leaks 
or other issues. In this study, we applied both the mean + 3 sigma rule and an 
LSTM-based anomaly detection method to the water consumption data. The 
results showed that the mean + 3 sigma rule detected more anomalies than 
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the LSTM model, suggesting that simple statistical methods may be more 
effective for this type of application in certain contexts. 

17.8 Discussion 

17.8.1 Energy efficiency and communication overhead 

One of the primary advantages of the proposed neuromorphic IoT architec­

ture is its energy efficiency. By processing data locally at the edge and using 
event-driven communication, the system significantly reduces the need for 
constant data transmission to centralized servers, thereby lowering energy 
consumption and communication overhead. This is particularly important in 
rural areas like Neuhaus, where energy resources may be limited. 

17.8.2 System responsiveness and latency 

The asynchronous processing and event-driven communication of the pro­

posed architecture also contribute to improved system responsiveness. In 
real-time applications such as water management, where timely detection of 
anomalies is crucial, the ability to process data and make decisions quickly 
can prevent significant water loss and reduce the environmental impact. 

17.8.3 Safety & security 

Safety: For analog systems it is possible to use continuity properties when 
pondering system behavior in different points of their state space. If a system 
exhibits intended behavior in a state A and in a related state B, it can be argued 
that it will show intended behavior also when C = αA + (1− α)B, where 
0<α<1. So if the system is tested in states A and B, then it can be assumed 
that it will not change too much in the intermediate states C in between. 

Security: It is more difficult to access and modify analog hardware like 
memristors or reservoirs than to perform a security attack over the internet. 

17.8.4 Practical implications 

The case study demonstrates that the proposed neuromorphic IoT architecture 
is not only theoretically sound but also practically viable. The deployment in 
Neuhaus and preliminary results show that the architecture can handle the 
complexities of a real-world environment while delivering tangible benefits 
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in terms of energy savings, reduced communication overhead, and improved 
system responsiveness. 

17.9 Conclusion 

The exponential growth of IoT networks demands a new approach to system 
architecture, one that balances flexibility, learning capability, and energy 
efficiency. This paper has proposed a neuromorphic IoT architecture inspired 
by biological systems, designed to meet these challenges in edge computing 
scenarios. Through a case study on water management in the Carinthian 
community of Neuhaus, we have demonstrated the practical application and 
benefits of this architecture. The results show that the proposed architecture 
can deliver significant improvements in energy efficiency, communication 
overhead, and system responsiveness, making it a promising solution for the 
future of IoT networks. 

17.10 Future Work 

While the proposed architecture has shown promising results, further research 
is needed to optimize the integration of neuromorphic computing with 
existing IoT frameworks and to explore its application in other domains. 
Additionally, the development of more sophisticated anomaly detection meth­

ods, potentially integrating neuromorphic principles, could further enhance 
the system’s capabilities. As IoT networks continue to evolve, the princi­

ples outlined in this paper will be crucial in guiding the development of 
next-generation systems that are both efficient and effective 
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Abstract 

Benchmarks are essential for balancing the benefits and risks of AI by 
providing quantitative tools that guide responsible development. They offer 
objective and consistent metrics for accuracy, speed, and efficiency, enabling 
engineers to develop reliable products and services. Additionally, bench­

marks help researchers gain new insights that can drive future innovations. 
Today, numerous cloud-based AI development services allow software 

developers, even those without expertise in data science, to utilise AI mod­

els through APIs, SDKs, or applications. Benchmarking these models on 
cloud infrastructure is a feature offered by these services. However, few of 
these services are designed for edge deployment, where deep expertise in 
embedded programming and system integration is necessary to optimize and 
deploy AI models on specific embedded devices. Comparing benchmarking 
results across different embedded boards becomes increasingly complex 
when targeting devices from various providers. 

The current project aims to design and implement a collaborative platform 
that enables researchers and developers to conduct experiments and research 
across various edge AI domains and edge AI devices. This will be achieved 
by sharing resources on a distributed virtual laboratory (dAIEdge-VLab). 
This platform will provide access to dedicated resources, tools, and services, 
allowing end users without expertise in embedded programming to perform 
live AI experiments, such as benchmarking, on remote embedded boards. 
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powered edge devices. 

18.1 Introduction and Novelty Aspect 

Edge AI and cloud AI offer two distinct approaches to deploying artificial 
intelligence, each with unique strengths and limitations depending on where 
data processing takes place. Edge AI is ideal for applications requiring real-

time, on-site processing and enhanced data security, as computations happen 
directly on local devices. In contrast, cloud AI excels in scenarios demanding 
extensive computational power and large-scale data processing, leveraging 
remote servers for more complex tasks. These approaches can also work 
together, with edge devices handling initial data processing and sending more 
demanding tasks to the cloud for deeper analysis. 

Edge AI processes data locally on devices positioned at the network’s 
edge, closer to the source of data generation. This approach minimizes 
latency, allowing for quicker, real-time responses. Since data does not need 
to be transmitted to the cloud, edge AI also improves privacy and security 
while lowering bandwidth usage. Although edge devices generally have 
less computational power compared to cloud AI, recent advancements in 
hardware have significantly enhanced their ability to handle complex AI 
tasks. 

Two key challenges in the development of edge AI for industrial appli­

cations are the difficulty in reproducing results consistently across different 
edge devices, and the complexity involved in configuring heterogeneous 
platforms, which can lead to lengthy evaluation times. As a result, com­

paring benchmarking results between various embedded boards becomes 
increasingly complicated, especially when targeting devices from different 
manufacturers. 

This work addresses the identified challenge by introducing a collabora­

tive platform, dAIEdge-VLab, which enables researchers and developers to 
remotely conduct experiments and research across various edge AI domains 
and devices. With dAIEdge-VLab, users without embedded programming 
expertise can easily deploy edge AI models and applications on remotely 
accessible embedded boards and retrieve the experimental results. The 
dAIEdge-VLab’s architecture is designed for scalability, allowing owners 
of AI-powered edge devices to seamlessly integrate their hardware into the 
dAIEdge-VLab infrastructure. 
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The structure of the paper is as follows: Section 1.2 compares our 
dAIEdge-VLab solution with existing state-of-the-art methods for remote 
deployment on board farms. Section 1.3 presents two architectures of the 
dAIEdge-VLab, a centralized and a distributed version. Section 1.4 delves 
into the implementation details of the dAIEdge-VLab. Finally, Section 1.5 
concludes the paper and outlines directions for future work. 

18.2 State-of-the-art 

AI Benchmarking can be defined as the process of evaluating and comparing 
the performance, efficiency, and capabilities of AI models, algorithms, or 
systems against standardized metrics and tasks. Key performance indicators 
can be classified into two main categories: (i) hardware-agnostic metrics, 
which are independent of the target device and applied libraries, such as 
accuracy, model size or number of parameters; and (ii) hardware-specific 
metrics, which depend on the target device, such as inference speed, power 
consumption, or memory usage. These metrics determine how well an AI 
model or system performs in real-world edge environments. 

Benchmarking typically involves running AI models on predefined 
datasets or tasks, such as image recognition, natural language processing, 
or autonomous decision-making, and measuring their effectiveness against 
other models or industry standards. Since edge devices have limited compu­

tational resources compared to cloud servers, benchmarking helps identify 
the most suitable AI models and optimizations for these resource-constrained 
environments. The goal is to ensure that AI applications running on the edge 
can meet the necessary requirements for real-time decision-making, energy 
efficiency, and overall performance in diverse scenarios, such as autonomous 
systems, IoT, and industrial automation. 

While many popular edge AI frameworks (both vendor-agnostic and 
proprietary) offer built-in benchmarking tools to extract key performance 
metrics, they do not guarantee a standardized procedure for fair comparison. 
To address this, initiatives like MLPerf Inference Edge [1] from the MLCom­

mons foundation [2] aim to provide a representative benchmarking suite 
that fairly assesses edge ML system performance. However, even though all 
participants follow the same procedure to publish their benchmarking results, 
the tests are conducted at the edge device owner’s facilities, and there is no 
remote control to ensure proper hardware setup. 

In the scientific literature, various publications propose methodologies 
for the fair comparison of hardware, algorithms, and optimization techniques 
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within the embedded design space. QuTiBench [3] introduces a novel multi-

tier benchmarking framework that accommodates algorithmic optimizations, 
such as quantization, to help system developers assess the strengths and 
limitations of emerging compute architectures for specific neural networks. 
The QuTiBench team encourages community contributions to cover the full 
range of choices in Machine Learning system implementations. However, 
contributions ceased in 2021, and the project appears to no longer be main­

tained. Subsequent works, including [4], have adopted a similar approach 
to evaluate Machine Learning inference machines on Edge-class compute 
platforms. This testbed features two hardware compute engines—Raspberry 
Pi 4 (CPU-based) and Google Edge TPU accelerator—and two inference 
frameworks: TensorFlow-Lite and Arm NN. 

Building on two decades of experience in developing embedded bench­

marks, EEMBC has taken its first step into the Machine Learning space and 
is committed to keeping pace with industry advancements. To this end, they 
introduced the EEMBC MLMark� benchmark [5], specifically designed 
to assess the performance and accuracy of embedded inference systems. 
Unlike benchmarks that allow private optimizations, MLMark requires that 
all implementations be made publicly available in its repository. Version 1.0 
provides source code and libraries for a range of platforms, including Intel� 
CPUs, GPUs, and neural compute sticks with OpenVINO�; NVIDIA� 
GPUs with TensorRT; and Arm� Cortex�-A CPUs and Arm MaliTM GPUs 
using NeonTM technology and OpenCLTM, respectively. 

To ensure fair comparison across different types of AI-powered edge 
devices (such as MPUs, GPGPUs, MCUs, NPUs, and VPUs), a unified 
benchmarking service offering remote access to this diverse range of embed­

ded boards is essential. An online benchmarking platform would greatly 
facilitate this need by enabling consistent and equitable evaluation across 
varied hardware. 

Recently, several edge device providers, including STM, Qualcomm and 
Intel, have introduced their initial solutions for online remote benchmarking. 
STM offers the "STM32Cube.AI Developer Cloud"[6], a free online plat­

form designed to help developers create, optimize, benchmark, and generate 
AI solutions specifically for STM32 microcontrollers and microprocessors, 
which are based on ARM Cortex processors. The platform also supports AI 
hardware acceleration (NPU) when available on the target device. 

Qualcomm� AI Hub [7] simplifies the deployment of AI models for 
vision, audio, and speech applications on edge devices by providing auto­

matic optimization and validation tools. It offers over 100 pre-optimized AI 
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models and enables seamless integration with Snapdragon� and Qualcomm 
platforms, with easy access to real devices for testing and profiling. 

Similarly, Intel has launched the "Intel Tiber Developer Cloud" [8], which 
promises unrestricted access to Intel’s latest edge computing hardware and 
software platforms for developer. 

In addition, other vendor-agnostic commercial solutions have recently 
emerged, such as the Impulse Embedded Remote Benchmarking Service [9]. 
This platform enables developers to remotely test AI models on a wide range 
of GPU hardware, from entry-level devices like the Jetson Nano to high-

performance systems such as the AGX Orin. Based on our understanding, 
only GPGPU devices are currently available for remote benchmarking. 

To the best of our knowledge, no vendor-agnostic, multi-platform, and 
scalable solution for online remote benchmarking currently exists. This work 
addresses that gap by introducing a versatile, vendor-neutral, and scalable 
virtual laboratory designed to facilitate edge AI benchmarking experiments, 
bridging the divide between data scientists and the embedded systems 
domain. 

18.3 dAIEdge-VLab Architecture 

The dAIEdge-VLab is designed to help users who lack expertise in embedded 
programming or do not have direct access to specific hardware. It will enable 
them to conduct real-time AI experiments on a remote farm of embedded 
boards. These experiments could include AI model benchmarking (using 
randomly generated data), AI application benchmarking (with pre-existing 
test datasets), support for hardware-in-the-loop neural architecture search 
(NAS), and even benchmarking for on-device training. 

In terms of hardware compatibility, the dAIEdge-VLab is built to sup­

port a wide range of embedded boards, spanning from high-performance 
MPUs and GPGPUs to energy-efficient MCUs and specialized NPUs. On 
the software side, it accommodates both Linux-based and real-time operating 
systems, as well as bare-metal solutions. Additionally, the platform will be 
compatible with widely used vendor-agnostic inference runtimes along with 
proprietary AI engines. 

A virtual lab for online benchmarking of edge AI applications typically 
consists of several architectural components designed to facilitate remote 
experimentation, testing, and optimization of AI models across different edge 
hardware platforms. Below is an outline of its overall structure together with 
the main functionalities: 
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Figure 18.1 Virtual Lab Layer Model. 

1. User Interface (UI) Layer 

• Web Interface/Dashboard: The virtual lab offers a user-friendly web-

based dashboard that allows data scientists and developers to interact 
with the system. This includes uploading AI models, selecting tar­

get hardware platforms, configuring benchmarking parameters, and 
monitoring results. 

• CLI API: An API-based interface allows seamless integration with 
custom AI pipelines. 

• AI Application Management: Users can upload pre-trained AI models, 
select from a model zoo, or choose a complete AI application. The 
system also supports model versioning, enabling easy retrieval and 
comparison of different versions. 

2. Orchestration Layer 

• Resource Management and Scheduling: This component handles 
the orchestration of resources across multiple platforms, ensuring effi­

cient allocation of hardware for testing and benchmarking. It manages 
queues, schedules jobs, and optimizes resource usage based on platform 
availability. 

• Virtualization and Containerization: Models and benchmarking tasks 
are often containerized (e.g., using Docker) to ensure compatibility 
across diverse hardware. This enables easy deployment across various 
edge devices, regardless of their underlying operating system or archi­

tecture. This layer deals with the management of containers on edge 
devices running general-purpose operating systems. 
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• Benchmark Configuration: Users define test cases, including hardware 
configurations, datasets, and performance metrics such as latency, power 
consumption, and accuracy. The ultimate goal is to define the tech­

nical requirements to compare benchmarking results among different 
configurations. 

3. Edge Device Layer (Board farm) 

• Multi­Platform Hardware Pool: The system integrates a variety of 
edge devices, ranging from low-power IoT devices (like STM32 MCUs, 
RISC-V based platforms, etc.) to high-performance systems (such as 
Raspberry Pi or Jetson Orin Nano or AGX). This diversity ensures 
comprehensive testing across different edge environments. 

• Remote Access & Control: The lab allows remote access to real, 
physical hardware. Developers can deploy AI models directly to these 
devices for testing under real-world conditions, avoiding the limitations 
of simulated environments. 

4. Data and Model Processing Layer 

• Data Preprocessing and Inference: This layer handles the preprocess­

ing of input data and manages the inference execution on edge devices. 
It ensures that the models are efficiently adapted to the target hardware’s 
limitations, such as memory and computational power. 

• Performance Metrics Collection: During benchmarking, this layer 
monitors critical performance metrics like inference time, throughput, 
power consumption, and memory usage, which are fed back into the 
system for analysis. 

5. Analytics & Reporting Layer 

• Results Analysis & Visualization: The benchmarking results are pro­

cessed and presented through interactive dashboards, allowing users to 
compare metrics across different hardware platforms. Detailed reports 
include insights into energy efficiency, processing latency, accuracy, and 
other relevant performance factors. 

This virtual lab architecture is designed to bridge the gap between data 
scientists and embedded systems by enabling seamless testing, monitoring, 
and optimization of AI models on real edge hardware in a scalable, vendor-

agnostic manner. 
The proposed dAIEdge-VLab platform features a modular architec­

ture that allows for easy integration of remote embedded boards. For the 
implementation of the proposed dAIEdge-VLab, we have followed an agile 
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four-step methodology: (i) classifying functional and non-functional require­

ments for the envisioned online AI benchmarking solution and identifying 
gaps in existing solutions; (ii) designing a layer model for the dAIEdge-VLab; 
(iii) developing an initial PoC of the dAIEdge-VLab based on a centralized 
architecture managed by a central server where all registered embedded 
boards are listed and orchestrated; and (iv) designing a distributed version 
to enhance the flexibility, scalability, and security of the dAIEdge-VLab. 

Figure 18.2 illustrates the overall architecture of the centralized dAIEdge-

VLab. The key components of this architecture are: 

• Remote User: A user initiating an AI experiment on a remote node 
submits a request via a web-based user interface. No manual installation 
is required on the user’s side. 

• dAIEdge­VLab Server: The dAIEdge-VLab Server receives the user 
request and forwards it to the corresponding Remote Host that is 
connected to the target Remote Node. All available Remote Nodes are 
registered to the dAIEdge-VLab Server. 

• Remote Host: Located at the facility of the Remote Node owner, 
the Remote Host is responsible for executing node-specific scripts. It 
compiles and deploys the AI application to the Remote Node, retrieves 
the benchmarking results, and sends them back to the user through the 
dAIEdge-VLab Server. 

• Remote Node: This refers to the embedded board where the AI exper­

iments, such as model benchmarking, are executed. A single Remote 
Host can manage multiple Remote Nodes at the owner’s site. 

Figure 18.2 Centralized dAIEdge-VLab Architecture. ⏎ 
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Figure 18.3 illustrates the architecture of the distributed dAIEdge-VLab, 
which differs slightly from the centralized version due to the absence of 
a dAIEdge-VLab server for managing the registered Remote Nodes. The 
primary components are as follows: 

• Remote User: A user wishing to launch an AI experiment on a Remote 
Node submits their request through a web interface. Unlike the cen­

tralized version, a lightweight local installation of the web interface is 
required on the user’s side to interact with the dAIEdge-VLab API. 

• Peer­to­Peer Content Delivery Network: This open system manages 
the exchange of data between nodes without the need for a centralized 
server, enabling decentralized communication. 

• Remote Host: Situated at the Remote Node owner’s location, the 
Remote Host is responsible for running node-specific scripts, compiling 
and deploying the AI application to the Remote Node, retrieving the 
benchmarking results, and transmitting them back to the user via the 
peer-to-peer content delivery network. 

• Remote Node: This is the embedded board where AI experiments, such 
as model benchmarking, are executed. Multiple Remote Nodes can be 
managed by a single Remote Host within the owner’s facility. 

Figure 18.3 Decentralized dAIEdge-VLab Architecture. ⏎ 
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18.4 dAIEdge-VLab Implementation 

To demonstrate the feasibility of the centralized dAIEdge-VLab, the initial 
PoC implementation uses a GitLab server to run CI/CD pipelines on GitLab­

hosted runners. Each Remote Host must install and register a runner for 
every Remote Node it manages. These runners execute node-specific tasks 
triggered by the GitLab CI/CD pipeline. The process followed by the cen­

tralized dAIEdge-VLab to initiate a benchmarking experiment is outlined as 
follows: 

1. User Interface layer: A Remote User submits a benchmarking request 
via the web interface, specifying the trained model, target Remote Node, 
and Machine Learning Runtime (MLR) to be used from the available 
options. 

2. Orchestration layer: The dAIEdge-VLab GitLab Server processes the 
request by triggering the GitLab CI/CD pipeline. A Docker container 
with the required tools for the specific node is also deployed on the 
Remote Host. 

3. Data and Model Processing layer: The Remote Host executes the node-

specific scripts (AI-Support, AI-Build, AI-Deploy, AI-Manager) using 
the tools within the Docker container, producing a binary tailored for 
the target Remote Node. This binary is then deployed onto the Remote 
Node. 

4. Edge Device layer: Runs the inference/benchmarking process and sends 
back the collected benchmarking metrics to the Remote Host. 

5. Analytics and Reporting layer: The Remote Host retrieves the bench­

marking metrics from the Remote Node and returns them to the 
dAIEdge-VLab GitLab Server via the GitLab artifacts. The server gen­

erates a benchmarking report, which is then sent back to the Remote 
User for visualization through the web interface. 

The distributed version of the dAIEdge-VLab differs from the centralized 
one primarily in its implementation of the orchestration layer, specifically 
the resource management and scheduling components. In this version, a 
dAIEdge-VLab API on the Remote User side is responsible for requesting 
access to the target Remote Node to run the benchmarking experiment. Once 
access is granted based on node availability, a peer-to-peer content delivery 
network, using IPFS [10], will transmit the request to the selected board via 
the associated Remote Host. 
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Managing the preprocessing of input data and inference execution on 
the target edge device requires a structured approach for implementing the 
node-specific scripts in the Data and Model Processing layer. This setup 
includes four main scripts and a Docker image containing all the necessary 
tools and packages for the specific node. These components are organized as 
follows: 

1. AI_Support: 

• Provides documentation, dependencies, and installation support for 
the Remote Node. For edge devices with OS support, an OS kernel 
binary image along with system libraries will be provided for 
flashing onto the target board. 

• Includes scripts to initiate code generation for the benchmarking 
application specific to the Remote Node, which will be saved in the 
AI_Project folder. 

2. AI_Project: 

• Stores the generated benchmarking application that is optimized for 
execution on the Remote Node. 

3. AI_Build: 

• Contains the build environment with toolchains required by the 
inference framework to cross-compile the benchmarking applica­

tion. 
• Provides scripts for cross-compiling the benchmarking application 

on the Remote Host. 

4. AI_Deploy: 

• Includes tools for deploying the generated binary file onto the 
Remote Node. 

• Provides scripts to automate the deployment of the binary for the 
benchmarking application onto the Remote Node. 

5. AI_Manager: 

• A management tool integrated with the inference framework to 
control the target board and monitor the system’s status. 

• Includes scripts to establish a connection with the Remote Node 
and retrieve benchmarking metrics. 
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This structure ensures seamless execution of remote benchmarking tasks 
across various edge devices while maintaining consistency in deployment and 
management. 

A first PoC for the centralized dAIEdge-VLab is operational. Below are 
screenshots showcasing the web interface dashboards for both input selection 
(see Figure 18.4) and visualization of benchmarking results (see Figure 18.6). 
A history of previously executed experiments is saved locally in the browser 
cache (see Figure 18.5), allowing users to review and compare different 
benchmarking experiments in the future. 

Figure 18.4 User Input Selection through Web Interface. 

Figure 18.5 List of Benchmarking Results. 

⏎ 

⏎ 
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Figure 18.6 Visualisation of Model Benchmarking Results 

The generated benchmark report is a JSON file that includes all the 
relevant keys, even those not retrieved from the Remote Node. These keys 
are organized into four main categories and used throughout the benchmark 
report: 

1. Hardware specific keys 

• FLOPs (type: float): Floating-point operations per second. 
• inference_latency (type: json): This key contains a JSON file 

containing the latency measures (in seconds) of all performed 
inferences (mean (type: float), std (type: float), min (type: float) 
and max (type: float)). 

• throughput (type: float): Throughput of the system in inferences per 
second. 

• latency_per_layers (type: list): This key contains a list of 
json composed of all the layer’s latency measures (<element 
list> (type: json), layer_name (type: str), mean (type: float), 
std (type: float), min (type: float), and max (type: float)). 

⏎ 
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• preprocess_time (type: json): Time in seconds for the pre­

processing (mean (type: float), std (type: float), min (type: float) 
and max (type: float)). 

• postprocess_time (type: json): Time in seconds for the post­

processing processing (mean (type: float), std (type: float), min 
(type: float) and max (type: float)). 

• ram_size (type: int): Size in bytes of the available RAM of the 
system. 

• ram_peak (type: float): Percentage of the peak RAM usage. 
• flash_size (type int): Size in bytes of the available FLASH. 
• flash_usage (type: float): Percentage of the FLASH usage. It might 

not be relevant for Linux targets. 
• load_cpu (type: float): Percentage of the CPU usage. 
• load_accelerator (type: float): Percentage of the accelerator (GPU, 

NPU, etc.) usage. 
• temperature (type: float): Temperature of the board in ◦C. 
• ambient_temperature (type: float): Room temperature in ◦C. 
• power_consumption (type: float): Power consumption of the board 

in Watt. 
• energy_efficiency (type: float): Operations Per Watt (OPW). 

2. Hardware agnostic keys 

• model_size (type: int): Size in bytes of the trained model on the 
embedded board (after any compression / optimisation performed 
by the MLR). 

• nb_parameters_model (type: int): Number of parameters of the 
trained model. 

• accuracy (type: float): Accuracy of the trained model. 

At the conclusion of each benchmarking experiment, two log files, 
user.log and error.log, are generated to help users track any issues. The 
contents of these logs are displayed on the web interface for user review: 

• user.log: This file provides general information or warnings related to 
the benchmarking process. 

• error.log: This file logs any errors encountered during the process, 
particularly in cases where the JSON benchmarking report could not 
be generated (e.g., due to an unsupported model format or insufficient 
memory on the target board). 

These logs allow users to identify and troubleshoot potential problems in 
the benchmarking process. 
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A Continuous Testing (CT) strategy has been implemented to ensure 
the dAIEdge-VLab platform’s stability. To achieve this, a suite of tests is 
automatically triggered on a weekly basis, as well as after every push or 
merge request. These pipelines are executed across all registered Remote 
Nodes, supported Machine Learning Runtimes (MLRs), and models from the 
internal model zoo. 

Remote Node owners interested in adding their boards to the dAIEdge-

VLab can find the guidelines under [11]. An MPU/linux template as well 
as an MCU/RTOS template are available to speed up the integration of new 
Remote Nodes. 

18.5 Conclusion 

Evaluating machine learning inference on edge devices is an essential step 
before selecting the optimal embedded board or optimizing the ML model to 
suit the target hardware. However, accessing boards from various manufac­

turers and getting familiar with their unique programming environments is a 
complex and often inaccessible task. To address this challenge and simplify 
access to a diverse range of embedded boards, we propose in this paper 
a solution for conducting ML benchmarking experiments on remote board 
farms. 

For the implementation of the proposed dAIEdge-VLab, we adopted 
a five-layer model and followed a four-step methodology: (i) classifying 
functional and non-functional requirements for an online AI benchmarking 
solution on remote board farms and identifying gaps in existing solutions; 
(ii) designing a layer model for the dAIEdge-VLab; (iii) developing an initial 
PoC of the dAIEdge-VLab based on a centralized architecture managed by 
a central server; and (iv) designing a distributed version to enhance the 
flexibility, scalability, and security of the dAIEdge-VLab. This incremen­

tal approach has resulted in a scalable solution that is ready for release 
and capable of integrating third-party embedded boards in a distributed 
manner. 

The current implementation of dAIEdge-VLab supports a wide range of 
Linux-based MPUs, including Raspberry Pi 4B and Raspberry Pi 5, as well 
as GPGPUs such as Nvidia Jetson Xavier and Nvidia Jetson Orin Nano. It 
also accommodates MCU+NPU platforms like the STM32MP257, along with 
bare-metal MCUs such as STM32L4R9 and NXP LPC55S69. Additionally, 
it includes support for vendor-agnostic Machine Learning runtimes, such as 
ONNX Runtime, TensorFlow Lite, and TensorFlow Lite for microcontrollers, 
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as well as vendor-specific Machine Learning runtimes like CUBE-AI and 
TensorRT. 

dAIEdge-VLab currently assists users who may not have expertise in 
embedded programming or access to the target embedded board by enabling 
real-time model benchmarking on a remote embedded board. In the future, 
additional experiments will be introduced, including AI application bench­

marking, support for hardware-in-the-loop neural architecture search (NAS), 
and the ability to launch on-device training directly on the target board. 

In the near future, we aim to enhance the distributed version of the 
dAIEdge-VLab by incorporating blockchain technology to share and manage 
information about the registered embedded boards in a decentralized way. 
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Abstract 

Sustainability in water resource management is critical, given the necessity 
to monitor and predict key indicators such as SDG 6.4.2: Water Stress. This 
indicator, which measures the ratio of water resources abstracted relative 
to their availability, is vital for assessing the pressure on water resources 
and ensuring their long-term sustainability. The objective of this study is to 
compare various neural network architectures utilizing different optimisers 
to predict water stress. The analysis was based on a dataset sourced from 
AQUASTAT, encompassing data from 28 European countries. Several neural 
network architectures, with configurations ranging from two to four layers, 
were implemented, and evaluated using optimisers including SGD, Adam, 
RMSprop, and Adagrad. The findings revealed that a three-layer architecture 
combined with the Adam optimiser delivered the best performance, achieving 
an MSE of 0.02187 and a R2 of 0.9745, indicating high predictive accuracy. 
Nevertheless, a two-layer architecture with the SGD optimiser also exhib­

ited strong performance, highlighting its simplicity and effectiveness. These 
results underscore the importance of meticulous selection of both architec­

ture and optimiser when predicting critical indicators such as water stress. 
This study not only enhances the accuracy of water-related risk predictions 
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but also supports informed decision-making for sustainable water resource 
management in Europe. 

Keywords: sustainability, water stress, artificial neural networks (ANN), 
artificial intelligence (AI), optimizers. 

19.1 Introduction and Background 

For several decades, climate change has affected the hydrological cycle, mod­

ifying rainfall patterns, raising water temperature, and intensifying extreme 
phenomena such as floods and droughts. These changes put pressure on water 
resources, with potential adverse impacts on ecosystems and human health. 
In addition, sea level rise may intensify the salinization of groundwater and 
estuaries, decreasing the presence of freshwater in coastal areas. Furthermore, 
climate variations in water volume and quality are expected to impact food 
availability and access to water, particularly in arid areas, and impact water 
infrastructure such as irrigation systems and hydropower [1]. In Europe, 
climate change will accentuate the differences in water resources between 
north and south. In the north, precipitation is expected to increase, improv­

ing water availability, but with risks of flooding and increased greenhouse 
gas emissions from the decomposition of carbon in the soil. In the south, 
especially in the Mediterranean regions, there will be a decrease in water 
supply, increasing irrigation demand and agricultural vulnerability, as well as 
problems of erosion, salinization and soil degradation. Changes in rivers and 
more frequent droughts and floods will affect the carbon cycle, complicating 
mitigation efforts [2]. 

Water stress occurs when the demand for water exceeds the quantity 
available during a given period or when poor quality limits its use, result­

ing in the deterioration of freshwater resources in terms of quantity and 
quality (https://www.eea.europa.eu/). Water stress, intensified by climate 
change, population growth and economic development, affects both human 
consumption and key sectors such as agriculture, energy and industry. This 
phenomenon, aggravated by the degradation of ecosystems and the depletion 
of water sources, calls for adaptive water management to ensure sustainability 
and economic stability. Global warming is expected to significantly alter 
water availability, with increased risks of droughts and floods. By 2030, 
global water consumption is projected to exceed 160% of available supply, 
exacerbating global water challenges [3]. 

https://www.eea.europa.eu/)
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Water stress is closely related to Sustainable Development Goal (SDG) 6. 
Modifications in the hydrological cycle, such as changes in precipitation and 
water salinization, directly affect access to clean and safe water, especially 
in coastal areas and arid regions. This underscores the need to implement 
solutions that address not only the quantity of water available, but also its 
quality, in line with SDG 6 targets. To address these global challenges, it is 
crucial to improve the capacity to predict and manage water stress and other 
indicators related to water availability. In this context, technologies such as 
Artificial Intelligence (AI) and machine learning models play an increasingly 
relevant role. These models provide advanced tools for the analysis and 
prediction of complex water-related phenomena, such as water stress, by 
processing large amounts of climatic, hydrological, and agricultural data 
efficiently. 

Early prediction of water stress is vital to mitigate impacts on agriculture, 
energy and other sectors that are highly dependent on water. AI models 
enable more accurate, real-time analysis of key indicators such as the water 
stress index and other relevant parameters. These predictions help optimize 
decision-making on water use, facilitating more effective adaptation strate­

gies in response to climate variations. Despite the growing interest in the 
use of machine learning models for water resources management, there is a 
lack of studies that systematically compare various neural network architec­

tures and optimizers specifically in the context of water stress prediction in 
Europe. Many previous works have focused on general applications of neural 
networks in water data modelling but have not performed a comprehensive 
assessment of how different configurations affect predictive accuracy in a 
specific regional context. Furthermore, the integration of AQUASTAT data, 
which spans multiple European countries, provides a unique opportunity to 
address this gap by facilitating the identification of patterns and trends that 
may be critical for sustainable water management. This study seeks to close 
this gap by providing a rigorous and contextualized comparison of machine 
learning models applied to European water data, thus contributing to the 
development of more effective decision-making tools for water resources 
management. 

The objective of this study is to compare different artificial neural network 
architectures using different optimizers to predict water stress in 28 European 
countries, using an AQUASTAT dataset. Through this comparison, we seek 
to evaluate the performance of each architecture and optimizer in terms 
of predictive accuracy. Identifying the most effective configuration will not 
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only contribute to improve informed decision making for sustainable water 
resources management in Europe but will also allow policy makers and water 
managers to select analytical tools that optimize water use. 

This article is structured as follows: first, we will present a state-of­

the-art review of the main papers on water stress prediction, analyzing the 
methodologies and approaches used in previous research. Subsequently, the 
use of different neural network architectures and optimizers in this context 
will be discussed, highlighting their advantages and disadvantages. Next, 
the methodology employed in this study will be described, including data 
selection. Finally, the results obtained from the comparison between different 
neural network architectures and optimizers will be presented and discussed, 
as well as the implications of the findings for sustainable water resources 
management in Europe, together with recommendations for future research. 

19.2 State of the Art 

Concern for water availability has gained relevance in a global context where 
climate change and the growing demand for water resources are intertwined 
with sustainability objectives. In this regard, the energy sector faces signif­

icant challenges, particularly in thermoelectric generation, which requires 
large volumes of water for cooling. Recent studies have assessed how periods 
of extreme heat impact electricity generation, highlighting the reduction in 
production at 1,326 thermoelectric plants in the European Union. Despite 
efforts to reduce water withdrawals, the number of watersheds experiencing 
water stress is expected to increase, emphasizing the need to implement 
integrated approaches to water and energy resource management [4]. 

On the other hand, the sensitivity of river basins to climate change has 
been analyzed using advanced methodologies that combine climate mod­

elling and multi-model simulations. This approach has made it possible 
to classify different basins according to their vulnerability, revealing that, 
although the Nordic basins show high sensitivity, those of southern and 
central Europe face greater challenges in overcoming low flow and water 
stress thresholds [5]. This research underlines the importance of proactive 
and adaptive management to cope with the adverse effects of climate change 
on water availability. 

In addition, the use of artificial intelligence techniques to characterize 
and predict water stress has gained attention in several regions. A study 
conducted in Hyderabad, India, demonstrates how models such as support 
vector regression (SVR) outperform traditional approaches such as ARIMA 
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in drought prediction. The results highlight the ability of artificial intelligence 
to capture complex patterns in data, which can significantly contribute to 
more efficient water resource management [6]. 

Finally, the application of thermography in agriculture has been shown 
to be a valuable resource for detecting water stress in crops such as maize. 
A study in Thailand suggests that continuous monitoring of the Crop Water 
Stress Index (CWSI) can effectively predict yield losses under drought con­

ditions. This approach highlights the importance of integrating technology 
into agricultural management to optimize water use [7]. Taken together, 
these studies evidence the need to adopt holistic strategies that address 
water stress from multiple perspectives, combining climate research, artificial 
intelligence, and innovation in agricultural practices. 

19.3 Material and Methods 

19.3.1 Data 

Our database includes 4 variables and 337 records, with information from 
28 European countries related to SDG 6.4 indicators: Water Use Efficiency 
and Water Stress, covering the period from 2010 to 2021. The Water Use 
Efficiency indicator measures the economic value added generated by each 
unit of water used (expressed in dollars per cubic meter). Its objective is to 
evaluate how much economic value is produced with each cubic meter of 
water withdrawn and used in the economy, considering the following sectors: 

1. Agriculture, the largest consumer of water. 
2. Industry, where water is essential for production processes. 
3. Services, where its use can be more efficient. 

The Water Stress Level indicator measures the percentage of renewable 
freshwater withdrawal in a region or country, comparing water demand 
with total availability. It is expressed as the percentage of renewable water 
resources withdrawn in a year. A high value indicates higher water stress, 
while a low value reflects more sustainable water use. 

Indicator 6.4.2 is defined as the ratio of total freshwater withdrawal 
(TFWW) in all major sectors to the difference between total renewable 
freshwater resources (TRWR) and environmental flow requirements (EFR). 
It is calculated using the following formula [12]: 

TFWW
Water Stress (%) = × 100. (19.1)

TRWR− EFR 
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Table 19.1 presents descriptive statistics on Water Use Efficiency and 
Water Stress. Water use efficiency averages 134.95 $/m3, with a standard 
deviation of 215.60 $/m3, indicating considerable variability among Euro­

pean countries. The minimum value observed is $6.29/m3 and the maximum 
reaches $1,294.91/m3, suggesting large differences in water management. 
The median is 80.41 $/m3, indicating that half of the observations are below 
this value. 

For water stress, the average is 20.74%, with a standard deviation of 
19.13%, reflecting significant variations. The minimum value is 0.99%, show­

ing that some areas do not face water stress, while the maximum is 91.29%, 
indicating a risk to sustainability in certain regions. The median of 17.24% 
indicates that half of the areas analyzed have relatively low water stress. 

Table 19.2 shows the descriptive statistics of water stress in European 
countries from 2010 to 2021. In general, there is a large variability in water 
stress levels between countries. Malta has the highest average level at 83.19%, 
indicating chronic pressure on its water resources. Other countries with high 
stress levels are Belgium (56.43%) and Bulgaria (41.19%), while Croatia 
(1.45%) and Austria (9.08%) show considerably lower levels. 

Comparing the average data with that of 2021, some countries, such as 
Austria, Belgium and Czechia, have reduced their water stress in 2021 relative 
to the averages of the 2010-2021 period. For example, Belgium decreases 
from 56.43% to 51.88%. However, other countries, such as Cyprus and 
Denmark, have seen an increase in their water stress levels in 2021, which 
may reflect higher demand or lower water availability. 

Although water stress in Malta decreased slightly in 2021 (78.28%), it is 
still very high. This highlights the continued pressure on its water resources, 
attributable to limited freshwater availability. In summary, the data highlight 
both improvements in water management in certain countries and increases 
in water stress in others, evidencing the various challenges Europe faces in 
managing its water resources. 

Table 19.1 Descriptive statistics for the two variables under study 

Water Use Efficiency($/m3) Water Stress (%) 

Mean 135,95 20,74 
Std 215,60 19,13 
Min 6,29 0,99 
25% 34,99 6,01 
50% 80,41 17,24 
75% 143,09 29,8 
Max 1294,91 91,29 

⏎ 
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Table 19.2 Descriptive statistics for the level of water stress of the countries under study 

Country Mean Std Min 50% Max 2021 

Austria 9,079396 0,349331 8,67643 9,052531 9,643548 8,67643 
Belgium 56,42826 7,228664 49,06634 52,91819 73,13268 51,87961 
Bulgaria 41,19484 2,675824 37,5194 41,01338 47,19492 37,5194 
Croatia 1,44622 0,065285 1,289266 1,469994 1,518462 1,478435 
Cyprus 30,09158 2,179796 27,46036 29,72936 34,89612 32,12138 
Czechia 24,90686 2,826334 20,51399 24,8236 29,66849 20,51399 
Denmark 24,78854 2,818227 19,69984 24,89713 29,90311 26,40427 
Estonia 16,62548 3,929511 9,231085 18,13312 20,28139 10,8198 
Finland 7,736582 1,909514 5,454114 7,114062 11,51814 7,114062 
France 23,72531 1,359882 21,59814 23,68161 26,39062 21,59814 
Germany 39,52151 5,377602 33,50192 37,46542 49,9216 35,35166 
Greece 20,28583 0,252374 19,93815 20,28121 20,6838 20,6838 
Hungary 8,098914 0,880236 6,775475 8,12532 9,274611 8,070121 
Ireland 10,63118 7,986741 4,001176 5,971554 22,20506 22,20506 
Italy 29,79749 0,111825 29,64578 29,80592 29,94407 29,64578 
Latvia 1,259613 0,351461 0,992929 1,074131 2,175015 1,067831 
Lithuania 2,986097 1,668811 1,834102 2,399063 7,467916 1,834102 
Luxembourg 3,866086 0,206621 3,573798 3,8267 4,328358 3,963516 
Malta 83,18589 5,022172 75,44555 82,18479 91,28713 78,28007 
Netherlands 17,59585 2,071677 15,02981 16,90208 20,75185 16,07566 
Northern 13,86417 0,665184 12,42114 14,22251 14,35465 14,35465 
Ireland 
Poland 35,61036 3,509251 30 35,88958 41,22534 32,07684 
Portugal 15,3874 2,708669 12,31571 17,2372 17,97442 12,31571 
Romania 6,26299 0,465228 5,822489 6,060762 7,362606 7,362606 
Slovakia 2,501927 0,15682 2,388124 2,421629 2,862737 2,436631 
Slovenia 6,420104 0,518243 5,749155 6,296146 7,813387 6,294794 
Spain 43,9606 3,191685 39,8289 43,25404 50,10225 43,25404 
Sweden 3,592352 0,135445 3,427128 3,567388 3,880231 3,582973 

A threshold of 25% has been established to evaluate water stress, where 
values below are considered safe and values above represent an increasing 
threat. This stress is classified into five categories: no stress (<25%), low (25­

50%), medium (50-75%), high (75-100%) and critical (>100%). Figure 19.1 
illustrates the frequency of water stress values in different ranges, using a 
colour palette ranging from green (low stress) to red (high stress). Most of 
the observations are in the safe range, indicating that many regions do not 
face significant pressure on their water resources, as reflected in the high 
frequency of values between 0 and 25%. However, there are a notable number 
of areas in the medium stress category (50-75%), with fewer areas in high 
stress (75-100%). Although there are not many observations that exceed 
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Figure 19.1 Frecuency of water stress (%). 

100% (critical category), the presence of some indicates that these regions 
face serious water sustainability concerns. 

19.3.2 Methodology 

19.3.2.1 Data 
The data were processed to select only the relevant column and then normal­

ized using a MinMax scaler, which ensures that all values were within the 
range [0, 1]. Normalization is crucial to improve the stability and efficiency 
of neural network training. Subsequently, temporal sequences were created 
to capture the dependencies between the data over time. For each output 
(target) value, the values of the previous 28 observations were used as input. 
This process of creating sequences turns the problem into one of sequential 
prediction. 

The normalized data were divided into three subsets: training set (70%), 
used to adjust the model weights, validation set (15%) to monitor model per­

formance during training and avoid overfitting, and test set (15%), reserved 
for evaluating the final model performance on unseen data. 

19.3.2.2 Neural network architecture 
Different dense layer architectures with ReLU activations were evaluated for 
each hidden layer. The following layer configurations were used: 
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• Architecture (64, 32): This architecture, consisting of two layers with 64 
and 32 neurons respectively, was used in the initial training phases. Its 
purpose was to evaluate the behaviour of the model in the prediction 
problem with a relatively simple structure. This allowed to obtain a 
benchmark to compare more complex architectures. 

• Architecture (128, 64, 32): By adding an intermediate layer and increas­

ing the number of neurons, this architecture increases the model’s 
ability to learn more complex patterns in the data. This configuration is 
expected to improve the generalization of the model by capturing deeper 
relationships between input variables. 

• Architecture (256, 128, 64, 32): This deeper architecture with larger 
number of neurons is designed to address highly complex prediction 
problems. The addition of more layers and neurons provides the model 
with the ability to learn high-level feature representations, which can be 
crucial for improving accuracy in water stress prediction. 

In all architectures, optimization techniques, such as Adam, RMSProp 
and SGD, were applied in order to minimize the loss function during training. 
Each layer was regularized using the L2 penalty (regularization term) to avoid 
overfitting. In addition, a Dropout layer with a rate of 30% was included 
after each hidden layer to improve the robustness of the model and avoid 
overdependence of some neurons. 

19.3.2.3 Model optimization 

SGD (Stochastic Gradient Descent) with a learning rate of 0.01 and a 
momentum de 0.9 

The Stochastic Gradient Descent (SGD) methodology, as presented by 
LeCun et al. (2002), can be summarized in the following key steps in the 
context of neural network training: 

1. Definition of the optimization problem: The objective is to minimize a 
cost function E(W), which measures the difference between the expected 
value and the output predicted by the model. The most commonly used 
cost function is the mean square error (MSE), which is defined as: 

P
1 

E(W ) =  EP . (19.2)
P 

p=1 

Where EP is the error associated with pattern p, W is the vector of model 
parameters, and P is the size of the training set. 
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2. Gradient calculation: At each iteration, the gradient of the cost function 
with respect to the model parameters is calculated: 

∇W E(W ). (19.3) 

This gradient indicates the direction in which the W parameters should 
be adjusted to reduce the error. 

3. Parameter update: The model parameters are updated using the gradient 
of the cost function computed in the previous step. In SGD, the update 
is performed for each p training pattern stochastically, i.e., individual 
samples are used instead of the entire data set: 

wt+1 = wt − η∇wEp(w). (19.4) 

Where η is the learning rate, a hyperparameter that controls the step size 
taken at each iteration. 

4. Repetition: The process of updating the parameters is repeated over 
several epochs, going through all the samples in the training set sev­

eral times until the model converges or until a predefined number of 
iterations is reached. 

5. Improving generalization: In addition to minimizing the cost function, 
the paper also addresses the importance of improving the generalization 
capability of the model, i.e., the ability of the model to make correct 
predictions on unseen data. The SGD method is combined with tech­

niques such as regularization to avoid overfitting and improve model 
generalization. 

Adam with a learning rate of 0.001 
The Adam (Adaptive Moment Estimation) optimizer is used to update 

the model parameters during training. Adam combines the advantages of 
the AdaGrad and RMSProp algorithms, providing an adaptive learning rate 
adjustment for each model parameter. Its implementation is straightforward, 
requiring only first-order gradients, making it computationally efficient and 
suitable for problems with nonstationary targets and noisy or sparse gradients. 

The algorithm employs adaptive estimates of the first and second 
moments of the gradients, automatically adjusting the step size during the 
optimization process. The standard hyperparameters used were initial learn­

ing rate α = 0.001, β = 0.999, and ε = 10-8, which did not require additional 
adjustments. During the training process, the initial biases of the moments 
were corrected by a correction mechanism to ensure proper convergence. 
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This setup ensures that the model parameters converge efficiently, main­

taining a balance between speed of convergence and numerical stability of 
the training [9]. 

Key formulas of the Adam algorithm: 

1. Moving average of the gradient (first moment): 

mt = β1 − mt−1 + (1− β1) · gt. (19.5) 

2. Moving average of the squares of the gradient (second moment): 

2 vt = β2 − vt−1 + (1− β2) · gt . (19.6) 

3. Updating of parameters: 

α · mt
θt = θt−1 − √ . (19.7) 

vt + ε 

RMSprop with a learning rate of 0.0001 
RMSProp (Root Mean Square Propagation) is an adaptive optimization 

algorithm that adjusts the learning rate by dividing the gradient by a moving 
average of the magnitudes of recent gradients. This technique is useful for 
handling the oscillations problem in optimization and for improving conver­

gence in deep learning problems, especially in neural networks trained with 
mini-batches [10]. 

1. Adaptive update: Unlike AdaGrad, which accumulates gradients indef­

initely, RMSProp maintains an exponentially decreasing average of the 
squares of past gradients. The update of the weights is performed as 
follows: 

η
xt+1 = xt −  

2]
gt. (19.8) 

E [g + Et 

Where E[g2]t is the exponential moving average of the squared gradients 
at time t, and E is a small value to avoid divisions by zero. 

2. Exponential moving average: The key to RMSProp is that it calculates a 
moving average of the squares of the gradients with a decay factor. This 
allows the algorithm to remain effective even in problems where the 
gradients vary significantly over time. The calculation of this moving 
average is defined as: 

 ]  ]
2 2 2E g = γE g + (1− γ)gt . (19.9)

t t−1 

Where γ is the decay factor, usually close to 0.9.  
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Advantages of RMSProp: RMSProp solves the problem of excessive 
learning rate decay in AdaGrad by limiting the influence of old gradients 
through the use of a moving average. This allows maintaining an adequate 
learning rate throughout the training, especially in deep neural networks 
where gradients can vary considerably between layers. This method has 
proven to be particularly effective in optimization tasks with redundant data 
or features of very different magnitudes. 

Adagrad with a learning rate of 0.01 
AdaGrad is an adaptive optimization algorithm that adjusts the learning 

rate of each parameter based on the cumulative magnitude of gradients in 
previous iterations. This adjustment allows the algorithm to be effective in 
scenarios where features are sparse or gradients vary considerably between 
dimensions [11]. 

1. Adaptive update: At each iteration t, the parameters xt are updated using 
the gradient gt, adjusted by a factor that depends on the cumulative sum 
of squared gradients: 

gt 
xt+1 = xt − η √ . (19.10)

Gt + ε 

Where Gt is the sum of the squared gradients up to t, and ε is a small 
value to avoid divisions by zero. 

2. Adaptive advantages: AdaGrad automatically adjusts the learning rate 
for each parameter. Parameters associated with large gradients are 
updated more slowly, while those with small gradients are adjusted more 
quickly, improving learning efficiency on sparse data. 

3. Mahalanobis norm: AdaGrad uses the Mahalanobis norm to project 
the updates, which ensures that the update steps are adjusted to the 
behaviour of the accumulated gradients, resulting in more stable and 
efficient updates. 

This adaptive approach allows AdaGrad to achieve better convergence, 
especially in problems with sparse data or where features have different 
scales of importance. To improve the convergence of the model, the following 
callbacks were implemented during EarlyStopping and ReduceLROnPlateau 
training. 

19.3.2.4 Evaluation and metrics 
The model was evaluated using the following metrics: 

• RMSE (Root Mean Square Error): measures the standard deviation of 
the predictions with respect to the actual values. 
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• MAE (Mean Absolute Error): Measures the average of the absolute 
errors. 

• R2 Score: Evaluates how well the predictions fit the actual values 
(coefficient of determination).  

These metrics were calculated for both the training and test sets.  

19.4 Results 

Table 19.3 presents an analysis of various neural network architectures and 
optimizers, evaluated using the mean square error (MSE), the mean absolute 
error (MAE) and the coefficient of determination (R2). These indicators are 
key to measure the accuracy and generalization capability of the model. In the 
two-layer architecture (64 and 32 neurons), the Stochastic Gradient Descent 
(SGD) optimizer stands out with an MSE of 0.0320 in training and 0.0254 
in testing, showing good generalization. In contrast, Adam underperforms, 
while RMSprop and Adagrad offer intermediate results. For the three-layer 
architecture, Adam achieves the best performance with an MSE of 0.0284 in 
training and 0.0218 in test, indicating excellent generalization ability. SGD 
and RMSprop are not as effective in this more complex configuration. In 
the four-layer architecture, SGD maintains competitive performance with 
an MSE of 0.0445 in training and 0.0375 in test. Adam fails to match its 
previous performance, and both Adagrad and RMSprop show higher errors. 
In summary, SGD is effective on simple architectures, while Adam excels 

Table 19.3 Results of the different architectures and optimizers 

MSE MAE R2 MSE MAE R2 test 
train train train test test 

2L(64,32) SGD 0.032 0.1149 0.9689 0.0255 0.1066 0.9703 
2L(64,32) Adam 0.077 0.2019 0.9253 0.0634 0.1695 0.9261 
2L(64,32) RMS 0.0398 0.1512 0.9614 0.0306 0.1228 0.9644 
2L(64,32) Ada 0.0388 0.1245 0.9624 0.0344 0.1191 0.9599 
3L(128,64,32) SGD 0.1223 0.1827 0.8814 0.0959 0.1646 0.8883 
3L(128,64,32) Adam 0.0284 0.1174 0.9724 0.0219 0.0982 0.9745 
3L(128,64,32) RMS 0.1205 0.2486 0.8831 0.081 0.1945 0.9057 
3L(128,64,32) Ada 0.0544 0.1416 0.9472 0.0446 0.1301 0.948 
4L(256,128,64,32) SGD 0.0446 0.1444 0.9568 0.0375 0.1361 0.9563 
4L(256,128,64,32) Adam 0.0615 0.1935 0.9404 0.0515 0.1741 0.94 
4L(256,128,64,32) RMS 0.0772 0.2415 0.9252 0.0858 0.2574 0.9001 
4L(256,128,64,32) Ada 0.0547 0.1764 0.9469 0.0429 0.1636 0.95 

⏎ 



374 Optimising Neural Networks for Water Stress Prediction in Europe 

Figure 19.2 Comparison of R2 . 

on more complex structures. The choice of optimizer should consider the 
complexity of the neural network to optimize performance. 

Figure 19.3 presents the R2 values for different combinations of model 
architectures and optimizers, evaluating their performance on the training and 
test sets. An R2 close to 1 indicates a good ability to explain the variability of 
the data, and the results suggest that there is no overfitting, as the values are 
similar in both sets. The combination of 2L(64,32) with the SGD optimizer 
stands out with an R2 of about 0.970 in both ensembles, showing excellent 
generalization. Likewise, the 3L(128,64,32) architecture with Adam achieves 
an R2 of 0.975 on the test set, indicating optimal performance. However, 
more complex architectures, such as 4L(256,128,64,32), show slightly lower 
results, especially with RMSprop, which has an R2 of 0.900 on test. This 
suggests that, despite their ability to capture complexities, they do not always 
improve performance. An important finding is that Adam offers superior 
performance on complex architectures, while SGD is very competitive on 
simpler configurations. In summary, simpler models with well-tuned opti­

mizers achieve good results in R2, and the generalization capability is robust, 
indicating stability in predicting unseen data. 

Figure 4 compares the prediction errors of different neural network 
models using two metrics: MSE (Mean Squared Error) and MAE (Mean 
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Figure 19.3 Comparison of MSE and MAE. 

Absolute Error), for the training and test sets. In the MSE plot, models with 
optimizers such as Adam and SGD show better results, with the 2L(64,32) 
model with SGD achieving the lowest MSE, indicating a good fit and 

⏎ 
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balanced prediction ability in both sets. However, more complex models 
such as 3L(128,64,32) with SGD and 4L(256,128,64,32) with RMS present 
higher MSE, suggesting difficulties in generalizing. The MAE plot reflects 
similar patterns, where 2L(64,32) with Adam shows lower absolute error, 
indicating good accuracy. In contrast, models such as 4L(256,128,64,64,32) 
with RMS and 3L(128,64,32) with SGD show higher errors, implying opti­

mization problems. In general, simpler architectures, especially 2L(64,32) 
with optimizers such as SGD or Adam, tend to perform better on both metrics. 
More complex architectures, such as 4L(256,128,64,32), show worse results, 
with larger discrepancies between training and test performance, which may 
indicate overfitting or suboptimal optimization. 

19.5 Conclusions 

The conclusions of this study highlight key implications for policy adoption 
and future research design in the field of deep learning. The findings reinforce 
the need for clear guidelines on the selection of architectures and optimizers 
in neural networks, not only from a technical perspective, but also to facilitate 
efficient implementation in practical applications. Simplicity, as observed in 
the performance of less complex architectures such as 2L(64,32), is a princi­

ple that can guide strategic decisions in the development of predictive models, 
suggesting that in many contexts it is preferable to opt for less complex 
solutions that balance accuracy and resource efficiency. This approach could 
be crucial for industries seeking to integrate artificial intelligence into their 
processes, as it minimizes the risks associated with computational overhead 
and overfitting. 

As for optimizers, the results reinforce the adoption of approaches such 
as SGD and Adam, which proved to be the most effective depending on 
the complexity of the architecture. The superior performance of SGD on 
simple architectures and Adam on more complex models suggests that model 
development policies should be adaptive, adjusting both the architecture and 
the optimizer according to the context and specific data needs. 

For future research, these results open multiple avenues of exploration. 
It is essential to continue to evaluate how different datasets, particularly 
those with more complex nonlinear relationships or larger volumes, affect 
the performance of more complex architectures. In addition, the impact of 
hyperparameters should be further investigated and alternative optimizers that 
have not yet been widely studied in this context, such as AdamW or Nadam, 
should be tested to confirm the validity of these patterns in different scenarios. 
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Finally, the transfer of this knowledge to the applied domain, whether 
in AI policies for industrial sectors or to improve technology adoption in 
the public sector, requires an evidence-based approach such as the one 
presented here. The promotion of policies that incentivize simplicity and 
efficient optimization in model development could have a significant impact, 
encouraging a more sustainable and effective use of artificial intelligence. The 
implementation of policies that promote simplicity and optimization in the 
development of AI models can be key to accelerating their adoption in both 
industrial and public sectors. The study highlights that simple architectures 
and efficient optimizers such as SGD or Adam not only improve performance, 
but also facilitate the scalability and maintainability of technology solutions. 
In the industrial domain, this could reduce costs and barriers to entry, enabling 
a democratization of AI. In the public sector, the use of accessible models 
can contribute to scalable and sustainable solutions, such as predictive health 
systems and urban resource management. In addition, promoting simplicity in 
AI design is also aligned with green objectives, reducing energy consumption 
associated with complex models. 
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Abstract 

In the context of Federated Learning, it is essential to authenticate the incom­

ing messages from various entities. Many works have utilized Certificateless 
Public Key Cryptography (CL-PKC) and Signature Schemes. These recent 
developments focus on the existence of a single Trusted Authority (TA) 
that can issue partial private signatures truthfully without any malicious 
intent. This assumption is not pragmatic when multiple competing entities 
with some assets are involved. Additionally, dependence on a single TA 
introduces a single point of failure and a center of malice. In this work, we 
first propose a mechanism for partial key exchange for CL-PKC employing 
Traceable Ring Signatures. Furthermore, we utilize the existing blockchain 
or logging infrastructure to extend our model to provide accountability and 
disincentivization for malicious TAs. The cryptographic tools used in this 
work can be parallelized to get more efficiency out of these trusted nodes. To 
evaluate our protocol, we also simulate it to argue for the communication and 
computation costs. 

Keywords: certificateless public key cryptography, distributed learning, 
accountability. 
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20.1 Introduction 

Federated Learning (FL) is a distinct approach to machine learning in which 
distributed and decentralized entities train a local model using the localized 
data and provide updates to the global server to improve the global model. 
There are many inherent benefits to such an approach as it avoids the unnec­

essary sharing of raw data from one point to another. It also has numerous 
advantages in terms of scalability and efficiency. However, this approach 
generates a complex network structure wherein there is a huge amount of data 
aggregation to a local node, usually called the aggregator, where local data 
processing occurs. Due to the complexity of the underlying network structure, 
enabling key distribution and management is a challenging task. The key 
management and distribution are essential to implement the necessary data 
security guarantees. Moreover, it is equally important to handle access control 
and data authentication from various entities in the network. Without the 
necessary steps, malicious entities can exploit the vulnerabilities to inflict loss 
of data and assets. Thus, distributing keys and authenticate various messages 
from the network entities is of utmost importance. A critical aspect of such 
networks is that the end devices that collect the data are usually resource-

constrained with limited computation power. Therefore, we cannot deploy 
expensive cryptographic tools for data security. 

20.2 Related Work and Contributions 

Identity-based Encryption (IBE) [1] [2] allows users to communicate and 
share secrets and signatures in which the user’s public key is derived from 
a known string associated with the user. However, this requires complete 
trust in a Trusted Authority (TA), also known as Key Generation Centre 
(KGC). This introduces a single point of failure that can reveal all the secret 
keys associated with the system users when compromised. Certificateless 
Public Key Cryptography (CL-PKC) [3] allows the system users to derive 
keys using the trusted KGC without the key-escrow problem in IBE. In CL­

PKC, the users use KGC to get partial private keys, which they can use to 
generate their full private keys, reducing the role of KGC. This scheme does 
not require certificates, but a trust in the KGC is still required. Other issues 
include securely transmitting the partial private key to the user who requests 
it. Hierarchical Certificateless Cryptography (HCLC) [4] [5] aims to solve the 
concerns regarding trust in KGC by introducing a tree-like structure involving 
a root KGC, lower-level KGCs, and the users. The structure dictated by 
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HCLC has root KGC at the top, the users as the leaf nodes, and the lower-

level KGCs as the intermediate nodes. This model reduces trust in the root 
KGC but requires a complex setup procedure and has scalability issues when 
the hierarchy grows. There are concerns regarding communication costs and 
the security of higher-level KGCs. However, CL-PKC is very efficient and 
computationally inexpensive for resource-constrained devices. Many recent 
works propose using CL-PKC in multiple domains, such as Wireless Body 
Area Networks, VANET authentication, and Federated Learning with privacy 
and anonymity as a feature [6], [7], [8], [9]. However, all these works rely 
on a single KGC or TA. In this work, we introduce the usage of multiple and 
distributed TAs for the full private key generation. The proposed protocol also 
provides accountability for the key generation process using Traceable Ring 
Signatures. The TA trying to generate an inconsistent or another key using the 
partial private key (key replacement) can be disincentivized. Another benefit 
of using a Traceable Ring Signature is that when the key is successfully 
generated, the user requesting the key and the TA generating the key only 
know about the key generation process, introducing uncertainty regarding 
where it was generated, provided appropriate measures are taken to hide 
the network traffic. The other participants may become aware that the key 
has been generated for a user who desires it in specific applications. The 
user must, however, provide certain publicly known parameters related to TA 
for consistent encryption, which can be predetermined between the parties if 
required. 

20.3 Preliminaries 

20.3.1 Pairing Based Cryptography 

Consider an additive group (Gl , +) and a multiplicative group (G-, .), both 
finite groups of prime order q. Let us denote P as a generator of Gl . A pairing 
e is a map e : Gl × Gl → G- such that the following properties hold true: 

• The map e is bilinear: given A, B, C ∈ G1, we have  

e(A, B + C) = e(A, B) .e(A, C), 

e(A + B, C) = e(A, C) .e(B, C). 

Additionally, for any x, y ∈ Z∗ , we have  e(xA, yB) = e(A, B)xy = q 

e(xyA, B) etc. 
• The map e is non-degenerate: e (P, P ) = 1 . 
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• There exists an efficient algorithm such that computation of map e is 
efficient. 

20.3.2 Certificateless Public Key Cryptography (CL-PKC) 

CL-PKC is a public key cryptosystem that overcomes the limitations of 
traditional Public Key Infrastructure and Identity-Based Cryptography (IBC). 
The main objective of CL-PKC is the elimination of digital certificates (as 
required in traditional PKI) and the inherent key-escrow problem where the 
TA possesses the knowledge of the private keys of all the entities. In CL-PKC, 
a TA or KGC facilitates an entity in the private key generation by generating 
a partial private key with its secret value. The entity computes its public key 
using its secret value. It is interesting to observe that an entity can generate 
its public key before generating the private key. 

20.3.3 Traceable Ring Signatures 

A ring signature allows the signer to sign a message on behalf of a group of 
signers and the ability to remain anonymous [10]. Thus, with a ring signature, 
an entity can ensure that the message was signed by one of the group members 
but cannot identify the signer amongst the group. Blockchains such as Mon­

ero use ring signatures for anonymous transactions [11]. However, in specific 
applications such as e-voting, total anonymity can help certain entities cast 
double votes without repercussion. Traceable Ring Signature (TRS) [12] 
provides functionality to trace a signer’s public key in case the signer issues 
a signature for two messages using the same tag. The tag usually consists of 
an issue and a ring of public keys pkring. The issue reflects the context in 
which a particular vote is to be cast. Let λ ∈N be a security parameter which 
denotes the desired level of security. We can define Traceable Ring Signatures 
in technical terms as follows. A Traceable Ring Signature scheme consists of 
algorithms <  Gen, Sign, V erify, T race >  such that: 

• Gen: is a probabilistic polynomial-time algorithm that takes a security 
parameter λ∈N as input and outputs a public and secret key pair 
(pk, sk). 

• Sign: is a probabilistic polynomial-time algorithm that takes a secret 
key, ski, where i∈N , tag L = (issue, pkring), and message m∈{0, 1} ∗ 

as input and outputs a signature σ. 
• V erify: is a deterministic polynomial-time algorithm that takes tag 
L = (issue, pkring), message m∈{0, 1} ∗, and signature σ as input and 
outputs a bit indicating the validity of the signature. 
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• Trace: is a deterministic polynomial-time algorithm that takes tag L = y e 
(issue, pkring), and two message-signature pairs, (m, σ) , m 

′ 
, σ 

′ 
as 

input and outputs string result∈{indep, linked, pk}, where pk∈pkring 

subject to the conditions implied by public traceability as defined 
in [12]. 

20.3.4 Merkle Patricia Trie 

The Merkle Patricia Trie (MPT) is a distributed data structure that maintains 
a consistent and efficient key-value database [13]. It combines Merkle Tree 
[14] and Patricia Trie [15]. The Merkle Trees guarantee data integrity and 
verification using cryptographic hashing, while the Patricia Tries have an 
inherent structure to support efficient storage and retrieval properties. The 
data can be accessed through the node path traversal. A generic MPT structure 
has three node types: leaf, branch, and extension. One of the main features 
of MPT is the easy verification of state changes. The root of the MPT can be 
used to ensure that a particular value is consistent throughout the various 
distributed instances of a key-value database. This property is supported 
by the standard security guarantees of a cryptographic hash function [16]. 
Currently, MPT is employed in various blockchains such as Ethereum, Quo­

rum, and many more, for storage tracking state changes of blockchain global 
state (in the form of a state trie), transactional data, and similar associated 
data [13]. 

20.4 Proposed Model 

20.4.1 Notation 

The notation throughout the text follows an indexed superscript for a param­

eter to form an association with network participants. In the subsequent 
sections, we will use TA  to denote a KGC throughout our discussion. The 
notation E(i) and TA(j) denote Entity with index i and TA with index j, 
respectively. Encs (m, k) and Decs (c, k) denote symmetric key encryption 
of message m with key k and symmetric key decryption of ciphertext c with 
key k respectively. The state trie is denoted by ST  . The existence of an ele­

ment e in the ST  is denoted by e∈ST , and consequently, the non-existence 
is denoted by e/∈ST . The inclusion of an element e within ST  is denoted by � ST ←ST {e}. Every network participant can query ST  and can check for 
the existence of e in O (1) time through a query to a subset of validators. The 
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validators or authorized participants can also include an element within the 
state trie through consensus. The validators also have an internal mechanism 
Disincentivize (S), which takes a set S, and disincentivizes the public 
keys in the set S through consensus amongst the validators. The messages 
within the network participants are denoted as (type, param1, param2. . .) 
where the first parameter is always message type. The usage of other 
parameters will be highlighted in the respective algorithms. The methods 
broadcast (msg) and send (dest, msg) are used for message transmission. 
The broadcast sends the message msg to every validator in the network 
while the method send, sends the message msg to a network participant 
denoted by dest. For instance, send TA(j), ( init ) denotes a message 

with type init to TA(j). The source of this message depends on the context 
of other parameters or where it is mentioned in the text. The process of 
receiving a message is denoted by on−recv (< message >) . The operations 
regarding Traceable Ring Signatures are denoted by a subscript trs. The 

operations Gentrs(λ), Sign  trs(sk
(i) L, m), V  erifytrs(L, m,  σ),y e trs, 

Tracetrs L, (m, σ) , (m 
′ 
, σ 

′ 
) are defined as in Subsection 1.3.3. 

y e 
(j) (j)

There exists a method called lookup P which takes P associ­0 0 

ated with TA(j) and returns corresponding pk
(j)

. The lookup table is built trs

up during the network bootstrapping, as discussed in Subsection 1.4.3.1. 
The parameters associated with the network participants are mentioned in 
Table 20.1. 

20.4.2 Network Architecture 

The network architecture is assumed to take the form depicted in Figure 20.1. 
Two major network participants are Trusted Authorities (TA) and Enti­

ties (E). Formally we can state that the set of TAs is denoted by 
TA  = {TA(1), TA(2), . . ., T  A(w)} and set of entities is denoted by E = 

{E(1), E(2), . . ., E(x)}. It is also assumed that |TA| = w and |E| = x. The 
network participants have communication links between each other where 
they can exchange data. The role of validators mentioned in Subsection 1.4 
is delegated to the network participants of the set TA. It is also assumed 
that the majority of the validators are honest. Therefore, the network par­

ticipants in set TA  have the responsibility of updating and maintaining ST  
and executing Disincentivize (S) consistently. ST  is assumed to remain 
consistent for all operations. All the network participants can query ST  
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Table 20.1 Notations. 

Notation Explanation 
 TA(j)

E(i) 

 ID(i)

∗ Zq 
(i)s
(j) 
sta 

(j) 
P0

Q(i) 

D(i) 

(i) Denc 

N 
λ 

σ(i,j) 

pkring 

L(ı) 

trusted authority (TA) with index j 

entity (E) with index i 

E(i) identifier for 
the multiplicative group of integers modulo prime q 

E(i) secret value of 
 secret value of TA(j)

 public parameter P0 for TA(j)

intermediate value generated during partial key generation for entity 

E(i) partial private key for 

D(i) encrypted value of 
set of natural numbers 
a security parameter for desired security guarantees 

 the TRS signature signed by TA(j) for key generation request from 
ring associated with TRS consisting of a fixed set of public keys 

E(i) tag value associated with the key generation for 

E(i) 

E(i) 

Figure 20.1 The underlying architecture consists of TA nodes and Entities requesting partial 
private key generation. In this model, any Entity node can start the protocol with a TA node of 
its choice. ⏎ 

⏎ 
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in constant time by issuing a request to one or multiple ST  maintainers. 
The network is assumed to be synchronous, and Δs bounds the network 
packet delivery time. The maximum time for the inclusion of an element 
in the ST  and maximum processing time is bounded by Δa and Δp, 
respectively. 

20.4.3 Protocol 

This section discusses the mechanism for partial private and full private key 
generation. Firstly, we discuss the process of network bootstrapping and the 
protocol for private key generation between a TA and an Entity. In further 
discussion, we introduce algorithms for updating ST  , the Audit Algorithm 
for enforcing accountability, and finally, the collectAndT race Algorithm, 
which is used in the detection of malicious TA (or TAs). 

20.4.3.1 Network Bootstrapping 

G

The process of network bootstrapping is presented in Figure 20.2. The 
TAs in the set TA  all have the reference to public parameters pp :=< 

l , G-, e, P,  H1, H2 >. Gl is an additive group and G- is a multiplicative 
group. Both Gl and G- are of prime order q. P is a generator of Gl . 
The pairing e is an efficient Billinear Pairing such that e : Gl ×Gl →G-. 
The functions H1 and H2 are cryptographic hash functions such that 
H1 : {0, 1} ∗ →Gl and H2 : {0, 1} ∗ →{0, 1}n . It is important to note 

Figure 20.2 Network Bootstrapping. ⏎ 



20.4 Proposed Model 387 

that these hash functions are cryptographically secure with standard security 
guarantees. 

Each TA(j) randomly samples its secret value s
(j) 

from Z∗ . Then, it ta q 
(j)

calculates its public key for the CL-PKC key generation mechanism P .0 
(j) (j) (j)

After generating P , TA(j) runs Gentrs (λ) to obtain sk and pk , which 0 trs trs

are its private and public keys for generating Traceable Ring Signatures. The 
(j) (j)

node then broadcasts P and pk with message type bn to all the other 0 trs 
(1) (w)

TAs in the set TA. Finally, all the TAs obtain set P = {P , . . ., P } and0 0 
(1) (w)

the ring pkring = {pk , . . ., pk }.trs trs 

20.4.3.2 Key Generation 
The flowchart in Figure 20.3 illustrates the logical sequence of the key gen­

eration process along with updating ST  and executing of audit mechanism. 
The key generation procedure is illustrated in Figure 20.4. The private key 
generation is a procedure between two network participants, namely, E(i) 

with ID(i) and TA(j). Firstly, E(i) samples its secret value s(i) from Z∗ 
q 

(i)Pand also generates the associated set of public keys X(i)←s
(j) 

and0 

Y (i)←s(i)P . After the generation of public keys E(i), sends an init message 
containing ID(i), X(i) and Y (i). TA(j) on reception of init message starts 

Figure 20.3 Flowchart for the full key generation and audit procedure. ⏎ 
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Figure 20.4 Key generation protocol. ⏎ 
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the generation of partial private key D(i). Three scenarios can occur. Note 
that each case represents a stage in the process. Each case is a check which 
must be followed to reach the next one. 

• Case 1: D(i) has already been generated for ID(i) as there exists an 
entry for ID(i) in the ST  . In this case, TA(j) aborts the partial key 
generation process and sends a message with type err stating that the 
key has already been generated. y e 

• Case 2: If  e X(i), P  =e Y (i), P
(j) 

, it implies that the public keys 0 

(j)
generated are inconsistent or P was not used in for public key 0 
generation. 

• Case 3: In this case, the public keys X(i)and Y (i) are consistent and 
TA(j) can begin the partial private key generation process. It is impor­

tant to note that the D(i) must be transmitted over an insecure channel. 
Therefore, it must remain confidential between TA(j)and E(i). To this 
end, TA(j) samples r randomly from Z∗ and calculates k 

′ ←rX(i).q 

k 
′ 

is the masked key for symmetric key encryption. Now, TA(j) 

calculates the actual key ks for symmetric encryption by calculating 

ks←rP
(j)

. In order to generate D(i), intermediate value Q(i) must be 0 

D(i)calculated as Q(i)←H1(ID
(i) || X(i) || Y (i)). is calculated as 

D(i)←s
(j)

Q(i). Next, TA(j) encrypts D(i) with key ks using symmetric ta 

key encryption to obtain Denc 
(i). In the subsequent step, TA(j) signs 

(i)
D(i)message m(i)←H2 and tag L(ı)←{ID(i), pkring} with sktrs 

to obtain σ(i,j). Finally, TA(j) broadcasts a message with type gen 
containing < σ(i,j),m(i),L(ı) > to every TA∈TA  (including itself) 
for updating ST  and sends a message with type res to E(i) containing 

(i), σ(i,j), k< Denc >. 

20.4.3.3 Full Private Key Generation 
On the reception of message of type res from TA(j), E(i) first tries 

(i) D(i)to decrypt Denc to obtain . For this it first obtains ks by cal­
(i) −1 ′ 

D(i)culating ks← s k . Using key ks, it obtains by perform-y e 
(i)

ing symmetric decryption operation as D(i)←Decs Denc, ks . Using 

the knowledge of ID(i) and pkring, it recovers the tag L(ı) as 
(i)L(ı)←{ID(i), pkring}. The m for traceable ring signature verification 

D(i) E(i) Q(i)can be calculated as m(i)←H2 . Then calculates as 
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Q(i)←H1(ID
(i) || X(i) || Y (i)). From this point on, there are three scenarios. 

Here, as well, note that each case represents a stage in the process. Each case 
is a check which must be followed to reach the next one. 

L(i) (i), σ(i,j)• Case 1: If V erifytrs ,m = 0, the entity E(i) broadcasts 

the message < sigError, ID(i) > to stop the inclusion of ID(i) in ST  . 
It then restarts the key generation process. It is critical to note that in this 
case, we do not try to disincentivize the TA(j) as it is trivial to construct 
an invalid traceable ring signature. This might occur due to an adversary 
trying to block communication links for E(i) and sending an invalid 
signature. It is unfair if we try to disincentize TA(j) in such a case. 
Therefore, in this case, E(i) must restart the key generation procedure 
with the same or any other TA. y e 

• Case 2: If e D(i), P  =e Q(i), P
(j) 

holds, it implies that the0 

D(i)TA(j) did not calculate the value of consistently. The mes­

sage signer can be held accountable since the traceable ring sig­

E(i)nature is valid. To this end, prepares the audit parameters 
aType, keyData, signData, aData as follows: 

aType ←keyError 

(j)
keyData←{D(i), Q(i), P }0 

signData←{σ(i,j),m(i), L(i)} 

aData ←{keyData, signData } 

Finally, it broadcasts the message with type audit containing < 
ID(i), aType, aData  >  to all TA∈TA. The audit procedure by TA 
is discussed in Algorithm 2. 

• Case 3: Finally, the full private key sk
(i) 

can be calculated by E(i) 
clpkc 

as sk
(i) ←s(i)D(i). For completeness we specify that E(i)broadcastsclpkc

L(i)the message with type gen containing < sigma(i,j), m(i), > 
to all the TA∈TA. However, this can be optimized by checking if after 
Δa time, If H2 ID(i) ∈ST is true or not, if not, then broadcast the 
message for the updating ST  . 

20.4.3.4 Update ST  
During the key generation procedure between TA(j) and E(i), a  TA∈TA, 
say TA(k) can receive multiple messages. These can be messages of type 
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gen, sigError, and audit. Updating ST  concerns gen and sigError mes­

sage types. This process is described by Algorithm 1 . On reception of < 
(i), L(i)gen, σ(i,j),m > in reference to L(i), TA(k) first verifies the traceable 

ring signature. If the verification fails, it notifies E(i) to restart partial key gen­

eration and returns ⊥. If  ID(i) for which registration is done, exists already in 
ST  , TA(k) prepares to start the audit procedure as discussed in Algorithm 2. 
For this, initializes audit Type parameter aT ype as aT ype ←dupRegError. 
It accumulates the received signature data in signData and further includes 
it in audit data represented by aData. It then broadcasts the message with 
type audit attaching data < ID(i), aT  ype, aData  >. On the other hand, if 
ID(i)∈ST / , TA(k) waits for 2Δs + Δp time. If it does not receive message 

of type sigError in reference to ID(i), it includes the ID(i) in the ST  , 
otherwise it notifies E(i) to restart partial key generation. 

20.4.3.5 Audit Algorithm 
In our protocol, we audit and disincentivize an entity for two cases, namely 
for keyError and dupRegError, which correspond to inconsistent and 
duplicate key generation, respectively. The issuance of both cases has been 
discussed earlier. The audit of type keyError is generated by an entity E(i) y e 
when the relation e D(i), P  = e Q(i), P  

(j) 
does not hold. Similarly, the 0 

audit of type dupRegError is initiated by a TA(k) when there is an attempt 
to generate partial keys for entity E(i) for which a key has already been 
generated. This can be an attempt to replace keys for entity E(i) or any other 
attack with similar intent. In the first step, TA(k) initializes an empty set M 
to store public keys of malicious TA (or TAs) for disincentivization. Next, it 
verifies whether the traceable ring signature in aData is valid. If it is invalid, 
disincentivization cannot occur, and algorithm will return false results. This 
is because it is trivial to produce invalid signatures. To discuss the Audit 
Algorithm, we need to discuss the collectAndTrace as defined in Algorithm 
3. It takes ID(i), L(ı) and aData. This Algorithm is executed as a subroutine 
in Algorithm 2. By the end of algorithm, collectAndT race returns set M 
containing the public key (or keys) of malicious TA (or TAs). 

It is crucial to note that when it is called, it is executed in parallel, 
and its execution time is bounded by Δs + Δp. It first initializes the set 
T and the set M. The set T stores received traceable ring signatures in 
form of a tuple m(l), σ(l) . The set M will be used to add the public 
key (or keys) of malicious TA (or TAs). Next, it obtains mmal and σmal, 
the suspected message and a valid traceable ring signature generated by 



 

   

  

    

      

     

    

     

  

   

   

   

   

   

  

   

      

   

   

      

   

      

ሻ௞ሺܶܣ by࣭࣮� : UpdateAlgorithm 1 ሻࣻሺࣦ in reference to ൐ሻࣻሺǡ ࣦሻ௜ሺǡ ݉ሻ௜ǡ௝ሺǡ ߪ  ݊݁൏ ݃: First message Data ൐ሻሻࣻሺǡ ࣦሻ௜ሺǡ ݉ሻ௜ǡ௝ሺǡ  :and execute Audit if necessary ࣭࣮Update Result ݊݋െݎݒܿ݁ ሺ൏ ݃݁݊ ߪ

 if then൯ �ൌ �Ͳ  ሻ௜ǡ௝ሺǡ ሻ௜ሺ݉ǡߪ �ሻࣻሺ൫ࣦ௧௥௦݅ݎܸ݂݁ݕ
 to restart partial key generation ሻ௜ሺܧ Failed! Notify ٣ return 

end ݅݁ݑݏݏǤሻࣻሺ՚ ࣦ ݀����݅
  if  ࣢ଶሺ݅݀ሻ א ࣭࣮ ܽݐܽܦ݊݃݅ݏݎ݋ݎݎܧܴ݃݁݌ݑ݀ ՚ �݁݌ݕܶܽ  ՚ ሼߪ� ሺ௜ǡ௝ሻǡ ݉ሺ௜ሻǡ ࣦ ሺࣻሻሽ ܽܽݐܽܦ� ՚ ሼ ܽݐܽܦ݊݃݅ݏ�ሽ ܾݐݏܽܿ݀ܽ݋ݎ൫൏ ǡݐ݅݀ݑܽ ሺ௜ሻǡܦܫ ǡ݁݌ݕܶܽ ܽݐܽܦܽ ൐൯ 
else ݐ݅ܽݓ��൫ȟ௦ ൅ ȟ௣൯ 

  if not received ൏ ǡݎ݋ݎݎܧ݃݅ݏ ሺ௜ሻ ൐�fromܦܫ ڂ �࣮࣭ ሺ௜ሻ thenܦܫ �ሼ ࣢ ଶ൫ࣦሺࣻሻǤ  {൯݁ݑݏݏ݅

else 

Failed! Notify ܧሺ௜ሻ  to restart partial key generation 

end 

 end 
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a malicious TA. It then starts a timer and waits for Δs time receiving 
traceable ring signatures generated by TA∈TA  for auditing in form of a 

(l) (l) (ı)message < auditRes, ID(i), L(ı),m , σ >. It verifies the Lauditaudit audit 

and received tag L(ı) are same and the signature is valid. If both are true, 
then it includes the tuple m(l), σ(l) in the set T . It is important to note 
that this procedure of receiving and processing signatures also occurs in 
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parallel. Next, the Tracetrs is used to find the malicious public key by run­y y ee y e 
(l) (l) (l) (l)L(ı)ning Tracetrs , (m, σ) , m , σ , ∀ m , σ ∈T . If  audit audit audit audit 

the |T | = w, then we will have at least one pk(y)∈pkring in the set M with 
very high probability. If |T | < w, algorithm includes all the non-signers. 
Lastly, if |T | > w, few TAs signed the message more than once. 

Thus, to get the signers who signed more than once, we run Tracetrs fory e 
(l) (l)

every pair of m , σ ∈T with every other such pair. In the end, we audit audit 

include such public keys in the set M and return M. With the discussion of 
collectAndT race, we can focus on the two cases for Audit Algorithm. Now, 
depending on the type of error, there are two possibilities: 

ሻ௞ሺܶܣ Audit algorithm executed by Algorithm 1: ሻ௜ሺܦܫ  in reference to ൐ ܽܽݐܽܦǡܶܽ݁݌ݕǡሻ௜ሺܫܦǡܽݐ݅݀ݑ ൏First Audit MessageData: 

for error ٣ for successful disincentivization or ١ Result: 

// Initialize empty set ࣧ for storing public keys of malicious TAs ࣧ ՚ ߶  ሻ௜ǡ௝ሺǤ ሻࣻሺǤ ߪ՚ሻ௜ǡ௝ ሺ ܽܽݐܽܦǤ ܽݐܽܦ݊݃݅ݏ ߪ ՚ሻ௜ሺ ܽܽݐܽܦǤ ܽݐܽܦ݊݃݅ݏ՚ሻࣻሺࣦ ሻ௜ሺ݉ Ǥ ܽܽݐܽܦǤ ܽݐܽܦ݊݃݅ݏ ࣦ
 ݉if then= 0൯ሻ௜ǡ௝ሺǡ ሻ௜ሺǡߪ ݉ሻࣻሺ൫ࣦ௧௥௦٣ ݂݅ݎܸ݁ݕ return 

end 

if

 if 

� ݎ݋ݎݎܧݕ݁݇� ൌ ܽܶ݁݌ݕ
଴ǡ ܲሻ௜ሺܳቀ  ݁ ൯ ്  ǡ ܲሻ௜ሺ݁ܦ൫ ࣦ௔௨ௗ௜௧ 
ሺ௝ሻቁ then ሽ௥௜௡௚݇ǡ ՚ܫܦሻ௜ሺ݌ ሼሻࣻሺ 

ሺ௞ሻ �����ሺ݉௞ሻߪ௔௨ௗ௜௧ 
ሻ௞ሺ଴՚ ܲ ሻ௞ሺ௧௥௦݇ቀݏ௧௥௦݊ܵ݅݃ ՚ ௔௨ௗ௜௧݉ǡ �ሻ௞ሺ ǡ �ࣦ ሺࣻሻቁ ሺ௞ሻ ௔௨ௗ௜௧ǡ݉ሻࣻሺǡ ࣦሻ௜ሺܫܦ ǡܽݏܴ݁ݐ݅݀ݑ ቀ൏ܾݐݏܽܿ݀ܽ݋ݎ ൯ܽܽݐܽܦǡሻࣻሺ ௔௨ௗ௜௧ǡ ࣦሻ௜ሺܦ൫݁ܿܽݎܶ݀݊ܣݐ݈݈ܿ݁݋ܿܫ ࣧ ՚ ൯௣൅ ȟ௦൫ȟݐ݅ܽݓ 

ሺ௞ሻ ൐ቁǡ  ௔௨ௗ௜௧ߪ
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ሻࣧሺ݁ݖ݅ݒ݅ݐ݊݁ܿ݊݅ݏ݅ܦ 

end 

end 

if then �݀ݎ݋ݎݎܧܴ݃݁݌ݑ � ൌ ܽܶ݁݌ݕ ሽ௥௜௡௚݇ǡ ՚ܫܦሻ௜ሺ݌ ሼሻࣻሺ ௔௨ௗ௜௧ࣦ ሺ௞ሻ ሺ௞ሻ ଴՚ ܲ�����ሺ݉௞ሻߪ௔௨ௗ௜௧ ሻ௞ሺ௧௥௦݇ቀݏ௧௥௦݊ܵ݅݃ ՚ ௔௨ௗ௜௧݉ǡ �ሻ௞ሺ ǡ �ࣦ ሺࣻሻቁ ሺ௞ሻ ሺ௞ሻ ൐ቁ௔௨ௗ௜௧ǡ ௔௨ௗ௜௧ǡ݉ሻࣻሺǡߪ ࣦሻ௜ሺܫܦ ǡܽݏܴ݁ݐ݅݀ݑ ቀ൏ܾݐݏܽܿ݀ܽ݋ݎ ൯ܽܽݐܽܦ ǡሻࣻሺ ௔௨ௗ௜௧ǡ ࣦሻ௜ሺܦ൫݁ܿܽݎܶ݀݊ܣݐ݈݈ܿ݁݋ܿܫ ࣧ ՚ ൯௣൅ ȟ௦൫ȟݐ݅ܽݓ ሻࣧሺ݁ݖ݅ݒ݅ݐ݊݁ܿ݊݅ݏ݅ܦ 

end ١ return 

• Case keyError: In the case of keyError, the validity of the claim 
that the generated key is invalid is verified. If the claim is true, TA(k) 

prepares a traceable ring signature for the audit process endorsing its 
(k)

public key P as the message and tag Laudit
(ı)←{ID(i), pkring}. This0 

tag facilitates the finding of malicious TA. After this, TA(k) broadcasts 

the message of type auditRes with contents ID(i), L(i)and m
(k) 
audit 

is broadcasted to every other TA∈TA. TA(k) calls the func­
(ı)tion collectAndT race with parameters Laudit and aData. The 

collectAndT race executes in parallel to return the set M in utmost 
Δs + Δp time. Finally, the nodes disincentivize the participants in the 
set M by executing Disincentivize (M). 

• Case dupRegError: In this case as well, TA(k) prepares a trace­
(k)

able ring signature for the audit process endorsing its public key P 

as the message and tag Laudit
(ı)←{ID(i), pkring} and then it broad­

casts it with type auditRes. Finally, M is returned by executing 
collectAndT race in parallel in at most Δs + Δp time, and the public 
keys in the set M are disincentivized. 
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ሻ௞ሺܶܣ algorithm executed by ݁݊݀ܶܣݐ݈݈ܿ݁݋ܿܿܽݎ Algorithm 3: ܽܦܽݐǡ ܽሻࣻሺ ௔௨ௗ௜௧ǡ ࣦሻ௜ሺܦܫ Data: 

Result: Build and Return the set ࣧ 

\\ Initialize empty set M for storing malicious TRS ࣧ ՚ ߶  ሻ௜ሺ݉Ǥܽܽݏ݅ܦ݊݃ݐǤܽܽݐܽܦ ՚௠௔௟݉ ሻ௜ǡ௝ሺǤ � ߪ՚௠௔௟ ܽܽݐܽܦǤݏ݅݃݊ܦܽݐܽ ߪ ՚ Ͳ ݅ݐ݉݁ݎ 

while ௦൑ ȟ ݉݁ݐ݅ݎ ሺ௟ሻ ௔௨ௗ௜௧ǡ ݉ሻࣻሺǡ ࣦሻ௜ሺܫܦ ǡ݅ܽ݀ݑݏܴ݁ݐ ቀ൏ ݁ܿݎݒ െ ݊݋
௔௨ௗ௜௧ǡ ݉ሻࣻሺቀࣦ௧௥௦ר �݅ݎܸ݂݁ݕ ሻࣻሺ  if ሺ௟ሻ 
ሺ௟ሻ ൐ቁǡ ࣦ ௔௨ௗ௜௧ߪ ሺࣻሻ ൌ ࣦ௔௨ௗ௜௧ ሺ௟ሻǡ ௔௨ௗ௜௧ ቁߪ ൌ ͳ  then ሺ௟ሻ ௔௨ௗ௜௧݉ሼ  ࣮ ׫

  end

  end 

ሺ௟ሻ ሽǡ  ௔௨ௗ௜௧ߪ
ሺ௬ሻ ௔௨ௗ௜௧ሽ�ԛȁԛ׊�ሼ݉௬݇݌ሼ ׫ ࣧ� 

  if ȁ࣮ȁ ൏ ݓ  

ሺ௬ሻǡ ௔௨ௗ௜௧ ሺ௬ሻ ௔௨ௗ௜௧݉ǡߪ ቀሻ݉ߪǡሺǡሻࣻሺࣦ൬௧௥௦݁ܿܶא࣮ר ܽݎሽ 
ሺ௦ሻ ሺ௦ሻሻ�ȁ׌��ԛሼ݉௔௨ௗ௜௧ ሽ א ࣮ǡ  ௔௨ௗ௜௧ߪ

ሺ௬ሻǡ ௔௨ௗ௜௧ ሻ௬ሺ݇ൌߪ ൰ቁ݌
� ՚ �݈݋݇݋݌ݑሺ௦ሻ ௔௨ௗ௜௧݉ሺ ݅ݏ݁݊݃ݏݎ߶ ሼ ݅ݏ݁݊݃ݏݎ�׫ ሽ݅ݏ݁݊݃ݏݎ െ௥௜௡௚݇݌ሼ  ׫ࣧ 

end 

  if ȁ࣮ȁ ൐ ݓ  ሺ௬ሻ ሺ௬ሻ ሺ௬ሻ ሺ௬ሻࣧڂ��ሼ̰݇݌�ሼሺݕሻሽ�ሽ�ԛȁ�ሼԛ׊ሼ݉௔௨ௗ௜௧ଵ ǡ ௔௨ௗ௜௧ଵ ሽǡ ሼ݉௔௨ௗ௜௧ଶǡߪ ௔௨ௗ௜௧ଶ ሺ௬ሻ ௔௨ௗ௜௧ଶ݉ቁߪ ǡ ቀ  

ԛ ሽ ר  א ࣮  ሺ௬ሻ ௔௨ௗ௜௧ଵ݉ǡ ቀሻ௜ሺ൬��ࣦ ௧௥௦݁ܿܶܽݎ
end 

return ࣧ 

ሺ௬ሻǡ  ௔௨ௗ௜௧ଵߪ
ሺ௬ሻǡ  ௔௨ௗ௜௧ଶߪ

ሻ௬ሺ݇ቁ൰ ൌ ݌  

This concludes the discussion of the established protocols and associated 
algorithms. 
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20.5 Empirical Results and Analysis 

To evaluate the protocol, we designed a simulation using Golang [17]. For 
communication, protocol buffers were used. We implemented the Fujisaki-

Suzuki Traceable Ring Signatures using the Ristretto prime-order group [18]. 
The group operations were done using the PBC library [19] to implement the 
original protocol. All the simulations were done on a Laptop with Intel(R) 
Core (TM) Ultra 7 165H 1.40 GHz processor with 32 GB Memory. 

Since the generation of ring signatures is a bottleneck, we evaluated our 
implementation of traceable ring signatures sequentially and in parallel. As 
depicted in Figure 20.5, we evaluated the signature generation and verifica­

tion process with ring sizes 10, 50, and 100. The time required to generate 
and verify 1000 signatures was recorded. As evident in Figure 20.5 (c), for 
a ring size of 100, the generation and verification took about 20 s. However, 
this is resolved when multiple signature generation and verifications are done 
in parallel; for a similar ring size of 100, the duration was reduced to 2.2 s. 
A similar reduction by a factor of 10 was also observed for ring sizes 10 and 
50. Our evaluation shows that the scheme can be used for practical purposes. 

Moreover, we simulated different instances with variations in the number 
of TAs and Entities. The results of the simulation are presented in Figure 20.6. 
The packet delays followed the Poisson distribution. We varied the number of 
Entities (nEntities) by 50, 100, and 200. The number of Trusted Authorities 
(nT A) varied by 5, 10, and 20. For nEntities = 50, we observe that the 

Figure 20.5 Benchmark for traceable ring signatures for sequential and parallel execution. ⏎ 
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Figure 20.6 Key generation benchmarking for nT A = 5, 10, 20 with different number of 
Entities. 

total time for both nT A = 10 and nT A = 20 is upper bound by 4.5 s. 
This result is in line with the expectation that as more TAs are present, the 
load of key generation is distributed equitably. However, it is essential to 
notice that the size of the response from TA to Entity will be larger due 
to the increased size of the ring signature. This results in transmission and 
processing delays. The effect of increased signature sizes can be seen from 
the case for nEntities = 100. In this case, the configuration with nT A = 
5 outperforms the configuration for nT A = 10 and nT A = 20. It is also 
interesting to observe that the configuration with nT A = 20 outperforms the 
configuration with nT A = 10. However, as more entities are added to the 
system, the effect of this decentralization is evident. The time required for key 
generation for nEntities = 200 is the minimum for the configuration with 
nT A = 20. Therefore, as more entities are added to the system, the protocol 
performs better with more trusted authorities. However, the requirement for 
the number of TAs varies from case to case. 

⏎ 
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Figure 20.7 Single run comparison of key generation for nT A = 5, 10, 20 with different 
number of Entities. 

We also evaluate a single protocol run with various configurations with 
nT A = 5, 10, and 20, respectively. The time was recorded as more entities 
joined the system and requested a partial key generation and the corre­

sponding data is reflected in Figure 20.7. Finally, the duration for successful 
completion of the complete protocol was recorded as well. The results are 
depicted in Figure 20.6. In this specific case, it can be inferred that the 
performance of the configurations nT A = 10 and nT A = 20 are very 
close to each other until nEntities = 175. As more entities are introduced, 
configuration with nT A = 20 achieves better time performance. However, as 
stated previously, the performance may vary on average due to large ring 
signatures. This can be optimized by fixing a specific ring for every key 
generation response. 

20.6 Conclusions and Future Works 

In this work, we have established a protocol to generate a CL-PKC-based 
private key with the network model and multiple trusted authorities. We 

⏎ 
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have also evaluated the computation and communication bottlenecks for 
efficient protocol implementation. The results indicate that the model can 
be adapted to accommodate the distributed nature of various applications. 
Considering the applications, the network model can have multiple use cases. 
For instance, in Federated Learning, a sensor node may not want to opt for a 
specific Trusted Authority confined to a geographic location or organization. 
This model facilitates the decentralization of the trust model in this case. 
It is important to note that we have established the accountability model 
for the general case of certificateless partial key generation. This work can 
be extended to accommodate the multiple trusted authorities in the existing 
models for Distributed Learning. Many of these models have established 
privacy-preserving solid models. However, inclusion must be made so the 
pre-existing guarantees are intact. 
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